JPH06196430A - Annealing method for inp single crystal - Google Patents

Annealing method for inp single crystal

Info

Publication number
JPH06196430A
JPH06196430A JP34268192A JP34268192A JPH06196430A JP H06196430 A JPH06196430 A JP H06196430A JP 34268192 A JP34268192 A JP 34268192A JP 34268192 A JP34268192 A JP 34268192A JP H06196430 A JPH06196430 A JP H06196430A
Authority
JP
Japan
Prior art keywords
single crystal
stress
inp
annealing
ampul
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34268192A
Other languages
Japanese (ja)
Inventor
Akitsugu Iwasaki
晃嗣 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP34268192A priority Critical patent/JPH06196430A/en
Publication of JPH06196430A publication Critical patent/JPH06196430A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a stress-free single crystal substrate in a high yield by annealing an InP ingot or an InP wafer at the melting point higher than the prescribed value or lower. CONSTITUTION:An S-doped InP single crystal ingot, which is formed by a LEC method, is melt-sealed together with red phosphorus in a vacuum quarts ampul of 1X10<-5>Torr. The quantity of red phosphorus contained in the above- mentioned melt-sealing is controlled in such a manner that is becomes 1 atm in pressure when it is entirely evaporated at the annealing temperature. The melt-sealed ampul is set in a soaking pit, and it is annealed at 1000 deg.C for twenty hours. After the annealing operation has been conducted at the programing rate of 100 deg.C/hr and at the cooling rate of 50 deg.C/hr, the circumference of the ampul is ground, sliced and finally, a double side mirror-polished wafer of 350mum in thickness is formed. As a result, the stress generated while crystal is grown can be removed, and stress-free InP single crystal can be manufactured in a high yield.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はInP単結晶中のストレ
スを除去するアニール方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an annealing method for removing stress in InP single crystal.

【0002】[0002]

【従来の技術】InP単結晶基板は、主としてその上に
エピタキシャル層を成長させ、半導体レーザーを製作す
るための基板として使用されている。しかし、ストレス
が存在している単結晶基板上にエピタキシャル層を成長
させた場合、表面のモホロジーが悪いとか、良好な電気
特性が得られない等の問題が生じる。単結晶基板中のス
トレスは、単結晶育成中の熱応力により生じ、それが薄
いウェーハ状に加工した後でも緩和されずに結晶中に残
留したものである。ストレスの無い単結晶基板を得るた
めには、熱応力の小さい条件で単結晶を育成する必要が
あるが、LEC法の場合、50℃/cm以上という大き
な温度勾配下で単結晶を育成するため、大きな熱応力が
かかりストレスが発生するのは避けられない。熱応力の
小さい低温度勾配下でInP単結晶を育成する方法とし
て、リン雰囲気中でLEC法を行なう蒸気圧制御LEC
法や垂直ブリッジマン法があるが、生産性が非常に悪い
のが問題であった。
2. Description of the Related Art InP single crystal substrates are mainly used as substrates for growing an epitaxial layer thereon to fabricate a semiconductor laser. However, when an epitaxial layer is grown on a single crystal substrate in which stress is present, problems such as poor surface morphology and poor electrical characteristics occur. The stress in the single crystal substrate is caused by thermal stress during the growth of the single crystal, and it remains in the crystal without being relaxed even after being processed into a thin wafer. In order to obtain a stress-free single crystal substrate, it is necessary to grow the single crystal under conditions of low thermal stress, but in the case of the LEC method, the single crystal is grown under a large temperature gradient of 50 ° C./cm or more. It is unavoidable that large thermal stress is applied and stress is generated. As a method for growing an InP single crystal under a low temperature gradient with a small thermal stress, a vapor pressure control LEC is carried out by performing the LEC method in a phosphorus atmosphere.
Method and vertical Bridgman method, but the problem was that productivity was very poor.

【0003】[0003]

【発明が解決しようする課題】高い生産性でストレスの
ないInP単結晶基板を製造する方法を提供するのが本
発明の目的である。ストレスの生じない単結晶育成法と
して蒸気圧制御LEC法や垂直ブリッジマン法があるこ
とを前述した。LEC法において、結晶育成界面の温度
勾配を小さくすると、液体封止剤であるB23 の上部
の温度が高くなり、B23 上に出た単結晶インゴット
の表面からリンが抜け出してしまう。このリン抜けを防
止するために、雰囲気中にリン蒸気の適度な分圧をかけ
る様にしたのが蒸気圧制御LEC法である。この方法に
おいてはリンの蒸気が引上げ炉内壁に凝縮するのを防ぐ
ために内部を2重構造とし、内側の壁をリンが凝縮しな
い温度に保つ工夫が必要であり、さらに内側の壁からリ
ン蒸気が漏れない様にシールを工夫する必要がある。こ
の様に炉内の構造が複雑になる結果、単結晶育成毎の炉
内の清掃作業が煩雑になり、炉の稼働率が低下するとい
う問題が生じる。また、単結晶育成時の温度勾配を小さ
くした結果直径制御性が悪くなり、そのため多結晶化や
双晶発生の確率が高くなり、単結晶収率が低下するとい
う問題も生じている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing a stress-free InP single crystal substrate with high productivity. As mentioned above, there are the vapor pressure control LEC method and the vertical Bridgman method as the stress-free single crystal growth method. In the LEC method, when the temperature gradient at the crystal growth interface is made small, the temperature of the upper part of B 2 O 3 which is a liquid sealant becomes high, and phosphorus escapes from the surface of the single crystal ingot that has come out on B 2 O 3. I will end up. The vapor pressure control LEC method is one in which an appropriate partial pressure of phosphorus vapor is applied to the atmosphere in order to prevent the phosphorus escape. In this method, in order to prevent the vapor of phosphorus from condensing on the inner wall of the pulling furnace, it is necessary to have a double structure inside and to keep the inner wall at a temperature at which phosphorus does not condense. It is necessary to devise a seal to prevent leakage. As a result of the complicated structure inside the furnace, the cleaning work inside the furnace for each single crystal growth becomes complicated and the operating rate of the furnace decreases. Further, as a result of reducing the temperature gradient during the growth of the single crystal, the controllability of the diameter is deteriorated, so that the probability of polycrystallization or twinning is increased, and the yield of the single crystal is reduced.

【0004】一方、垂直ブリッジマン法は、原料とルツ
ボとのぬれによって、その部分から多結晶が発生してし
まい、単結晶収率は非常に低く単結晶の生産手段として
は実用化されるに至っていない。LEC法はInP単結
晶を育成するのに最も生産性の高い手法であり、現在、
InP単結晶を生産するのに使用されている唯一のもの
である。しかし、結晶成長界面の温度勾配が50℃/c
m以上と大きいため、熱応力によりストレスが発生して
しまう。以上の様に、単結晶収率の高い単結晶育成方法
では結晶中にストレスが生じ、ストレスの発生しない様
な単結晶育成法では単結晶収率が非常に悪いという問題
がある。本発明は上記の問題を解決し、ストレスの無い
単結晶基板を高収率で得るための方法である。
On the other hand, in the vertical Bridgman method, a polycrystal is generated from the portion due to the wetting of the raw material and the crucible, and the single crystal yield is very low, and it can be put to practical use as a means for producing the single crystal. I haven't arrived. The LEC method is the most productive method for growing InP single crystals.
It is the only one used to produce InP single crystals. However, the temperature gradient at the crystal growth interface is 50 ° C / c
Since it is as large as m or more, stress occurs due to thermal stress. As described above, there is a problem that the single crystal growing method with a high single crystal yield causes a stress in the crystal and the single crystal growing method in which the stress does not occur has a very low single crystal yield. The present invention is a method for solving the above problems and obtaining a stress-free single crystal substrate in high yield.

【0005】[0005]

【課題を解決するための手段】本発明においては、単結
晶育成は生産性の優れた温度勾配の大きな通常のLEC
法もしくは磁場を印加したMLEC法で行なうことと
し、その後のアニールによって単結晶育成中に生じたス
トレスを除去するものである。GaAsにおいてはすで
にインゴットアニールが行なわれているが、この目的は
もっぱら電気特性の均一性を改善するものであって、ス
トレスを除去する目的では行なわれていなかった(特開
昭51−142270、特開昭61−8917、特開昭
61−185923号参照)。
SUMMARY OF THE INVENTION In the present invention, single crystal growth is a conventional LEC with excellent productivity and a large temperature gradient.
Method or the MLEC method in which a magnetic field is applied, and the stress generated during single crystal growth by subsequent annealing is removed. Although ingot annealing has already been carried out on GaAs, this purpose is to improve the uniformity of electrical characteristics exclusively, and it has not been carried out for the purpose of removing stress (Japanese Patent Laid-Open No. 142242/51/1987). (See JP 61-8917 and JP-A 61-185923).

【0006】種々の検討を重ねた結果、発明者は800
℃以上融点以下の温度でアニールすることにより単結晶
育成中に生じたストレスを除去できることを見出した。
このアニールは単結晶を育成したインゴットのままでも
よいし、ウェーハ状に加工した後でもよい。アニールに
際しては、アニール中に結晶表面からリンが蒸発するの
を防止する必要がある。その手段としてはInPの解離
圧以上の圧力のリン蒸気もしくはホスフィン雰囲気中で
アニールを行なうとか、B23 中でアニールを行なう
といった方法があげられる。さらに昇温速度や冷却速度
は急熱急冷をさけ、結晶がストレスを受けないような範
囲内で選定すべきである。具体的には結晶の大きさにも
よるが、昇温速度は100℃/時以下、冷却速度は50
℃/時以下とすべきである。また、アニール時間は結晶
が均一温度になれば良く、通常はインゴットの場合15
〜30時間、ウェーハの場合は20〜60分間を要す
る。
As a result of various studies, the inventor has found 800
It has been found that the stress generated during the growth of the single crystal can be removed by annealing at a temperature above the melting point and below the melting point.
This annealing may be performed on the single crystal grown ingot or after it is processed into a wafer. At the time of annealing, it is necessary to prevent phosphorus from evaporating from the crystal surface during annealing. As a means for this, there is a method in which annealing is performed in a phosphorus vapor or phosphine atmosphere having a pressure higher than the dissociation pressure of InP, or in B 2 O 3 . Furthermore, the heating rate and cooling rate should be selected within a range that does not stress the crystal, avoiding rapid heating and quenching. Specifically, depending on the size of the crystal, the heating rate is 100 ° C./hour or less, and the cooling rate is 50.
C / h or less. Also, the annealing time is sufficient if the temperature of the crystal is uniform, and normally 15
~ 30 hours, 20 ~ 60 minutes for wafers.

【0007】[0007]

【作用】本発明は温度管理を厳格に実施することによ
り、結晶を平衡状態に維持することによって結晶中の歪
の発生を防止するものである。
The present invention is to prevent the occurrence of strain in the crystal by maintaining the crystal in an equilibrium state by strictly controlling the temperature.

【0008】[0008]

【実施例】実施例1 LEC法にて育成したSドープInP単結晶インゴット
を赤リンと共に石英アンプル内に1×10-5Torrの真空
度で溶封した。この時に入れた赤リンはアニール温度に
おいて全部蒸発した時に1気圧となる様に量を調整し
た。引き続き溶封したアンプルを均熱炉内にセットし、
1000℃、20時間のアニールを行なった。この時の
昇温速度は100℃/時で冷却速度は50℃/時とし
た。アニール終了後外周研削、スライスを行ない、最終
的には350μmの厚さの両面ミラーウェーハに仕上げ
た。一方、LEC法にて育成した後、アニールを行なわ
なかったインゴットも同様に加工して350μmの厚さ
の両面ミラーウェーハに仕上げた。両者のストレスを赤
外線透過法により観察した結果、アニールを行なわなか
ったウェーハには周辺部にスリップライン状のストレス
がみられたが、アニールを行なったウェーハにはストレ
スは全く観察されなかった。
Example 1 An S-doped InP single crystal ingot grown by the LEC method was sealed together with red phosphorus in a quartz ampoule at a vacuum degree of 1 × 10 −5 Torr. The amount of red phosphorus added at this time was adjusted so that it became 1 atm when all was vaporized at the annealing temperature. Continue to set the sealed ampoule in the soaking furnace,
Annealing was performed at 1000 ° C. for 20 hours. The heating rate at this time was 100 ° C./hour, and the cooling rate was 50 ° C./hour. After the annealing was completed, the outer periphery was ground and sliced, and finally a double-sided mirror wafer having a thickness of 350 μm was finished. On the other hand, an ingot that had not been annealed after being grown by the LEC method was also processed in the same manner to finish a double-sided mirror wafer having a thickness of 350 μm. As a result of observing the stresses of both by an infrared transmission method, slipline-like stress was observed in the peripheral portion of the wafer which was not annealed, but no stress was observed in the annealed wafer.

【0009】実施例2 LEC法にて育成したSnドープInP単結晶インゴッ
トのみを1×10-5Torrの真空度で石英アンプル内に溶
封した。引き続き溶封したアンプルを均熱炉内にセット
し、800℃、20時間のアニールを行なった。この時
の昇温速度と冷却速度はそれぞれ100℃/時と50℃
/時である。アニール終了後、このインゴットを350
μmの厚さの両面ミラーウェーハに仕上げた。又、アニ
ールを行なわなかったインゴットも350μmの厚さの
両面ミラーウェーハに仕上げ、ストレスを観察した。そ
の結果、アニールを行なわなかったウェーハには4回対
称のストレスが観察されたが、アニールを行なったウェ
ーハではストレスは観察されなかった。
Example 2 Only a Sn-doped InP single crystal ingot grown by the LEC method was sealed in a quartz ampoule at a vacuum degree of 1 × 10 -5 Torr. Subsequently, the sealed and sealed ampoule was set in a soaking furnace and annealed at 800 ° C. for 20 hours. The heating rate and cooling rate at this time were 100 ° C / hour and 50 ° C, respectively.
/ Hour. After annealing, 350g of this ingot
A double-sided mirror wafer having a thickness of μm was finished. Further, the ingot which was not annealed was also finished as a double-sided mirror wafer having a thickness of 350 μm, and the stress was observed. As a result, 4-fold symmetrical stress was observed on the wafer that was not annealed, but no stress was observed on the wafer that was annealed.

【0010】実施例3 LEC法にて育成したSnドープInP単結晶インゴッ
トを350μmの厚さの両面ミラーウェーハに加工し、
ストレスを観察したところ、4回対称のストレスが観察
された。このウェーハをPH3 気流中で900℃、30
分のアニールを行なった。この時の昇温速度および冷却
速度はそれぞれ50℃/時と30℃/時である。アニー
ル終了後再びこのウェーハのストレスを観察したとこ
ろ、ストレスは除去されており見られなかった。
Example 3 A Sn-doped InP single crystal ingot grown by the LEC method was processed into a double-sided mirror wafer having a thickness of 350 μm,
When the stress was observed, 4-fold symmetrical stress was observed. This wafer was heated at 900 ° C. for 30 hours in a PH 3 stream.
Minute annealing was performed. The heating rate and cooling rate at this time are 50 ° C./hour and 30 ° C./hour, respectively. When the stress of this wafer was observed again after the completion of annealing, the stress was removed and was not seen.

【0011】[0011]

【発明の効果】本発明のアニール方法により、単結晶育
成中に生じたストレスを除去することができ、ストレス
の無いInP単結晶基板を高収率で製造することができ
る。この単結晶基板を用いることによってエピタキシャ
ル層の品質向上や収率向上が可能となり、レーザーダイ
オード等のデバイスの性能向上や収率向上が可能とな
る。
According to the annealing method of the present invention, the stress generated during the growth of a single crystal can be removed, and a stress-free InP single crystal substrate can be manufactured with a high yield. By using this single crystal substrate, the quality and yield of the epitaxial layer can be improved, and the performance and yield of devices such as laser diodes can be improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 InPインゴット又はInPウェーハを
800℃以上1060℃以下の温度で熱処理することを
特徴とするInP単結晶のアニール方法。
1. A method of annealing an InP single crystal, which comprises heat-treating an InP ingot or an InP wafer at a temperature of 800 ° C. or higher and 1060 ° C. or lower.
JP34268192A 1992-12-22 1992-12-22 Annealing method for inp single crystal Pending JPH06196430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34268192A JPH06196430A (en) 1992-12-22 1992-12-22 Annealing method for inp single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34268192A JPH06196430A (en) 1992-12-22 1992-12-22 Annealing method for inp single crystal

Publications (1)

Publication Number Publication Date
JPH06196430A true JPH06196430A (en) 1994-07-15

Family

ID=18355675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34268192A Pending JPH06196430A (en) 1992-12-22 1992-12-22 Annealing method for inp single crystal

Country Status (1)

Country Link
JP (1) JPH06196430A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7211141B2 (en) 2003-08-12 2007-05-01 Shin-Etsu Handotai Co., Ltd. Method for producing a wafer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143754A (en) * 1976-05-26 1977-11-30 Toshiba Corp Annealing method of compound semiconductor single crystal
JPS5595330A (en) * 1979-01-12 1980-07-19 Toshiba Corp Preparation of semiconductor device
JPS61222999A (en) * 1985-03-27 1986-10-03 Dowa Mining Co Ltd Method of improving electric characteristics of single crystal of compound semiconductor of group iii-v
JPH0231424A (en) * 1988-07-20 1990-02-01 Nippon Mining Co Ltd Manufacture of compound semiconductor wafer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143754A (en) * 1976-05-26 1977-11-30 Toshiba Corp Annealing method of compound semiconductor single crystal
JPS5595330A (en) * 1979-01-12 1980-07-19 Toshiba Corp Preparation of semiconductor device
JPS61222999A (en) * 1985-03-27 1986-10-03 Dowa Mining Co Ltd Method of improving electric characteristics of single crystal of compound semiconductor of group iii-v
JPH0231424A (en) * 1988-07-20 1990-02-01 Nippon Mining Co Ltd Manufacture of compound semiconductor wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7211141B2 (en) 2003-08-12 2007-05-01 Shin-Etsu Handotai Co., Ltd. Method for producing a wafer

Similar Documents

Publication Publication Date Title
US5441011A (en) Sublimation growth of single crystal SiC
US5871580A (en) Method of growing a bulk crystal
JP2011225392A (en) Method for producing silicon carbide single crystal ingot, and seed crystal for producing silicon carbide single crystal ingot
JPH1045499A (en) Production of silicon carbide single crystal and seed crystal used therefor
US4512825A (en) Recovery of fragile layers produced on substrates by chemical vapor deposition
KR101669444B1 (en) Method of Crystal Growth of SiC Using Liquid Phase Techniques
JP3659377B2 (en) Method for producing fluoride crystals
EP0036891B1 (en) Minimization of strain in single crystals
US4614672A (en) Liquid phase epitaxy (LPE) of silicon carbide
JPH06196430A (en) Annealing method for inp single crystal
JPH0977595A (en) Production of silicon carbide single crystal
JPH07206597A (en) Method for producing znse bulk single crystal
JP2001180918A (en) Method of directly synthesizing indium phosphide
JPS638296A (en) Formation of 3c-sic crystal
JP2002274995A (en) Method of manufacturing silicon carbide single crystal ingot
JP3560180B2 (en) Method for producing ZnSe homoepitaxial single crystal film
JP4200690B2 (en) GaAs wafer manufacturing method
JPH0784360B2 (en) Method for manufacturing semi-insulating GaAs substrate
JP2781857B2 (en) Single crystal manufacturing method
JP2000026199A (en) Production of silicon carbide single crystal and silicon carbide single crystal produced therewith
JP2003146791A (en) Method of manufacturing compound semiconductor single crystal
JPH0543400A (en) Production of gaas single crystal
JPS63117425A (en) Manufacture of semiconductor device
JP2873449B2 (en) Compound semiconductor floating zone melting single crystal growth method
JP3821508B2 (en) Method for producing ZnSe single crystal