JPH0585850A - Solder paste for joining aluminum nitride substrate to copper plate - Google Patents

Solder paste for joining aluminum nitride substrate to copper plate

Info

Publication number
JPH0585850A
JPH0585850A JP28061291A JP28061291A JPH0585850A JP H0585850 A JPH0585850 A JP H0585850A JP 28061291 A JP28061291 A JP 28061291A JP 28061291 A JP28061291 A JP 28061291A JP H0585850 A JPH0585850 A JP H0585850A
Authority
JP
Japan
Prior art keywords
aluminum nitride
copper plate
powder
joining
aln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28061291A
Other languages
Japanese (ja)
Inventor
Masahiro Saito
政浩 斉藤
Yutaka Takeshima
裕 竹島
Yasunobu Yoneda
康信 米田
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP28061291A priority Critical patent/JPH0585850A/en
Publication of JPH0585850A publication Critical patent/JPH0585850A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent deterioration of joining strength of a solder paste for joining by adding aluminum nitride powder and organic vehicle having prescribed ratio to metal powder. CONSTITUTION:The subject solder paste for joining is formed by adding 0.5-10 pts.wt. aluminum nitride powder and a residual amount of organic vehicle to 100 pts.wt. metallic powder. The metallic powder includes silver, copper and titanium. When a copper plate to which the solder paste was applied is put on an aluminum nitride substrate and these components are heat-treated to join these components, thermal coefficient of expansion of the solder material layer becomes small owing to aluminum nitride powder. Consequently, crack on aluminum nitride substrate side caused by thermal shock is not generated and deterioration of joining strength after heat cycle is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒化アルミニウム基板と
銅板の接合用ロウペーストに関する。具体的にいうと、
例えばICパッケージやパワーダイオードなどの基板と
して用いられる窒化アルミニウム−銅接合基板を作製す
る際に用いられる接合用ロウペーストに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a brazing paste for joining an aluminum nitride substrate and a copper plate. Specifically,
For example, the present invention relates to a brazing paste for joining used in producing an aluminum nitride-copper joined substrate used as a substrate for IC packages, power diodes, and the like.

【0002】[0002]

【従来の技術】半導体デバイスの高密度化、高速化及び
高出力化に伴う発熱量の増大に対応するため、基板材料
としては放熱性に優れたものが要求されてきている。放
熱性に優れた基板材料としては、従来よりアルミナ基板
が用いられてきたが、最近では熱伝導率の高い窒化アル
ミニウム(以下、AlNと記す。)基板が注目されてい
る。しかし、実装基板としての放熱性を良好にするため
には、AlN基板にヒートシンクとして厚さ数100μ
mの銅板等の金属板を接合させる必要がある。このた
め、従来にあってはTi(チタン)等の活性金属を添加
したロウ材を用いてAlN基板に金属板を接合させてい
る。
2. Description of the Related Art In order to cope with an increase in the amount of heat generated by higher density, higher speed and higher output of semiconductor devices, a substrate material having excellent heat dissipation has been required. An alumina substrate has been conventionally used as a substrate material having excellent heat dissipation, but recently, an aluminum nitride (hereinafter referred to as AlN) substrate having a high thermal conductivity has been attracting attention. However, in order to improve the heat dissipation as a mounting board, a thickness of several hundred μm is used as a heat sink on the AlN board.
It is necessary to join a metal plate such as a copper plate of m. For this reason, conventionally, a metal plate is bonded to an AlN substrate using a brazing material to which an active metal such as Ti (titanium) is added.

【0003】図1(a)(b)はAlN基板と銅板の接
合方法を示す断面図である。この接合体4は、図1
(a)に示すように表面が平坦な銅板1にTi−Cu−
Ag系ロウペースト3を塗布した後、銅板1のペースト
印刷面をAlN基板2に仮接着し、その上から荷重をか
けた状態で真空中において熱処理を施してロウペースト
3を溶融させ、その後固化したTi−Cu−Ag系ロウ
材層を介して図1(b)のようにAlN基板2の表面に
銅板1を強固に接合させたものである。こうしてAlN
基板2と接合された銅板1はヒートシンクとして働き、
実装基板としての放熱性を良好にする。また、銅板1は
配線パターンとしても使用できる。
1A and 1B are sectional views showing a method of joining an AlN substrate and a copper plate. This joined body 4 is shown in FIG.
As shown in (a), Ti-Cu-
After applying the Ag-based wax paste 3, the paste-printed surface of the copper plate 1 is temporarily adhered to the AlN substrate 2, and a heat treatment is applied in a vacuum from above to melt the wax paste 3 and then solidify. As shown in FIG. 1B, the copper plate 1 is firmly bonded to the surface of the AlN substrate 2 via the Ti-Cu-Ag brazing material layer. Thus AlN
The copper plate 1 joined to the substrate 2 functions as a heat sink,
Improves heat dissipation as a mounting board. The copper plate 1 can also be used as a wiring pattern.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような方法で製造された接合体にあっては、AlN基板
と銅板との接合強度に大きなばらつきを生じたり、ヒー
トサイクルテスト後に接合強度が大きく劣化したりする
ため、接合体の信頼性及び耐久性に大きな問題があっ
た。
However, in the bonded body manufactured by the above method, the bonding strength between the AlN substrate and the copper plate varies greatly, and the bonding strength becomes large after the heat cycle test. Since it deteriorates, there is a big problem in reliability and durability of the bonded body.

【0005】本発明は叙上の従来例の問題点に鑑みてな
されたものであり、その目的とするところは、AlN基
板と銅板の接合体の接合強度のばらつきを小さくし、ま
たヒートサイクルテスト後の接合体の接合強度の劣化を
小さくすることにより、接合体の信頼性及び耐久性を向
上させることにある。
The present invention has been made in view of the problems of the above conventional examples, and an object of the present invention is to reduce variations in the bonding strength of a bonded body of an AlN substrate and a copper plate and to perform a heat cycle test. It is to improve the reliability and durability of the bonded body by reducing the deterioration of the bonding strength of the bonded body that follows.

【0006】[0006]

【課題を解決するための手段】本発明による窒化アルミ
ニウム基板と銅板の接合用ロウペーストは、窒化アルミ
ニウム基板と銅板を接合するためのロウペーストであっ
て、金属粉末と、金属粉末合計100重量部に対してほ
ぼ0.5重量部以上10重量部以下添加された窒化アル
ミニウム粉末と、有機ビヒクルとからなることを特徴と
している。
A brazing paste for joining an aluminum nitride substrate and a copper plate according to the present invention is a brazing paste for joining an aluminum nitride substrate and a copper plate, and contains 100 parts by weight of metal powder and metal powder in total. On the other hand, it is characterized in that it is composed of aluminum nitride powder added in an amount of 0.5 to 10 parts by weight and an organic vehicle.

【0007】また、典型的には、前記金属粉末として
は、銅、銀及びチタン元素を含むものを用いることがで
きる。
Further, typically, as the metal powder, one containing copper, silver and titanium elements can be used.

【0008】[0008]

【作用】本発明の接合用ロウペーストにあっては、Ti
−Cu−Ag系等の金属粉末からなるロウ材中にAlN
粉末が分散しているので、熱処理後のロウ材層の熱膨張
率が小さくなり、AlN粉末を添加していないロウ材層
に比較して当該ロウ材層の熱膨張率がAlN基板に近く
なる。このため、熱処理後にAlN基板にかかる残留応
力が小さくなる。この結果、熱処理時の冷却及びヒート
サイクル時の熱衝撃に起因するAlN基板側のクラック
が発生しなくなり、AlN基板と銅板の接合体の接合強
度のばらつきや、ヒートサイクル後の接合強度の劣化を
小さくすることができる。
In the joining wax paste of the present invention, Ti
-AlN in a brazing material made of metal powder such as Cu-Ag
Since the powder is dispersed, the thermal expansion coefficient of the brazing material layer after the heat treatment becomes small, and the thermal expansion coefficient of the brazing material layer becomes closer to that of the AlN substrate as compared with the brazing material layer to which the AlN powder is not added. .. Therefore, the residual stress applied to the AlN substrate after the heat treatment becomes small. As a result, cracks on the AlN substrate side due to cooling during heat treatment and thermal shock during heat cycles do not occur, and variations in the bonding strength of the bonded body of the AlN substrate and the copper plate and deterioration of the bonding strength after the heat cycle are prevented. Can be made smaller.

【0009】なお、TiN粉末の添加量が、金属粉末1
00重量部に対してほぼ0.5重量部以下であると、接
合の初期強度のばらつきが大きく、ヒートサイクル後の
接合強度の劣化も著しくなる。また、ほぼ10重量部以
上であると、初期接合強度が小さく、十分な接合強度を
得られない。
The addition amount of the TiN powder is equal to that of the metal powder 1.
When the amount is about 0.5 parts by weight or less with respect to 00 parts by weight, the initial strength of the bonding varies widely, and the bonding strength after heat cycle is significantly deteriorated. On the other hand, when the amount is approximately 10 parts by weight or more, the initial bonding strength is small and sufficient bonding strength cannot be obtained.

【0010】[0010]

【実施例】本発明の典型的な実施例による接合用ロウペ
ーストは、Ti、Cu及びAgからなる金属粉末にAl
N粉末が添加され、さらに残部が有機ビヒクル(有機
物)からなるものである。
EXAMPLE A bonding wax paste according to a typical example of the present invention is a metal powder composed of Ti, Cu and Ag and Al.
N powder is added, and the balance consists of an organic vehicle (organic material).

【0011】このようなAlN粉末が添加されたロウペ
ーストを塗布した銅板等の金属板をAlN基板に重ね、
荷重をかけながら熱処理して接合させると、ロウ材中に
分散しているAlN粉末のためにロウ材層の熱膨張率が
小さくなり、ロウ材層の熱膨張率がAlN基板に近くな
る。この結果、熱処理後にAlN基板にかかる残留応力
が小さくなって、熱処理時の冷却及びヒートサイクル時
の熱衝撃に起因するAlN基板側のクラックが発生しな
くなり、AlN基板と銅板の接合体の接合強度のばらつ
きや、ヒートサイクル後の接合強度の劣化を小さくする
ことができる。
A metal plate such as a copper plate coated with a wax paste to which such an AlN powder is added is stacked on the AlN substrate,
When heat treatment and bonding are performed while applying a load, the thermal expansion coefficient of the brazing material layer becomes small due to the AlN powder dispersed in the brazing material, and the thermal expansion coefficient of the brazing material layer becomes close to that of the AlN substrate. As a result, the residual stress applied to the AlN substrate after heat treatment is reduced, cracks on the AlN substrate side due to thermal shock during cooling and heat cycle during heat treatment do not occur, and the joint strength between the joined body of the AlN substrate and the copper plate is reduced. And the deterioration of the bonding strength after the heat cycle can be reduced.

【0012】このロウペーストにおけるAlNの最適な
添加量を求めるため、以下のような数種のサンプルを作
製し、その接合強度を評価した。この結果を以下に説明
する。
In order to determine the optimum amount of AlN added to this wax paste, the following several types of samples were prepared and their bonding strengths were evaluated. The results will be described below.

【0013】まず、TiとAgとCuを一般的に用いら
れている重量比で混合して金属粉末を調製し、表1の
「AlN添加量」の欄に示すように当該金属粉末の合計
100重量部に対してAlN粉末をそれぞれ0重量部、
0.1重量部、0.5重量部、1重量部、3重量部、5重
量部、10重量部、20重量部の割合で添加し、さらに
残部に有機物を加えてサンプルNo.1〜8のロウぺース
トを準備した。なお、表1のサンプルNo.において記号
*の付されているものは、本発明の範囲外のサンプルで
ある。
First, Ti, Ag and Cu are mixed in a generally used weight ratio to prepare a metal powder, and as shown in the column of "AlN addition amount" in Table 1, the total amount of the metal powder is 100. 0 parts by weight of AlN powder for each part by weight,
0.1 parts by weight, 0.5 parts by weight, 1 part by weight, 3 parts by weight, 5 parts by weight, 10 parts by weight, and 20 parts by weight were added, and an organic substance was added to the balance to prepare sample Nos. 1 to 8. Prepared the raw paste. The samples marked with * in the sample numbers in Table 1 are samples outside the scope of the present invention.

【0014】[0014]

【表1】 [Table 1]

【0015】つぎに、サンプルNo.1〜8のロウペース
トを用いてAlN基板と銅板の接合強度を測定した。す
なわち、サンプルNo.1〜8の各ロウペースト13を厚
さ100μmの銅板11に塗布し、60℃のオーブン中
で乾燥させた後、銅板11を2mm角のサイズにカット
した。この2mm角の銅板11をペースト印刷面を接触
させてAlN基板12に仮接着し、真空中において95
0℃で10分間熱処理を施し、AlN基板12と銅板1
1の接合体14を作製した。ついで、図2に示すよう
に、サンプルNo.1〜8の各ロウペースト13によって
AlN基板12に接合された各銅板11にリード線15
を半田16によって固着し、このリード線15をL形に
折り曲げて銅板11の面に対して垂直に引っ張って接合
強度を測定した。こうして、各サンプルNo.1〜8毎に
接合体14の接合強度(初期強度)を求めた。この結果
を表1の「初期強度」の欄に示す。
Next, the bonding strength between the AlN substrate and the copper plate was measured using the wax pastes of Sample Nos. 1-8. That is, each of the wax pastes 13 of Sample Nos. 1 to 8 was applied to a copper plate 11 having a thickness of 100 μm and dried in an oven at 60 ° C., and then the copper plate 11 was cut into a 2 mm square size. This 2 mm square copper plate 11 is temporarily bonded to the AlN substrate 12 with the paste printing surface in contact with the paste printing surface,
Heat treatment is performed at 0 ° C for 10 minutes, and the AlN substrate 12 and the copper plate 1
The bonded body 14 of No. 1 was produced. Then, as shown in FIG. 2, a lead wire 15 is provided on each copper plate 11 joined to the AlN substrate 12 by each solder paste 13 of Sample Nos. 1 to 8.
Was fixed with solder 16 and the lead wire 15 was bent into an L shape and pulled perpendicularly to the surface of the copper plate 11 to measure the bonding strength. In this way, the bonding strength (initial strength) of the bonded body 14 was obtained for each of the sample Nos. 1 to 8. The results are shown in the column of "initial strength" in Table 1.

【0016】つぎに、上記サンプルNo.1〜8のロウペ
ーストを用いてAlN基板と銅板のヒートサイクル後の
接合強度を測定した。すなわち、サンプルNo.1〜8の
各ロウペースト13を用い、上記接合方法と同様にして
2mm角にカットした厚さ100μmの銅板11をAl
N基板12に仮接着し、熱処理を施してAlN基板12
と銅板11の接合体14を作製した後、−55℃及び1
25℃間で100サイクルのヒートサイクルテストを行
なった。ついで、ヒートサイクル後に各接合体14の銅
板11に図2のようにリード線15を半田付けし、この
リード線15を銅板11の面に対して垂直に引っ張って
接合強度を測定した。こうして、各サンプルNo.1〜8
毎に接合体14のヒートサイクル後における接合強度を
求めた。この結果を表1の「ヒートサイクル後」の欄に
示す。
Next, the bonding strength of the AlN substrate and the copper plate after the heat cycle was measured using the wax pastes of the above sample Nos. 1 to 8. That is, using each of the wax pastes 13 of Sample Nos. 1 to 8, a copper plate 11 having a thickness of 100 μm, which was cut into a 2 mm square in the same manner as the above joining method, was Al.
Temporarily adhere to the N substrate 12 and heat-treat the AlN substrate 12.
After producing a bonded body 14 of the copper plate 11 and
A 100-cycle heat cycle test was performed at 25 ° C. Then, after the heat cycle, the lead wire 15 was soldered to the copper plate 11 of each bonded body 14 as shown in FIG. 2, and the lead wire 15 was pulled perpendicular to the surface of the copper plate 11 to measure the bonding strength. In this way, each sample No. 1-8
The joint strength of the joined body 14 after the heat cycle was determined for each case. The results are shown in the column of "after heat cycle" in Table 1.

【0017】表1から明らかなように、サンプルNo.1
のようにロウペースト中にAlN粉末が含まれない場
合、あるいはサンプルNo.2のようにAlN粉末の添加
量が0.5重量部よりも少ない場合には、接合体の初期
強度は強いが、その値のばらつきが大きく、ヒートサイ
クル後の接合強度の劣化が著しかった。一方、サンプル
No.8のようにAlN粉末の添加量が10重量部よりも
大きい場合には、初期強度のばらつき及びヒートサイク
ル後の接合強度の劣化は少ないが、初期接合強度でも平
均1.0kgf/(2mm角)と小さく、十分な接合強度を
得られなかった。
As is clear from Table 1, sample No. 1
When the AlN powder is not contained in the wax paste as in No. 2 or when the addition amount of AlN powder is less than 0.5 parts by weight as in Sample No. 2, the initial strength of the bonded body is strong, The variation in the value was large, and the deterioration of the bonding strength after the heat cycle was remarkable. Meanwhile, the sample
When the amount of AlN powder added is more than 10 parts by weight as in No. 8, there is little variation in the initial strength and deterioration of the bonding strength after the heat cycle, but even the initial bonding strength is 1.0 kgf / (2 mm on average. Corner), and sufficient bonding strength could not be obtained.

【0018】これに対し、AlN添加量が0.5重量部
〜10重量部の範囲内にあるサンプルNo.3〜7のロウ
ペーストを用いた場合には、接合強度が2.0kgf/(2
mm角)と大きく、接合強度のばらつきも小さく、ヒー
トサイクル後の劣化も小さくなった。したがって、Al
N粉末の添加量は、金属粉末100重量部に対してほぼ
0.5〜10重量部の範囲内が最適であった。
On the other hand, when the wax pastes of Sample Nos. 3 to 7 in which the added amount of AlN was within the range of 0.5 to 10 parts by weight were used, the bonding strength was 2.0 kgf / (2
mm square), variation in bonding strength was small, and deterioration after heat cycle was small. Therefore, Al
The optimum amount of N powder added was approximately 0.5 to 10 parts by weight per 100 parts by weight of metal powder.

【0019】[0019]

【発明の効果】本発明によれば、ロウ材層の熱膨張率が
AlN基板の熱膨張率に近くなり、熱処理後にAlN基
板にかかる残留応力が小さくなる。この結果、熱処理時
の冷却及びヒートサイクル時の熱衝撃に起因するAlN
基板側のクラックが発生しなくなり、AlN基板と銅板
の接合体の接合強度のばらつきや、ヒートサイクル後の
接合強度の劣化を小さくすることができる。
According to the present invention, the coefficient of thermal expansion of the brazing material layer is close to the coefficient of thermal expansion of the AlN substrate, and the residual stress applied to the AlN substrate after heat treatment is reduced. As a result, AlN caused by cooling during heat treatment and thermal shock during heat cycle
The cracks on the substrate side do not occur, and it is possible to reduce the variation in the bonding strength of the bonded body of the AlN substrate and the copper plate and the deterioration of the bonding strength after the heat cycle.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)(b)はセラミック基板と銅板の接合方
法を示す断面図である。
1A and 1B are cross-sectional views showing a method for joining a ceramic substrate and a copper plate.

【図2】接合体のピール強度を測定する方法を示す概略
断面図である。
FIG. 2 is a schematic cross-sectional view showing a method for measuring the peel strength of a joined body.

【符号の説明】[Explanation of symbols]

11 銅板 12 AlN基板 13 ロウペースト 11 Copper Plate 12 AlN Substrate 13 Wax Paste

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂部 行雄 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukio Sakabe 2 26-10 Tenjin Tenjin, Nagaokakyo City, Kyoto Murata Manufacturing Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 窒化アルミニウム基板と銅板を接合する
ためのロウペーストであって、 金属粉末と、金属粉末合計100重量部に対してほぼ
0.5重量部以上10重量部以下添加された窒化アルミ
ニウム粉末と、有機ビヒクルとからなることを特徴とす
る窒化アルミニウム基板と銅板の接合用ロウペースト。
1. A wax paste for joining an aluminum nitride substrate and a copper plate, wherein the metal powder and aluminum nitride are added in an amount of 0.5 to 10 parts by weight based on 100 parts by weight of the total of the metal powder. A brazing paste for joining an aluminum nitride substrate and a copper plate, comprising a powder and an organic vehicle.
【請求項2】 前記金属粉末が、銀、銅及びチタン元素
を含むことを特徴とする請求項1に記載の窒化アルミニ
ウム基板と銅板の接合用ロウペースト。
2. The brazing paste for joining an aluminum nitride substrate and a copper plate according to claim 1, wherein the metal powder contains elements of silver, copper and titanium.
JP28061291A 1991-09-30 1991-09-30 Solder paste for joining aluminum nitride substrate to copper plate Pending JPH0585850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28061291A JPH0585850A (en) 1991-09-30 1991-09-30 Solder paste for joining aluminum nitride substrate to copper plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28061291A JPH0585850A (en) 1991-09-30 1991-09-30 Solder paste for joining aluminum nitride substrate to copper plate

Publications (1)

Publication Number Publication Date
JPH0585850A true JPH0585850A (en) 1993-04-06

Family

ID=17627469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28061291A Pending JPH0585850A (en) 1991-09-30 1991-09-30 Solder paste for joining aluminum nitride substrate to copper plate

Country Status (1)

Country Link
JP (1) JPH0585850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140199115A1 (en) * 2011-08-02 2014-07-17 Alpha Metals, Inc. Solder compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140199115A1 (en) * 2011-08-02 2014-07-17 Alpha Metals, Inc. Solder compositions

Similar Documents

Publication Publication Date Title
KR100328407B1 (en) Ceramic circuit board
JPH07202063A (en) Ceramic circuit board
JPH06296084A (en) Thermal conductor of high conductivity, wiring board provided therewith and manufacture thereof
JP3834351B2 (en) Ceramic circuit board
JPH05218229A (en) Ceramic circuit board
JPH05347469A (en) Ceramic circuit board
EP1450403A1 (en) Heat spreader module
JPH0585850A (en) Solder paste for joining aluminum nitride substrate to copper plate
JP4323706B2 (en) Method of joining ceramic body and copper plate
JP3239549B2 (en) Ceramic radiator for semiconductor and method of manufacturing the same
JP2861357B2 (en) Aluminum nitride-copper bonding method
JP2000086368A (en) Nitride ceramic substrate
JP2003285195A (en) Ceramic circuit board and method for manufacturing the same
JPH06263554A (en) Jointed substrate of ceramics-metal
JPH0997865A (en) Radiation part
JPH08222670A (en) Package for mounting semiconductor element
JPH05201777A (en) Ceramic-metal joined body
JPH03141169A (en) Metallized structure of aluminum nitride substrate and bond structure of aluminum nitride substrate with metal plate
JPH0255271A (en) Bond structure consisting of aluminum nitride substrate and metallic plate
JP2000349098A (en) Bonded body of ceramic substrate and semiconductor device, and its manufacture
JPH05246769A (en) Ceramic-metal joining composition and ceramic-metal joined body using the same
JP3070176B2 (en) Joining method of aluminum nitride substrate and copper plate
JPH04168792A (en) Manufacture of high heat radiating ceramic circuit board with excellent thermal shock resistance
JPH03157989A (en) Bonding structure of ceramic board and metal plate
JPH0570262A (en) Brazing filler metal paste for joining aluminum nitride substrate to metallic plate