JPS638296A - Formation of 3c-sic crystal - Google Patents

Formation of 3c-sic crystal

Info

Publication number
JPS638296A
JPS638296A JP15239286A JP15239286A JPS638296A JP S638296 A JPS638296 A JP S638296A JP 15239286 A JP15239286 A JP 15239286A JP 15239286 A JP15239286 A JP 15239286A JP S638296 A JPS638296 A JP S638296A
Authority
JP
Japan
Prior art keywords
substrate
sic
layer
silicon
molecular beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15239286A
Other languages
Japanese (ja)
Inventor
Shoichiro Matsumoto
昭一郎 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP15239286A priority Critical patent/JPS638296A/en
Publication of JPS638296A publication Critical patent/JPS638296A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a 3C-SiC crystal on a silicon substrate under low temperature and pressure condition, by heating a silicon substrate placed in an ultra-high vacuum and supplying molecular beam of a hydrocarbon gas to the surface of the substrate. CONSTITUTION:A silicon single crystal substrate is placed in an ultra-high vacuum atmosphere of <=10<-10>Torr, heated at bout 1,100 deg.C to clean the surface of the substrate and cooled to 720-850 deg.C. The substrate surface is supplied with molecular beam of a hydrocarbon gas (e.g. C2H2) to carbonize the surface and form a carbide layer consisting of a 3C-SiC single crystal and is maintained at about 500 deg.C for about 20min. The substrate is heated at about 1,150 deg.C and supplied with a molecular beam of a hydrocarbon gas to effect the growth of an epitaxial growth layer of 3C-SiC on the carbonized layer.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は3C(Cub ic )−8iC(シリコンカ
ーバイド)結晶の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for forming a 3C (Cubic)-8iC (silicon carbide) crystal.

(ロ)従来の技術 現在、3C−SiC単結晶を成長する方決としては、シ
リコン(Sl)基板表面と炭化(carbonizat
ior+)することにより3C−SiC層(以下炭化層
と称す)を形成し、その後祈るSiC層上に化学的気相
成長法、 。
(b) Conventional technology At present, the method for growing 3C-SiC single crystals is to grow a silicon (Sl) substrate surface and carbonize the silicon (Sl) substrate surface.
Form a 3C-SiC layer (hereinafter referred to as a carbonized layer) by depositing 3C-SiC layer (hereinafter referred to as a carbonized layer), and then chemical vapor deposition on the SiC layer.

°             7  ?用いて3C−S
iC工ピタキシヤル層(以下成長層と称す)を形成する
方法が一投に採用されている。
° 7? Using 3C-S
A method of forming an iC pitaxial layer (hereinafter referred to as a growth layer) has been adopted.

上記シリコン基板、f[の炭化方法としてはLate 
News  Abstracts、1bth  Con
ferenceonssDM(SOLID  5TAT
E  DEVICES  A’N’l]IATERfA
Ls )、LD−1−4(1984)に開示されている
ように常圧でシリコン基板’z1360°CK保持する
と共に祈る基板上VC0,0496C8H8を含んだH
2ガスを送り込む方法が採用されている。
The carbonization method for the silicon substrate f[ is Late.
News Abstracts, 1bth Con
ferenceonssDM (SOLID 5TAT
E DEVICES A'N'l]IATERfA
H containing VC0,0496C8H8 on a silicon substrate held at 1360°CK and prayed at normal pressure as disclosed in LD-1-4 (1984)
A method of sending two gases is adopted.

3勺 発FIAが解決しよつとする問題煮熱るに祈る方
法ではシリコン自体の融点が1420℃程度であるにも
かかわらず基板を1360℃とシリコンの融点近くまで
JA−温するため、基板表面が熱点にエツチングされる
という間頂かあり、ま念常圧で行なう息め上記炭化層中
に反応系内の不純物が取り込まれるという開面があっ念
3. The problem that the FIA is trying to solve is the hot method, which heats the substrate to 1360°C, close to the melting point of silicon, even though the melting point of silicon itself is around 1420°C. There is a possibility that the carbonization layer is etched into the hot spot, and impurities in the reaction system are taken into the carbonization layer when the reaction is carried out at normal pressure.

ま之、このようにシリコン基板がエツチングされたり、
炭化層中に不純物が取り込まれたりすると炭化層上にエ
ピタキシャル成長する成長層への結晶欠陥の導入原因と
なる。
Well, the silicon substrate is etched like this,
If impurities are taken into the carbonized layer, this will cause crystal defects to be introduced into the growth layer epitaxially grown on the carbonized layer.

に)問題点を解決するための手段 不発BAけ所る問題点KRみてなされ九ものでその特徴
は超高真空中に配されたシリコン(Si)基板を720
℃〜850℃に保持すると共に上記基板表面にガス圧1
0  Torr以下の炭化水素ガスの分子線全供給する
ことにある。
2) Measures to solve the problem There are nine things that have been done to solve the problem.
℃ to 850℃ and apply a gas pressure of 1 to the surface of the substrate.
The aim is to supply all molecular beams of hydrocarbon gas below 0 Torr.

(ホ)作 用 祈る方法では超高真空中でかつ低温で炭化層を形成でき
る。
(e) With the method of action, a carbonized layer can be formed in an ultra-high vacuum and at low temperatures.

(へ)実施例 第1図は木発明者が行った実験結果を示す。(f) Example Figure 1 shows the results of an experiment conducted by the inventor of the tree.

祈る実験は10  Torr以下の超高真空中にシリコ
ン単結晶基板を配し、祈る基板の温度と祈る基板表面へ
供給するアセチレン(C2H2)ガスからなる分子線の
ガス三七と変化させて上記基板表面を炭化させた際の基
板表面をRHEED(電子線回折〕法で調べ之ものであ
る。−2土弟1図中、×印・・・・・・Stストリーク
(Si単結晶の平坦面)のみが生じる条件 △印−−− −−−s tストリークと3C−SiCス
ポツト(3C−SiC単結晶の面 )とが混在する条件 ○印・・・・・・3C−SiCスポツトのみが生じる条
件 ■印・・・・・・3C−SiCスポツトと3C−SiC
リング(3C−3iCの多結 晶)とが混在する条件 ・印・・・・・・3C−SiC!Jングのみが生じる条
件 である。尚、上記各条件における形成時間は約5分とし
である。
In the experiment, a silicon single crystal substrate was placed in an ultra-high vacuum of 10 Torr or less, and the temperature of the substrate was changed to a molecular beam gas consisting of acetylene (C2H2) gas supplied to the surface of the substrate. The surface of the substrate was examined by RHEED (electron beam diffraction) after the surface was carbonized. Condition where only △ mark --- ---s Condition where t streak and 3C-SiC spot (surface of 3C-SiC single crystal) coexist ○ mark... Condition where only 3C-SiC spot occurs ■Mark・・・3C-SiC spot and 3C-SiC
Conditions/marks where ring (3C-3iC polycrystal) is mixed...3C-SiC! This is a condition in which only J-ng occurs. The formation time under each of the above conditions was about 5 minutes.

第1図より明らかな如く、基板温度720°C〜850
℃、アセチレンガス圧10  Torr以下の条件下で
はシリコン単結晶基板上に3C−8iC単結晶のみから
なる炭化層が形成可能である。
As is clear from Figure 1, the substrate temperature is 720°C to 850°C.
℃ and acetylene gas pressure of 10 Torr or less, a carbonized layer consisting only of 3C-8iC single crystal can be formed on a silicon single crystal substrate.

尚、3C−SiC単結晶のみが成長可能な条件下でも形
成時間が7分以上となると上記炭化層が多結晶化するこ
とが列用した。
Note that even under conditions where only 3C-SiC single crystals can grow, if the formation time is 7 minutes or more, the carbonized layer becomes polycrystalline.

第2図は本発明方法を用いた3C−3iC工ビタキシヤ
ρ成長層の製造工程の温度プログラムであり、まず$1
工程ではバックグランド真空度10   Torr以下
の超高真空中にシリコン単結晶基板を配すると共に祈る
基板11100°CK”保持することにより基板表面を
クリーニングする。
Figure 2 shows the temperature program for the manufacturing process of a 3C-3iC engineered bitaxia ρ growth layer using the method of the present invention.
In the process, a silicon single crystal substrate is placed in an ultra-high vacuum with a background vacuum level of 10 Torr or less, and the substrate surface is cleaned by holding the substrate 11100° CK''.

次いで、第2工程では上記基板表面に3C−8iC層(
以下炭化層と、を丁)全形成する。具体的には上記基板
温度を800℃まで降温すると共にガス圧7X 1O−
6T o r rのアセチレンガスからなる分子線を5
分間基板表面に供給する。これにより基板表面が炭化さ
れ3C−SiC単結晶からなる炭化層が形成される。
Next, in the second step, a 3C-8iC layer (
Below, the carbonized layer is completely formed. Specifically, the substrate temperature was lowered to 800°C and the gas pressure was increased to 7X 1O-
A molecular beam consisting of acetylene gas of 6T o r r is
Apply to the substrate surface for a minute. As a result, the surface of the substrate is carbonized and a carbonized layer made of 3C-SiC single crystal is formed.

続く、第3工程では上記基板温度を500°Cまで降温
し、約20分間保持する。同所る降温保持工程を省略し
て、第2工程直後即座に基板温度全3C−SiC工ピタ
キシーr/’U長層の成長温度である1150℃以上に
昇温すると上記炭化1@けエツチングされ消失する。
Subsequently, in the third step, the substrate temperature is lowered to 500° C. and held for about 20 minutes. By omitting the same temperature-lowering and holding step and immediately raising the substrate temperature to 1150°C or higher, which is the growth temperature of the entire 3C-SiC pitaxy r/'U long layer, the carbonization 1@ is etched. Disappear.

最後に第4工程では上記炭化層上に3C−SiCエピタ
キシーr/L/成長!(以下単に成長層と称丁)を化成
分子M法により成長する。具体的には基板温度を115
0℃に昇温すると共にアセチレンガスの分子線強度とシ
リコンの分子線強度との比か20:1となるように上記
各分子線を上記炭化層表面に供給する。祈る条件下では
40A/minの速度で表面平坦な3CSiC単結晶か
らなる成長層が成長した。
Finally, in the fourth step, 3C-SiC epitaxy r/L/grows on the carbonized layer! (hereinafter simply referred to as the growth layer) is grown by the chemical molecular M method. Specifically, the substrate temperature was set to 115
While raising the temperature to 0° C., each of the molecular beams is supplied to the surface of the carbonized layer so that the ratio of the molecular beam intensity of acetylene gas to that of silicon is 20:1. Under the desired conditions, a growth layer consisting of a 3CSiC single crystal with a flat surface grew at a rate of 40 A/min.

(ト)発明の効果 本発明方法では従来に較べて、低温でかつ低圧の条件下
で炭化層を形成できるので、炭化層形成時に基板表面が
エツチングさrL念り、炭化層中図、第2図は本発明の
実施例工程を示f温度プログラムである。
(G) Effects of the Invention In the method of the present invention, a carbonized layer can be formed at a lower temperature and lower pressure than the conventional method, so that the substrate surface is not etched when forming the carbonized layer. The figure shows an example process of the present invention and is a temperature program.

出頭大 三#−電機味式会社 代理人 弁理士 西野卓嗣(外1名) 第1図 600  700 800 900 = 1000  
1100基秋五L (℃’) 区   →4鳴粱言 C律 派
Appearance number 3 - Denkimi company agent Patent attorney Takuji Nishino (1 other person) Figure 1 600 700 800 900 = 1000
1100 KishugoL (℃') Ward → 4 Nairiaogon C Ritsuha

Claims (2)

【特許請求の範囲】[Claims] (1)超高真空中に配されたシリコン(Si)基板を7
20℃〜850℃に保持すると共に上記基板表面にガス
圧10^−^5Torr以下の炭化水素ガスの分子線を
供給することを特徴とする3C−SiC結晶の形成方法
(1) A silicon (Si) substrate placed in an ultra-high vacuum is
A method for forming a 3C-SiC crystal, characterized by maintaining the temperature at 20° C. to 850° C. and supplying a molecular beam of hydrocarbon gas at a gas pressure of 10^-^5 Torr or less to the surface of the substrate.
(2)特許請求の範囲第1項記載の炭化水素はアセチレ
ン(C2H2)であることを特徴とする3C−SiC結
晶の形成方法。
(2) A method for forming a 3C-SiC crystal, characterized in that the hydrocarbon recited in claim 1 is acetylene (C2H2).
JP15239286A 1986-06-27 1986-06-27 Formation of 3c-sic crystal Pending JPS638296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15239286A JPS638296A (en) 1986-06-27 1986-06-27 Formation of 3c-sic crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15239286A JPS638296A (en) 1986-06-27 1986-06-27 Formation of 3c-sic crystal

Publications (1)

Publication Number Publication Date
JPS638296A true JPS638296A (en) 1988-01-14

Family

ID=15539512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15239286A Pending JPS638296A (en) 1986-06-27 1986-06-27 Formation of 3c-sic crystal

Country Status (1)

Country Link
JP (1) JPS638296A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172446A (en) * 1982-04-02 1983-10-11 Honda Motor Co Ltd Operating state control device of internal-combustion engine
US5517968A (en) * 1993-03-16 1996-05-21 Mazda Motor Corporation Automobile engine control system
US5572976A (en) * 1994-01-21 1996-11-12 Mazda Motor Corporation Automobile engine control system
JPH09263497A (en) * 1996-03-29 1997-10-07 Denso Corp Production of silicon carbide single crystal
US7287514B2 (en) 2005-07-19 2007-10-30 Nikki Co., Ltd. Fuel supply control method and apparatus of internal combustion engine
CN103726106A (en) * 2012-10-11 2014-04-16 铼钻科技股份有限公司 Epitaxial growth method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172446A (en) * 1982-04-02 1983-10-11 Honda Motor Co Ltd Operating state control device of internal-combustion engine
US5517968A (en) * 1993-03-16 1996-05-21 Mazda Motor Corporation Automobile engine control system
US5572976A (en) * 1994-01-21 1996-11-12 Mazda Motor Corporation Automobile engine control system
JPH09263497A (en) * 1996-03-29 1997-10-07 Denso Corp Production of silicon carbide single crystal
US7287514B2 (en) 2005-07-19 2007-10-30 Nikki Co., Ltd. Fuel supply control method and apparatus of internal combustion engine
CN103726106A (en) * 2012-10-11 2014-04-16 铼钻科技股份有限公司 Epitaxial growth method

Similar Documents

Publication Publication Date Title
US6821340B2 (en) Method of manufacturing silicon carbide, silicon carbide, composite material, and semiconductor element
KR101302845B1 (en) Method of surface reconstruction for silicon carbide substrate
US6053973A (en) Single crystal SiC and a method of producing the same
JP4664464B2 (en) Silicon carbide single crystal wafer with small mosaic
JPS638296A (en) Formation of 3c-sic crystal
JP3657036B2 (en) Silicon carbide thin film and method for manufacturing silicon carbide thin film laminated substrate
JP3322740B2 (en) Semiconductor substrate and method of manufacturing the same
US4614672A (en) Liquid phase epitaxy (LPE) of silicon carbide
JP2002293697A (en) METHOD OF GROWING GaN EPITAXIAL LAYER
JPS6120514B2 (en)
JPH0624900A (en) Preparation of single crystal silicon carbide layer
JPH11147795A (en) Single crystal silicon carbide and its production
JPH07172997A (en) Production of thin film of silicon carbide and production device therefor
JP5152293B2 (en) Manufacturing method of silicon carbide single crystal wafer with small mosaic property
JP3087030B2 (en) SiC composite, method for producing the same, and single crystal SiC
JP3743013B2 (en) Epitaxial wafer manufacturing method
JPH0536602A (en) Crystal growth method of hexagonal crystal semiconductor
JP2007095800A (en) Manufacturing method of semiconductor substrate
JP2000026199A (en) Production of silicon carbide single crystal and silicon carbide single crystal produced therewith
JPH02263796A (en) Vapor hetero epitaxial growth method for silicon carbide
JPS6152119B2 (en)
JPH01179788A (en) Method for growing iii-v compound semiconductor on si substrate
JP2576135B2 (en) Method of growing GaP crystal on Si substrate
JPH06333830A (en) Manufacture of single-crystal silicon carbide
JPS62216218A (en) Manufacture of semiconductor device