JPS63117425A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63117425A
JPS63117425A JP61264447A JP26444786A JPS63117425A JP S63117425 A JPS63117425 A JP S63117425A JP 61264447 A JP61264447 A JP 61264447A JP 26444786 A JP26444786 A JP 26444786A JP S63117425 A JPS63117425 A JP S63117425A
Authority
JP
Japan
Prior art keywords
sic substrate
etching
hydrogen
sic
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61264447A
Other languages
Japanese (ja)
Inventor
Junichi Sano
純一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61264447A priority Critical patent/JPS63117425A/en
Publication of JPS63117425A publication Critical patent/JPS63117425A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the quality uniformalization of an epitaxial growth film, by using hydrogen to perform vapor phase etching for a SiC substrate while heating its substrate at 1800 deg.C or more. CONSTITUTION:N-type 6H-SiC ingot 1 is sliced and the surfaces of the sliced parts are polished by the use of a diamond grain and so intermediate matters 2 of the SiC substrate are obtained. Next, hydrogen gas etching for each intermediate matter is performed to obtain a SiC substrate 3, and a n-type semiconductor layer 4 and a p-type semiconductor layer 5 are made to grow epitaxially in order on the surface of the substrate 3. Successively, electrodes 6 and 7 made of Al metal and of Ni, respectively, are evaporated on a part of the surface of the p-type semiconductor layer 3 and on the rear surface of the SiC substrate 1, respectively. After heat treatment, dicing processing is performed to obtain light emitting diodes A, B, C,.... An etching process in which hydrogen is used is performed as follows: the intermediate matters 2 of the SiC substrate are housed inside a reaction furnace and heated/held at 1800 deg.C or more, and concurrently a hydrogen gas is supplied from above and on the other hand the gas is sucked/exhausted from the lower bottom and it is made to flow at a fixed flow speed inside the reaction furnace.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はSiC基板を用いた発光ダイオード等の半導体
装置を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device such as a light emitting diode using a SiC substrate.

〔従来技術〕[Prior art]

一般に6H−3iC(6H型炭化ケイ素)は光学的禁制
帯幅が室温で約3.OeVあり、間接遷移型であるが、
p型、n型の両轟電型を得ることが出来て、青色発光素
子用基板として注目されている。しかも従来難点とされ
ていた大面積単結晶を得難い点についても近時昇華法に
よって直径30Il程度の単結晶インゴットが得られる
ようになり、その利用が進められている。
Generally, 6H-3iC (6H type silicon carbide) has an optical forbidden band width of about 3. Although it has OeV and is an indirect transition type,
It is possible to obtain both p-type and n-type Todoroden types, and is attracting attention as a substrate for blue light emitting devices. Moreover, even though it has been difficult to obtain a large-area single crystal, which has traditionally been a problem, it has recently become possible to obtain a single-crystal ingot with a diameter of about 30 Il by the sublimation method, and its use is progressing.

単結晶インゴットは、通常スライス、研磨、ポリッシン
グ工程を経てエピタキシャル成長用基板に形成されるの
が普通であるが、SiCの場合そのままでは未だ研磨に
よるダメージが残留しており、基板としての使用が難し
いため、通常アルカリ溶融塩エツチング、電解エツチン
グ、ガスエツチング等による表面処理が施される。
Single-crystal ingots are normally formed into epitaxial growth substrates through slicing, polishing, and polishing processes, but in the case of SiC, damage from polishing still remains, making it difficult to use as a substrate. , surface treatment is usually performed by alkali molten salt etching, electrolytic etching, gas etching, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしアルカリ溶融塩エツチングでiエツチング後の表
面にエッチピットが多数現れる難点があり、また電解エ
ツチングは導電型がp型の場合に限られること、及びエ
ツチング後の表面に不動態膜が生成される難点がある。
However, alkaline molten salt etching has the disadvantage that many etch pits appear on the surface after i-etching, and electrolytic etching is limited to cases where the conductivity type is p-type, and a passive film is formed on the surface after etching. There are some difficulties.

このためガスエツチングが望ましいとされているが、ガ
スエツチングのうちAr−Cj!、−0,系ガスに依る
場合はSiCのSi面、特に6H−3iCの(0001
) Si面、3C−5iCの(111)Si面に対して
は殆どエツチングが出来ず、デバイス作製時に面方位に
よって表面処理が難しい場合が生じる難点があるためエ
ツチング用ガスとして水素の使用が試みられている(J
、APPL、PHYS。
For this reason, gas etching is considered desirable, but among gas etching, Ar-Cj! , -0, depending on the system gas, the Si surface of SiC, especially the (0001
) The Si surface and the (111) Si surface of 3C-5iC can hardly be etched, and surface treatment may be difficult depending on the surface orientation during device fabrication. Therefore, attempts have been made to use hydrogen as an etching gas. (J
, APPL, PHYS.

シOL、8.1lh4.APRIL1969 )。ShiOL, 8.1lh4. APRIL1969).

しかしこの方法ではSiC基板表面粗さが大きく十分な
表面処理効果が得られていないのが現状である。
However, with this method, the surface roughness of the SiC substrate is large and a sufficient surface treatment effect cannot be obtained at present.

本発明はかかる事情に鑑みなされたものであって、その
目的とするところは表面粗さの格段の低減を図れるよう
にした水素を用いてSiC基板を気相エツチングする工
程を含む半導体装置の製造方法を提供するにある。
The present invention has been made in view of the above circumstances, and its purpose is to manufacture a semiconductor device including a step of vapor phase etching a SiC substrate using hydrogen, which can significantly reduce surface roughness. We are here to provide you with a method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明にあってはSiC基板を1800℃以上に加熱維
持しつつ水素を用いて気相エツチングを施す工程を含む
The present invention includes a step of performing vapor phase etching using hydrogen while heating and maintaining the SiC substrate at 1800° C. or higher.

〔作用〕[Effect]

本発明はこれによってSiC基板表面の粗さを大幅に低
減出来てエピタキシャル成長膜品質の均一化が図れる。
According to the present invention, the roughness of the SiC substrate surface can be significantly reduced and the quality of the epitaxially grown film can be made uniform.

〔実施例〕〔Example〕

以下本発明方法を発光ダイオードの製造に適用した場合
について図面に基づき具体的に説明する。
Hereinafter, a case in which the method of the present invention is applied to manufacturing a light emitting diode will be specifically explained based on the drawings.

第1図(イ)〜(へ)は本発明方法による表面処理工程
を含む発光ダイオードの製造工程図であり、先ず第1図
(イ)に示す如きn型の6H−SiCインゴット1を、
第1図(ロ)に示す如く所定の厚さにスライスし、その
表面をダイヤモンド粒を用いて研磨し、SiC基板の中
間品2を得た後、第1図(ハ)に示す如く水素ガスエツ
チングを施して、所定の厚さに仕上げたSiC基板3を
得、このSiC基板3の表面に第1図(ニ)に示す如く
n型半専体層4、p型半導体層5をこの順序にエピタキ
シャル成長させた後、p型半導体層3の表面の一部には
Al金属製の、またSiC基板1の下面にはNi製の電
極6.7を蒸着し、熱処理を施した後、第1図(へ)に
示す如くダイシング加工して発光ダイオードA、B、C
・・・を得る。
FIGS. 1(a) to 1(f) are process diagrams for manufacturing a light emitting diode including a surface treatment process according to the method of the present invention. First, an n-type 6H-SiC ingot 1 as shown in FIG. 1(a) is
After slicing to a predetermined thickness as shown in FIG. 1 (b) and polishing the surface using diamond grains to obtain an intermediate SiC substrate 2, as shown in FIG. 1 (c), hydrogen gas A SiC substrate 3 finished to a predetermined thickness by etching is obtained, and an n-type semi-exclusive layer 4 and a p-type semiconductor layer 5 are formed in this order on the surface of this SiC substrate 3 as shown in FIG. 1(d). After epitaxial growth, an electrode 6.7 made of Al metal is deposited on a part of the surface of the p-type semiconductor layer 3, and an electrode 6.7 made of Ni is deposited on the lower surface of the SiC substrate 1, and after heat treatment, a first Light emitting diodes A, B, and C are made by dicing as shown in the figure (f).
...obtain...

水素によるSiC基板の中間品2に対するエツチングは
具体的には次のようにして行われる。エツチング用の反
応炉(図示せず)内にSiC基板の中間品2を収容して
、これを1800℃以上に加熱維持しつつ反応炉上方か
ら水素ガスを供給する一方、反応炉の下底から吸引、排
出させて反応炉内を所定の流速で通流させる。
Specifically, the etching of the intermediate product 2 of the SiC substrate using hydrogen is performed as follows. The intermediate product 2 of the SiC substrate is housed in a reactor for etching (not shown), and hydrogen gas is supplied from above the reactor while heating and maintaining it at 1800°C or higher, while supplying hydrogen gas from the bottom of the reactor. It is suctioned and discharged to flow through the reactor at a predetermined flow rate.

第2図は水素ガスによるSiC基板エツチングの表面粗
さとSiC基板温度との関係を示すグラフであって、横
軸にSiC基板温度(”C)を、また縦軸に表面粗さく
μm)をとって示しである。
Figure 2 is a graph showing the relationship between surface roughness and SiC substrate temperature when etching a SiC substrate using hydrogen gas, with the horizontal axis representing the SiC substrate temperature ("C") and the vertical axis representing the surface roughness (μm). This is an indication.

なお、水素ガスは流量l5Ll’l  (標準状態で1
分間に11が流れる流量)とし、且つエツチング時間は
10分とした。このグラフから明らかな如<SiC基板
温度が1800℃以上で表面粗さはl11m以下となっ
て規定の平滑さが得られることが解る。
In addition, the flow rate of hydrogen gas is l5Ll'l (1 in standard condition)
The etching time was 10 minutes. As is clear from this graph, when the SiC substrate temperature is 1800° C. or higher, the surface roughness becomes 111 m or less and the specified smoothness can be obtained.

第3図はSiC基板温度、水素ガス流量とエツチング速
度との関係を示すグラフであり、横軸にSiC基板温度
(t’)を、また縦軸にエツチング速度(8m7分)を
とって示しである。
Figure 3 is a graph showing the relationship between SiC substrate temperature, hydrogen gas flow rate, and etching rate, with the horizontal axis representing the SiC substrate temperature (t') and the vertical axis representing the etching rate (8 m7 minutes). be.

なお、グラフ中白丸でプロットしたのは水素ガス流量を
Hz=ISLMとしたときの、また黒丸でプロットした
のはHz=2SLMとしたときの結果を示している。
Note that the white circles plotted in the graph show the results when the hydrogen gas flow rate was set to Hz=ISLM, and the black circles plotted show the results when Hz=2SLM.

このグラフから明らかな如く水素ガス流量の変化に応じ
てエツチング速度も略2倍近い値となっていることが解
る。ただSiC%板温度を1800℃以上にすると水素
ガス流量によるエツチング速度の差は比較的小さくなっ
ている。
As is clear from this graph, the etching rate nearly doubles as the hydrogen gas flow rate changes. However, when the SiC% plate temperature is increased to 1800° C. or higher, the difference in etching rate due to hydrogen gas flow rate becomes relatively small.

第4図は本発明方法によって製造したSiC発光ダイオ
ードとエツチング処理を施さないSiC基板に形成した
SiC発光ダイオードとの電流 電圧特性図であり、横
軸に印加電圧(V)を、また縦軸に電流値(A)をとっ
て示しである。
FIG. 4 is a current-voltage characteristic diagram of a SiC light-emitting diode manufactured by the method of the present invention and a SiC light-emitting diode formed on a SiC substrate that is not subjected to etching treatment, with the horizontal axis representing the applied voltage (V) and the vertical axis representing the applied voltage (V). The current value (A) is shown.

グラフ中白丸でプロットしたのは、本発明方法を適用し
て得た発光ダイオードの、また黒丸でプロットしたのは
エツチングを施さないSiC基板に形成した発光ダイオ
ードの結果である。このグラフから明らかなように本発
明方法を適用して得た発光ダイオードは直線性が大幅に
改善されていることが解る。
In the graph, the white circles plot the results of a light-emitting diode obtained by applying the method of the present invention, and the black circles plot the results of a light-emitting diode formed on an unetched SiC substrate. As is clear from this graph, the linearity of the light emitting diode obtained by applying the method of the present invention is significantly improved.

〔効果〕〔effect〕

以上の如く本発明方法にあってはSiC基板温度を18
00℃以上に加熱維持しつつ水素を用いて気相エツチン
グを施すことから、SiC基板表面の平滑度に優れ、半
導体装置自体の品質の均一化が図れるなど本発明は優れ
た効果を奏するものである。
As described above, in the method of the present invention, the SiC substrate temperature is
Since gas phase etching is carried out using hydrogen while maintaining heating at 00°C or higher, the present invention has excellent effects such as excellent smoothness of the SiC substrate surface and uniform quality of the semiconductor device itself. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)〜(へ)は本発明方法の工程図、第2図は
SiC基板温度とSiC表面粗さとの関係を示すグラフ
、第3図はSiC基板温度、水素流量。 エツチング速度の関係を示すグラフ、第4図は本発明方
法を適用して得た発光ダイオードと水素エツチングを施
さないSiC基板を用いて得た発光ダイオードとの比較
試験結果を示す電流 電圧特性図である。 1・・・n型6H−3iCインゴツト 2・・・SiC基板用の中間品 3・・・SiC基板4
・・・n型半導体層 5・・・p型半導体層6.7・・
・電極 特 許 出願人  三洋電機株式会社 代理人 弁理士  河 野  登 夫 口二二二二二ニトえ ↓ 第 1 旧 SiC基板シ五度(“C) 第 2 口 +600       +700      18oO
5iC基脹1度(°C) 印加I!尾(V) 手続補正IF(自発) 昭和62年1月9日
Figures 1 (a) to (f) are process diagrams of the method of the present invention, Figure 2 is a graph showing the relationship between SiC substrate temperature and SiC surface roughness, and Figure 3 is the SiC substrate temperature and hydrogen flow rate. Figure 4 is a graph showing the relationship between etching speeds, and a current-voltage characteristic diagram showing the results of a comparative test between a light-emitting diode obtained by applying the method of the present invention and a light-emitting diode obtained using a SiC substrate that was not subjected to hydrogen etching. be. 1... N-type 6H-3iC ingot 2... Intermediate product for SiC substrate 3... SiC substrate 4
...N-type semiconductor layer 5...P-type semiconductor layer 6.7...
・Electrode patent Applicant Sanyo Electric Co., Ltd. Agent Patent attorney Noboru Kono
5iC base 1 degree (°C) Application I! Tail (V) Procedural amendment IF (voluntary) January 9, 1986

Claims (1)

【特許請求の範囲】[Claims] 1、SiC基板を用いた半導体装置を製造する過程で、
SiC基板を1800℃以上に加熱維持しつつ水素を用
いて気相エッチングをする工程を含むことを特徴とする
半導体装置の製造方法。
1. In the process of manufacturing semiconductor devices using SiC substrates,
A method for manufacturing a semiconductor device, comprising the step of performing vapor phase etching using hydrogen while heating and maintaining a SiC substrate at 1800° C. or higher.
JP61264447A 1986-11-05 1986-11-05 Manufacture of semiconductor device Pending JPS63117425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61264447A JPS63117425A (en) 1986-11-05 1986-11-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61264447A JPS63117425A (en) 1986-11-05 1986-11-05 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63117425A true JPS63117425A (en) 1988-05-21

Family

ID=17403320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61264447A Pending JPS63117425A (en) 1986-11-05 1986-11-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63117425A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255692A (en) * 2001-03-02 2002-09-11 Nippon Steel Corp Silicon carbide epitaxial substrate and manufacturing method thereof
JP2005311348A (en) * 2004-03-26 2005-11-04 Kansai Electric Power Co Inc:The Bipolar semiconductor device and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255692A (en) * 2001-03-02 2002-09-11 Nippon Steel Corp Silicon carbide epitaxial substrate and manufacturing method thereof
JP2005311348A (en) * 2004-03-26 2005-11-04 Kansai Electric Power Co Inc:The Bipolar semiconductor device and process for producing the same

Similar Documents

Publication Publication Date Title
JP4937685B2 (en) Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
JP5304713B2 (en) Silicon carbide single crystal substrate, silicon carbide epitaxial wafer, and thin film epitaxial wafer
JP4964672B2 (en) Low resistivity silicon carbide single crystal substrate
JP3875821B2 (en) GaN film manufacturing method
JP4603386B2 (en) Method for producing silicon carbide single crystal
TW201724179A (en) Production of SiC composite substrate
JP2007119273A (en) Method for growing silicon carbide single crystal
JPH06105797B2 (en) Semiconductor substrate and manufacturing method thereof
EP3352197A1 (en) METHOD FOR PRODUCING SiC COMPOSITE SUBSTRATE
JPH09268096A (en) Production of single crystal and seed crystal
JP2011222750A (en) Manufacturing method of silicon carbide single-crystal wafer and silicon carbide single-crystal wafer manufactured thereby
JPH0952796A (en) Method for growing silicon carbide crystal and silicon carbide semiconductor device
JP2002348198A (en) Substrate for semiconductor device epitaxial growth and method for producing the same
JP2003321298A (en) SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME, SiC WAFER WITH EPITAXIAL FILM AND METHOD FOR PRODUCING THE SAME, AND SiC ELECTRONIC DEVICE
JPH1045499A (en) Production of silicon carbide single crystal and seed crystal used therefor
JP2006062931A (en) Sapphire substrate and its heat treatment method, and method of crystal growth
JPH0891993A (en) Production of silicon single crystal substrate and method for quality control
JP2916580B2 (en) Epitaxially coated semiconductor wafer and method of manufacturing the same
JPS63117425A (en) Manufacture of semiconductor device
JP3043690B2 (en) Single crystal SiC and method for producing the same
JP3322740B2 (en) Semiconductor substrate and method of manufacturing the same
JPH0977595A (en) Production of silicon carbide single crystal
JP2005064336A (en) Method for manufacturing group iii nitride compound semiconductor substrate
JP3405687B2 (en) Method for manufacturing silicon carbide film
JPH09266212A (en) Silicon wafer