JP3834351B2 - Ceramic circuit board - Google Patents

Ceramic circuit board Download PDF

Info

Publication number
JP3834351B2
JP3834351B2 JP08655896A JP8655896A JP3834351B2 JP 3834351 B2 JP3834351 B2 JP 3834351B2 JP 08655896 A JP08655896 A JP 08655896A JP 8655896 A JP8655896 A JP 8655896A JP 3834351 B2 JP3834351 B2 JP 3834351B2
Authority
JP
Japan
Prior art keywords
circuit board
brazing material
metal
ceramic
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08655896A
Other languages
Japanese (ja)
Other versions
JPH09283656A (en
Inventor
隆之 那波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP08655896A priority Critical patent/JP3834351B2/en
Publication of JPH09283656A publication Critical patent/JPH09283656A/en
Application granted granted Critical
Publication of JP3834351B2 publication Critical patent/JP3834351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はセラミックス基板に金属回路板をろう材によって接合したセラミックス回路基板に係り、特に金属回路板の接合強度が大きく、また耐熱サイクル特性に優れ、信頼性が高いセラミックス回路基板に関する。
【0002】
【従来の技術】
従来からアルミナ(Al2 3 )焼結体などのように絶縁性に優れたセラミックス基板の表面に、導電性を有する金属回路板を一体に接合したセラミックス回路基板が広く普及し、半導体装置の構成部品として使用されている。
【0003】
従来からセラミックス基板と金属回路板とを一体に接合形成する方法として、高融点金属法(メタライズ法),直接接合法,活性金属法などが採用されている。高融点金属法は、MoやWなどの高融点金属をセラミックス基板表面に焼き付ける方法であり、直接接合法は、金属回路板成分と酸素との共晶液相を接合剤とし、ろう材などを使用せずに直接金属回路板をセラミックス基板表面に加熱接合する方法であり、活性金属法はTiなどの活性金属を含有するろう材を介して金属回路板と非酸化物系セラミックス基板とを一体に接合する方法である。特に高強度で良好な封着性,信頼性を必要とするセラミックス回路基板を得るためには、上記接合法のうち、活性金属法が一般に使用されている。
【0004】
上記セラミックス回路基板には、構造強度の基本となる高い接合強度が求められる一方、搭載された発熱部品としての半導体素子の運転条件下で繰り返して作用する熱サイクルに十分耐える構造を保持するため、冷熱サイクル試験(TCT)において、セラミックス基板と金属回路板との線膨張係数差に起因するクラックの発生を抑制する必要がある。
【0005】
【発明が解決しようとする課題】
しかしながら、従来技術において、セラミックス基板にTiなどの活性金属を含有するろう材により金属回路板を一体に接合して成るセラミックス回路基板では、脆弱な反応相が接合界面に生成され易いため、十分な接合強度が得られず、セラミックス基板の接合部にクラックが発生し易く、高い信頼性を有する回路基板が得られないという問題点があった。
【0006】
また、一旦は高い接合強度で接合された場合においても、その後に付加される熱サイクルが低い段階において、微小なクラックが発生し、そのクラックが経時的に進展することにより、接合強度も低下し、最終的にはセラミックス基板の割れや欠けを生じてしまうなど長期にわたる信頼性の維持が困難となる問題点もあった。
【0007】
さらに上記活性金属法による金属回路板の接合操作は一般に真空中で実施されるため、製造工程が複雑化し、回路基板の量産性が劣るという問題点もあった。
【0008】
本発明は上記問題点を解決するためになされたものであり、繰り返しの冷熱サイクルを長時間付加した後においてもクラックの発生が効果的に抑制される、いわゆる耐熱サイクル性に優れた信頼性が高いセラミックス回路基板を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため本願発明者は、セラミックス基板と金属回路板とを接合するろう材に含有させる元素の種類および量を種々変えてセラミックス回路基板を調製し、ろう材に含有させる元素の種類が回路基板の接合強度、および耐熱サイクル特性や接合部の強度特性に及ぼす影響を比較検討した。
【0010】
その結果、カーボン粉末と、ある種の活性金属を複合的に含有するろう材や活性金属と、Inなどの元素とを複合的に含有するろう材を使用して基板と回路板とを接合しセラミックス回路基板を調製したときに、回路基板の耐熱サイクル特性が向上することが判明した。本発明はこれらの知見に基づいて完成されたものである。
【0011】
すなわち本発明に係るセラミックス回路基板は、カーボン粉末と、Ti,Zr,HfおよびNbから選択される少なくとも1種の活性金属とを含有する銀−銅系ろう材層を介してセラミックス基板に金属回路板を接合して成ることを特徴とする。
【0012】
また、銀−銅系ろう材層におけるカーボン粉末の含有量は0.1〜5.0重量%とする。さらに銀−銅系ろう材層における活性金属の含有量は0.5〜10重量%の範囲が好ましい。
【0013】
また銀−銅系ろう材層が、さらにIn,Zn,CdおよびSnから選択される少なくとも1種の元素を含有するように構成するとよい。
【0014】
さらに上記In,Zn,CdおよびSnから選択される少なくとも1種の元素は5〜20重量%含有される。また銀−銅系ろう材層はAg−Cu−In−Ti系ろう材層で構成するとよい。
【0015】
さらに金属回路板を接合した側と反対側のセラミックス基板表面に、上記銀−銅系ろう材層を介して金属板を接合するとよい。
【0016】
上記回路基板を構成するセラミックス基板としては、活性金属などのろう材成分と反応して高硬度の反応生成層を形成する窒化アルミニウム(AlN),窒化けい素(Si3 4 ),サイアロン(SiAlON)などの窒化物系セラミックス基板が好適である。
【0017】
また金属回路板としては導電性を有する金属であれば特に限定されないが、電気抵抗率や材料コストの観点から銅またはアルミニウムから成る回路板が好適である。
【0018】
本発明において銀−銅系ろう材層を形成するためのろう材としては、重量%でカーボン(C)粉末を0.1〜5.0%、Cuを15〜35%、Ti,Zr,HfおよびNbから選択される少なくとも1種の活性金属を0.5〜10%,残部が実質的にAgから成る組成物のペーストが使用される。ペーストは上記組成物を有機溶媒中に分散して調製される。
【0019】
上記ろう材組成物において、カーボン(C)粉末は接合部の残留応力を低減し、回路基板の耐熱サイクル性の向上に寄与する成分である。すなわち、カーボン粉末の線膨張係数は約4×10-6/Kであり、このカーボン粉末をろう材組成物中に含有させることにより、ろう材層自体の線膨張係数がセラミックス基板の線膨張係数に近くなる。そのため接合操作後における回路基板の残留応力の低減が図られ、回路基板の耐熱サイクル性を向上させることができる。
【0020】
上記カーボン粉末の含有量が0.1重量%未満の場合には、上記残留応力の緩和による耐熱サイクル性の改善効果が不十分である。一方、カーボン粉末の含有量が5重量%を超えると、ろう材組成物をペースト化することが困難となり、例えばスクリーン印刷法によってろう材層を形成することが困難になる。また、ろう材層を形成できた場合でも金属回路板の接合強度が低下してしまう。したがってカーボン粉末の含有量は0.1〜5重量%の範囲とされるが、0.5〜1.5重量%の範囲がより好ましい。
【0021】
なお、上記カーボン粉末としては、平均粒径が10μm以下のC粉末を使用するとよい。平均粒径が10μmを超えるような粗大なカーボン粉末を使用するとろう材組成物ペーストを均一に調製することが困難であり、またペーストをスクリーン印刷することが困難になる。カーボン粉末の平均粒径は5μm以下がさらに好ましい。
【0022】
また、Ag−Cu成分は、セラミックス焼結体製基板とTiなどの活性金属との接合層の形成を促進する成分として有効であり、Tiなどの活性金属を接合層(ろう材層)中に拡散させ強固な接合体を形成するのに寄与する。上記Ag−Cu成分比は、共晶組成物(72重量%Ag−28%Cu)を生成し易い組成比に設定して液相の生成量を低減してもよいが、他の組成範囲でも構わない。
【0023】
上記ろう材中に含有される活性金属は、さらにセラミックス基板に対するろう材の濡れ性を改善するための成分であり、それらの配合量はろう材層全体に対して0.5〜10重量%に設定される。活性金属の含有量が0.5重量%未満の場合には、濡れ性の改善効果が得られない一方、含有量が多いほどセラミックス基板と濡れ易くなる作用を有するが、含有量が10重量%を超える過量となると、接合界面に脆弱な反応相(反応生成相)が生成され易くなり、接合強度の低下とともに接合体全体としての構造強度の低下を招く。
【0024】
上記ろう材中に、さらにIn,Zn,CdおよびSnから選択された少なくとも1種の成分を5〜20重量%の割合で添加してもよい。In,Zn,Cd,Snは、上記活性金属,ろう材成分およびセラミックス基板成分とともに、硬度が比較的に大きな金属間化合物を接合界面に形成し、セラミックス基板の見掛け上の強度を高め、TCTにおいてセラミックス基板に発生する熱応力が大きくなった場合においても、クラックが発生しにくくなり、回路基板の耐熱サイクル特性を大幅に改善する効果がある。
【0025】
またIn,Zn,CdおよびSnは、ろう材による接合温度を低下させ、熱応力の発生量を低減し接合後における残留応力を低下するためにも有効である。添加含有量が5重量%未満では、上記硬度を高める効果および接合温度の低減効果が少ない。一方、20重量%を超えると、ろう材組成の変化が大きくなり、回路基板の信頼性を高めるに十分な接合強度が得られない。
【0026】
銀−銅系ろう材層の厚さは接合体の接合強度に大きな影響を及ぼすものであり、本発明では15〜35μmの範囲に設定される。ろう材層の厚さが15μm未満の場合には、接合強度が十分に得られず、またセラミックス基板と金属回路板との密着性が低下し、回路基板全体としての熱抵抗が増大し、放熱性が低下してしまう。一方、ろう材層の厚さが35μmを超えると、接合界面に脆弱な反応相が生成され易くなるとともにセラミックス基板に生じる応力が大きくなるため、いずれにしろ十分な接合強度が得られない。
【0027】
さらに金属回路板を接合した側と反対側の窒化物系セラミックス基板表面に、上記銀−銅系ろう材層を介して上記金属回路板よりやや薄い金属板を接合することにより、接合操作によって発生するセラミックス回路基板の反りを効果的に防止できる。すなわち、セラミックス基板の表裏両面に配置する金属量を等しくすることによってセラミックス基板の各面における熱膨張量を等しくすることができ、両面における熱膨張差に起因する回路基板の反りを防止することができる。
【0028】
本発明に係るセラミックス回路基板は、例えば以下のような手順で製造される。すなわち、AlN,Si3 4 ,SiAlONなどのセラミックス基板とCuなどで形成された金属回路板等との接合面に、カーボン粉末を0.1〜5重量%,Tiなどの活性金属を0.5〜10重量%含有するペースト状のAg−Cu系ろう材組成物を塗布した状態で金属回路板を押圧し、10-4Torr以下の真空状態にした加熱炉中で、またはアルゴン(Ar)ガスなどの不活性ガス雰囲気に調整した加熱炉中で、あるいは窒素(N2 )ガス雰囲気の加熱炉中で、温度800〜900℃で10〜15分保持して一体に接合して製造される。
【0029】
上記活性金属法による接合操作においては、セラミックス基板とAg−Cu系ろう材とのメタライズ界面を強固にするため、および活性金属元素とセラミックス成分とが反応して形成される反応生成層の形成を促進するために、Ag:Cuの重量比率を72:28の共晶組成比にすることが望ましい。この共晶組成比を有するろう材の融点は約780℃であるため実際の接合温度は800〜900℃に設定される。
【0030】
上記製法において、接合温度が800℃未満と低い場合にはろう材が十分に溶融しないため、セラミックス基板と金属回路板との密着性が低下してしまう。一方、接合温度が900℃を超えると接合面に脆弱な反応相が生成され易く、いずれにしても接合強度が低下してしまう。
【0031】
ここで上記Ag−Cu系ろう材中に、さらにIn,Zn,CdおよびSnから選択された少なくとも1種の成分が5〜20重量%含有される場合には、ろう材の溶融温度が、680℃程度までに下がる結果、700〜800℃の低温度範囲で接合を行うことができる。この接合温度の低下により接合操作後における回路基板の残留応力は小さくなる。その結果、回路基板の耐熱サイクル性を、より向上させることが可能となる。
【0032】
なお、ろう材組成物中に、InやSn等を添加した場合には、ろう材組成物の基板に対する漏れ性やろう材自体の流動性が大幅に向上する。そのため、基板上にろう材組成物をパターン印刷した後に金属回路板素材を押圧して接合すると、金属回路板素材の外周縁からろう材がはみ出る現象が起き易い。このはみ出たろう材は、専用のエッチング剤(エッチャント)を使用した後エッチング処理によって除去されるが、所定形状の回路基板を形成する他に数回の後エッチングが必要になるため、回路基板の製造工程が煩雑になる問題を生じる。特に後エッチングで使用されるエッチング剤は強アルカリであるため、窒化アルミニウム(AlN)基板をセラミックス基板として使用した場合には、AlN基板がエッチング剤によって腐食し、回路基板の耐熱サイクル特性が低下する場合もある。
【0033】
ところが、本発明のようにろう材組成物中にカーボン粉末を所定量含有させることにより、ろう材組成物の流動性を適度に調整することが可能であり、ろう材のはみ出し現象を効果的に防止することができる。したがって、はみ出したろう材を除去するための後エッチング処理が不要となり、回路基板の製造工程を大幅に簡略化することができる。またカーボン粉末を添加することにより、上記はみ出し現象を防止でき、少量のろう材で金属回路板をセラミックス基板表面に接合することができる。すなわち高硬度のろう材層を薄く形成することが可能となるため、回路基板の耐熱サイクル特性を、より向上させることができる。
【0034】
本発明に係るセラミックス回路基板によれば、銀−銅系ろう材層中にカーボン粉末と活性金属とを含有しており、カーボン粉末によってろう材層の線膨張率がセラミックス基板の線膨張係数に近くなる。そのため、金属回路板の接合後における残留応力が低減される。また活性金属成分の添加により、接合面に強固なメタライズ界面が形成され、接合部におけるセラミックス基板の強度を実質的に高めることができ、熱サイクルが付加された際に大きな熱応力が発生した場合においてもクラックを生じることが少ない。またろう材相中にIn等を含有させることにより、ろう材の融点が低下し金属回路板の接合温度を低下させることができ、接合操作後における回路基板の残留応力を低減することができる。したがって耐熱サイクル特性が優れ、信頼性が高いセラミックス回路基板を提供することができる。
【0035】
【発明の実施の形態】
次に本発明の実施の形態について、以下の実施例および添付図面を参照して説明する。
【0036】
実施例1〜10
熱伝導率が170W/m・Kであり、常圧焼結法によって製造した窒化アルミニウム(AlN)焼結体を加工して、縦29mm×横63mm×厚さ0.635mmのAlN基板と、厚さ0.3mmのリン脱酸銅から成るCu回路板(金属回路板)およびCu板(金属板)とを多数調製した。
【0037】
一方、平均粒径5μmのカーボン(C)粉末,活性金属粉末,In等の第3成分粉末,Cu粉末およびAg粉末を用意し、表1に示すような組成を有する各実施例用のペースト状のAg−Cu系ろう材を調製し、このろう材をAlN基板の両面に印刷してAg−Cu系ろう材層を形成し、このろう材層を介して、Cu回路板およびCu板をそれぞれAlN基板表面に圧着した。
【0038】
この状態で各圧着体を加熱炉に収容し、1×10-4Torr以下の高真空中で、表1に示す接合温度に加熱し10分間保持することにより、一体に接合し、図1に示すような実施例1〜10に係るセラミックス回路基板1をそれぞれ多数製造した。
【0039】
図1に示すように、各実施例に係るセラミックス回路基板1は、AlN基板2とCu回路板3との間およびAlN基板2とCu板(裏銅板)4との間に、Ag−Cu系ろう材層5を介して一体に接合されて形成されている。上記回路基板1のCu回路板3の所定位置に半田接合によって半導体素子(Siチップ)7が接合されて、半導体装置構成用のセラミックス回路基板が形成される。
【0040】
比較例1〜4
一方、比較例として表1に示す組成を有する従来のAg−Cu−Ti系ろう材ペーストを使用した点および表1に示す接合温度でCu回路板およびCu板を接合した点、またはカーボン粉末量を過少または過大に設定したAg−Cu−Ti−In系ろう材ペーストを使用した点以外は実施例1と同一条件で各部材を一体に接合して比較例1〜4に係るセラミックス回路基板を多数調製した。
【0041】
評価
上記のように調製した各実施例および比較例に係る各セラミックス回路基板の耐久性および信頼性を評価するために、金属回路板の接合強度(ピール強度)を測定するとともに、下記のような熱衝撃試験(ヒートサイクル試験:TCT)を実施し、回路基板におけるクラック発生状況を調査した。ヒートサイクル試験は、各回路基板を−40℃で30分間保持した後に室温(RT)まで昇温して10分間保持し、しかる後に+125℃に昇温して30分間保持し、次に冷却して室温で10分間保持するという昇温−降温サイクルを300回繰り返して付加する条件で実施した。
【0042】
そして30回,100回および300回のサイクル数終了後において試験試料を5個ずつ取り出し、FeCl3 溶液にてエッチング処理してCu回路板およびろう材のAg−Cu成分を除去することによってAlN基板上に生成されている反応生成層を露出させた。さらに、エッチング液により上記反応生成層を除去し、各AlN基板表面についてPT(蛍光探傷試験)を実施してファインクラックの発生の有無を検査した。そして各サイクル終了後における回路基板の健全率ηを下記(1)式に従って算出し、各回路基板の耐熱サイクル性を評価した。
【0043】
【数1】

Figure 0003834351
ここで、Dは、回路基板の接合部の長手方向において、クラックの発生し得る銅板縁部経路の全長であり、Σdは上記経路上に発生した各クラックの長さ(d1 ,d2 ,…dn )の総和を示す。したがって、健全率ηが100%とはクラックが全く発生していないことを意味する一方、健全率ηが0%とは基板全面に亘ってクラックが発生していることを意味する。
【0044】
上記測定調査結果を下記表1に示す。
【0045】
【表1】
Figure 0003834351
【0046】
表1に示す結果から明らかなように、各実施例に係るセラミックス回路基板においては、金属回路板の接合強度が従来の比較例とほぼ同等である一方、カーボン粉末の添加によってろう材層の線膨張係数が基板の線膨張係数に近くなり、接合後における残留応力が低減される結果、TCTにおいて少なくとも100サイクルまではクラックが発生せず、耐熱サイクル特性に優れていることが確認できた。
【0047】
一方、カーボン粉末をろう材層中に含有しない比較例1に係るセラミックス回路基板においては、金属回路板の接合強度は実施例1と比較してやや高くなるが、耐熱サイクル性が低いことが判明した。またカーボン粉末含有量が過少である比較例2においては、耐熱サイクル性の改善効果が小さい。一方、カーボン含有量が過大である比較例4においては、耐熱サイクル性は良好である反面、金属回路板の接合強度が大幅に低下し、回路基板全体としての強度が不十分となることが判明した。
【0048】
【発明の効果】
以上説明の通り、本発明に係るセラミックス回路基板によれば、銀−銅系ろう材層中にカーボン粉末と活性金属とを含有しており、カーボン粉末によってろう材層の線膨張率がセラミックス基板の線膨張係数に近くなる。そのため、金属回路板の接合後における残留応力が低減される。また活性金属成分の添加により、接合面に強固なメタライズ界面が形成され、接合部におけるセラミックス基板の強度を実質的に高めることができ、熱サイクルが付加された際に大きな熱応力が発生した場合においてもクラックを生じることが少ない。またろう材相中にIn等を含有させることにより、ろう材の融点が低下し金属回路板の接合温度を低下させることができ、接合操作後における回路基板の残留応力を低減することができる。したがって耐熱サイクル特性が優れ、信頼性が高いセラミックス回路基板を提供することができる。
【図面の簡単な説明】
【図1】本発明に係るセラミックス回路基板の一実施例を示す断面図。
【符号の説明】
1 セラミックス回路基板(AlN回路基板)
2 セラミックス基板(AlN基板)
3 金属回路板(Cu回路板)
4 金属板(Cu板,裏銅板)
5 銀−銅系ろう材層
7 半導体素子(Siチップ)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceramic circuit board in which a metal circuit board is bonded to a ceramic substrate with a brazing material, and more particularly to a ceramic circuit board having high bonding strength of the metal circuit board, excellent heat cycle characteristics, and high reliability.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a ceramic circuit board in which a conductive metal circuit board is integrally bonded to a surface of a ceramic board having excellent insulating properties such as an alumina (Al 2 O 3 ) sintered body has been widely spread. Used as a component.
[0003]
Conventionally, a refractory metal method (metalization method), a direct bonding method, an active metal method, and the like have been adopted as a method for integrally bonding a ceramic substrate and a metal circuit board. The refractory metal method is a method of baking a refractory metal such as Mo or W onto the surface of a ceramic substrate. The direct bonding method uses a eutectic liquid phase of a metal circuit board component and oxygen as a bonding agent, and brazing material or the like. This is a method in which a metal circuit board is directly heated and bonded to the surface of a ceramic substrate without using it. The active metal method integrates a metal circuit board and a non-oxide ceramic substrate via a brazing material containing an active metal such as Ti. It is the method of joining to. In order to obtain a ceramic circuit board that requires particularly high strength and good sealing properties and reliability, the active metal method is generally used among the above bonding methods.
[0004]
The ceramic circuit board is required to have a high bonding strength, which is the basis of the structural strength. On the other hand, in order to maintain a structure that can sufficiently withstand a thermal cycle that repeatedly acts under the operating conditions of a semiconductor element as a mounted heat generating component, In the thermal cycle test (TCT), it is necessary to suppress the occurrence of cracks due to the difference in coefficient of linear expansion between the ceramic substrate and the metal circuit board.
[0005]
[Problems to be solved by the invention]
However, in the prior art, a ceramic circuit board formed by integrally bonding a metal circuit board with a brazing material containing an active metal such as Ti on the ceramic board is likely to generate a fragile reaction phase at the bonding interface. There was a problem that the bonding strength could not be obtained, cracks were likely to occur at the bonded portion of the ceramic substrate, and a highly reliable circuit board could not be obtained.
[0006]
In addition, even if the joint is once joined with a high joint strength, a minute crack is generated at a stage where the thermal cycle applied thereafter is low, and the joint strength is also lowered by the progress of the crack over time. Finally, there is a problem that it is difficult to maintain reliability over a long period of time, such as cracking or chipping of the ceramic substrate.
[0007]
Furthermore, since the operation of joining the metal circuit boards by the active metal method is generally performed in a vacuum, the manufacturing process is complicated and the mass productivity of the circuit board is inferior.
[0008]
The present invention has been made in order to solve the above-described problems, and the occurrence of cracks can be effectively suppressed even after repeated repeated heating and cooling cycles are applied for a long time. It aims at providing a high ceramic circuit board.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present inventor prepared ceramic circuit boards by variously changing the kinds and amounts of elements contained in the brazing material for joining the ceramic substrate and the metal circuit board, and the kinds of elements contained in the brazing material. The effects of the heat treatment on circuit board bonding strength, heat cycle characteristics and joint strength characteristics were compared.
[0010]
As a result, the substrate and the circuit board are bonded using a brazing material containing a composite of carbon powder, a certain type of active metal, or an active metal and an element such as In. It has been found that when a ceramic circuit board is prepared, the heat cycle characteristics of the circuit board are improved. The present invention has been completed based on these findings.
[0011]
That is, the ceramic circuit board according to the present invention is provided on the ceramic substrate via a silver-copper brazing material layer containing carbon powder and at least one active metal selected from Ti, Zr, Hf and Nb. It is characterized by joining plates.
[0012]
Moreover, content of the carbon powder in a silver-copper type brazing filler metal layer shall be 0.1-5.0 weight%. Furthermore, the active metal content in the silver-copper brazing filler metal layer is preferably in the range of 0.5 to 10% by weight.
[0013]
In addition, the silver-copper brazing material layer may be configured to further contain at least one element selected from In, Zn, Cd, and Sn.
[0014]
Further, at least one element selected from the above In, Zn, Cd and Sn is contained in an amount of 5 to 20% by weight. The silver-copper-based brazing material layer may be composed of an Ag-Cu-In-Ti-based brazing material layer.
[0015]
Further, the metal plate may be bonded to the surface of the ceramic substrate opposite to the side on which the metal circuit plate is bonded via the silver-copper brazing material layer.
[0016]
Ceramic substrates constituting the circuit board include aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), and sialon (SiAlON) that react with a brazing filler metal component such as an active metal to form a high hardness reaction product layer. Nitride ceramic substrates such as) are preferred.
[0017]
The metal circuit board is not particularly limited as long as it is a metal having conductivity, but a circuit board made of copper or aluminum is preferable from the viewpoint of electrical resistivity and material cost.
[0018]
In the present invention, the brazing material for forming the silver-copper brazing material layer is 0.1% to 5.0% carbon (C) powder, 15% to 35% Cu, Ti, Zr, Hf by weight%. And a paste of a composition consisting of 0.5 to 10% of at least one active metal selected from Nb and the balance substantially consisting of Ag. The paste is prepared by dispersing the above composition in an organic solvent.
[0019]
In the brazing material composition, the carbon (C) powder is a component that reduces the residual stress at the joint and contributes to the improvement of the heat cycle resistance of the circuit board. That is, the linear expansion coefficient of the carbon powder is about 4 × 10 −6 / K. By including this carbon powder in the brazing filler metal composition, the linear expansion coefficient of the brazing filler metal layer itself becomes the linear expansion coefficient of the ceramic substrate. Close to. Therefore, the residual stress of the circuit board after the bonding operation is reduced, and the heat cycle resistance of the circuit board can be improved.
[0020]
When the content of the carbon powder is less than 0.1% by weight, the heat cycle resistance improving effect due to the relaxation of the residual stress is insufficient. On the other hand, when the content of the carbon powder exceeds 5% by weight, it becomes difficult to paste the brazing material composition, and for example, it becomes difficult to form a brazing material layer by a screen printing method. Further, even when the brazing material layer can be formed, the bonding strength of the metal circuit board is lowered. Accordingly, the carbon powder content is in the range of 0.1 to 5% by weight, and more preferably in the range of 0.5 to 1.5% by weight.
[0021]
In addition, as said carbon powder, it is good to use C powder whose average particle diameter is 10 micrometers or less. When coarse carbon powder having an average particle size exceeding 10 μm is used, it is difficult to uniformly prepare a brazing material composition paste, and it is difficult to screen-print the paste. The average particle size of the carbon powder is more preferably 5 μm or less.
[0022]
In addition, the Ag—Cu component is effective as a component for promoting the formation of a bonding layer between a ceramic sintered body substrate and an active metal such as Ti, and the active metal such as Ti is contained in the bonding layer (brazing material layer). It contributes to the diffusion and formation of a strong bonded body. The above Ag-Cu component ratio may be set to a composition ratio at which a eutectic composition (72 wt% Ag-28% Cu) is easily generated to reduce the amount of liquid phase produced, but in other composition ranges as well I do not care.
[0023]
The active metal contained in the brazing material is a component for further improving the wettability of the brazing material to the ceramic substrate, and the blending amount thereof is 0.5 to 10% by weight with respect to the entire brazing material layer. Is set. When the content of the active metal is less than 0.5% by weight, the effect of improving wettability cannot be obtained. On the other hand, the higher the content, the easier the substrate gets wet with the ceramic substrate, but the content is 10% by weight. When the excess amount exceeds 1, a fragile reaction phase (reaction generation phase) is likely to be generated at the bonding interface, leading to a decrease in the bonding strength and a decrease in the structural strength of the entire bonded body.
[0024]
In the brazing material, at least one component selected from In, Zn, Cd and Sn may be added in a proportion of 5 to 20% by weight. In, Zn, Cd, and Sn, together with the above active metal, brazing filler metal component and ceramic substrate component, form an intermetallic compound having a relatively large hardness at the bonding interface, and increase the apparent strength of the ceramic substrate. Even when the thermal stress generated in the ceramic substrate increases, cracks are less likely to occur, and the heat cycle characteristics of the circuit substrate are greatly improved.
[0025]
In, Zn, Cd and Sn are also effective for lowering the bonding temperature by the brazing material, reducing the amount of thermal stress generated, and lowering the residual stress after bonding. When the additive content is less than 5% by weight, the effect of increasing the hardness and the effect of reducing the bonding temperature are small. On the other hand, if it exceeds 20% by weight, the change in the brazing material composition becomes large, and a sufficient bonding strength for improving the reliability of the circuit board cannot be obtained.
[0026]
The thickness of the silver-copper brazing material layer has a great influence on the bonding strength of the bonded body, and is set in the range of 15 to 35 μm in the present invention. When the thickness of the brazing material layer is less than 15 μm, sufficient bonding strength cannot be obtained, the adhesion between the ceramic substrate and the metal circuit board is lowered, the thermal resistance of the entire circuit board is increased, and the heat radiation is increased. The nature will decline. On the other hand, if the thickness of the brazing material layer exceeds 35 μm, a fragile reaction phase is likely to be generated at the bonding interface and the stress generated in the ceramic substrate increases, so that sufficient bonding strength cannot be obtained anyway.
[0027]
Furthermore, a metal plate that is slightly thinner than the metal circuit board is bonded to the surface of the nitride ceramic substrate opposite to the side on which the metal circuit board is bonded via the silver-copper brazing material layer. It is possible to effectively prevent warping of the ceramic circuit board. In other words, the amount of thermal expansion on each surface of the ceramic substrate can be made equal by equalizing the amount of metal disposed on both the front and back surfaces of the ceramic substrate, and the circuit board can be prevented from warping due to the difference in thermal expansion between both surfaces. it can.
[0028]
The ceramic circuit board according to the present invention is manufactured, for example, by the following procedure. That is, 0.1 to 5% by weight of carbon powder and 0.1% of active metal such as Ti are added to the bonding surface between a ceramic substrate such as AlN, Si 3 N 4 , and SiAlON and a metal circuit board formed of Cu or the like. A metal circuit board is pressed in a state where 5 to 10% by weight of a paste-like Ag—Cu brazing filler metal composition is applied, and a vacuum state of 10 −4 Torr or less, or argon (Ar) In a heating furnace adjusted to an inert gas atmosphere such as a gas, or in a heating furnace in a nitrogen (N 2 ) gas atmosphere, it is manufactured by holding at a temperature of 800 to 900 ° C. for 10 to 15 minutes and integrally bonding. .
[0029]
In the joining operation by the active metal method, in order to strengthen the metallized interface between the ceramic substrate and the Ag—Cu brazing material, and to form a reaction product layer formed by the reaction between the active metal element and the ceramic component. In order to promote, it is desirable that the weight ratio of Ag: Cu is a eutectic composition ratio of 72:28. Since the melting point of the brazing material having this eutectic composition ratio is about 780 ° C., the actual bonding temperature is set to 800 to 900 ° C.
[0030]
In the said manufacturing method, when joining temperature is as low as less than 800 degreeC, since the brazing | wax material does not fully fuse | melt, the adhesiveness of a ceramic substrate and a metal circuit board will fall. On the other hand, when the bonding temperature exceeds 900 ° C., a fragile reaction phase is easily generated on the bonding surface, and in any case, the bonding strength is lowered.
[0031]
Here, when the Ag—Cu brazing material further contains 5 to 20 wt% of at least one component selected from In, Zn, Cd, and Sn, the melting temperature of the brazing material is 680 As a result of lowering to about 0 ° C., bonding can be performed in a low temperature range of 700 to 800 ° C. The decrease in the bonding temperature reduces the residual stress of the circuit board after the bonding operation. As a result, the heat cycle resistance of the circuit board can be further improved.
[0032]
In addition, when In, Sn, or the like is added to the brazing material composition, the leakage of the brazing material composition to the substrate and the fluidity of the brazing material itself are greatly improved. Therefore, when the metal circuit board material is pressed and bonded after pattern-printing the brazing material composition on the substrate, a phenomenon that the brazing material protrudes from the outer peripheral edge of the metal circuit board material is likely to occur. The protruding brazing material is removed by an etching process after using a dedicated etchant (etchant). However, since the post-etching is required several times in addition to forming a circuit board having a predetermined shape, the circuit board is manufactured. The problem that a process becomes complicated arises. In particular, since the etching agent used in the post-etching is a strong alkali, when an aluminum nitride (AlN) substrate is used as a ceramic substrate, the AlN substrate is corroded by the etching agent, and the heat cycle characteristics of the circuit board are lowered. In some cases.
[0033]
However, it is possible to appropriately adjust the fluidity of the brazing filler metal composition by containing a predetermined amount of carbon powder in the brazing filler metal composition as in the present invention, effectively preventing the brazing filler metal from protruding. Can be prevented. Therefore, a post-etching process for removing the protruding brazing material becomes unnecessary, and the circuit board manufacturing process can be greatly simplified. Further, by adding carbon powder, the above-mentioned protrusion phenomenon can be prevented, and the metal circuit board can be bonded to the ceramic substrate surface with a small amount of brazing material. That is, since it is possible to form a thin brazing material layer with high hardness, the heat cycle characteristics of the circuit board can be further improved.
[0034]
According to the ceramic circuit board according to the present invention, the silver-copper brazing filler metal layer contains carbon powder and an active metal, and the linear expansion coefficient of the brazing filler metal layer becomes the linear expansion coefficient of the ceramic substrate by the carbon powder. Get closer. Therefore, the residual stress after joining the metal circuit board is reduced. In addition, when the active metal component is added, a strong metallized interface is formed on the joint surface, the strength of the ceramic substrate at the joint can be substantially increased, and a large thermal stress is generated when a thermal cycle is applied Also, cracks are less likely to occur. In addition, by including In or the like in the brazing material phase, the melting point of the brazing material can be lowered, the joining temperature of the metal circuit board can be lowered, and the residual stress of the circuit board after the joining operation can be reduced. Therefore, it is possible to provide a ceramic circuit board having excellent heat cycle characteristics and high reliability.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the following examples and the accompanying drawings.
[0036]
Examples 1-10
An aluminum nitride (AlN) sintered body having a thermal conductivity of 170 W / m · K and manufactured by atmospheric pressure sintering is processed to obtain an AlN substrate having a length of 29 mm × width of 63 mm × thickness of 0.635 mm, A large number of Cu circuit boards (metal circuit boards) and Cu boards (metal boards) made of phosphorous deoxidized copper having a thickness of 0.3 mm were prepared.
[0037]
On the other hand, carbon (C) powder having an average particle size of 5 μm, active metal powder, third component powder such as In, Cu powder, and Ag powder are prepared, and each paste has a composition as shown in Table 1 for each example. An Ag-Cu-based brazing material was prepared, and the brazing material was printed on both sides of the AlN substrate to form an Ag-Cu-based brazing material layer, and the Cu circuit board and the Cu plate were respectively passed through the brazing material layer. Crimped to the surface of the AlN substrate.
[0038]
In this state, each pressure-bonded body is accommodated in a heating furnace, heated to a bonding temperature shown in Table 1 in a high vacuum of 1 × 10 −4 Torr or less, and held for 10 minutes, thereby being bonded together as shown in FIG. A number of ceramic circuit boards 1 according to Examples 1 to 10 as shown were manufactured.
[0039]
As shown in FIG. 1, the ceramic circuit board 1 according to each example includes an Ag—Cu system between the AlN substrate 2 and the Cu circuit board 3 and between the AlN substrate 2 and the Cu board (back copper plate) 4. The brazing material layer 5 is integrally joined. A semiconductor element (Si chip) 7 is bonded to a predetermined position of the Cu circuit board 3 of the circuit board 1 by solder bonding to form a ceramic circuit board for semiconductor device configuration.
[0040]
Comparative Examples 1-4
On the other hand, the point which used the conventional Ag-Cu-Ti type | system | group brazing material paste which has a composition shown in Table 1 as a comparative example, the point which joined the Cu circuit board and Cu board at the joining temperature shown in Table 1, or the amount of carbon powder The ceramic circuit boards according to Comparative Examples 1 to 4 were joined by integrally bonding the members under the same conditions as in Example 1 except that an Ag—Cu—Ti—In brazing paste with the amount set to be too small or too large was used. Many were prepared.
[0041]
Evaluation In order to evaluate the durability and reliability of each ceramic circuit board according to each example and comparative example prepared as described above, the bonding strength (peel strength) of the metal circuit board was measured, The following thermal shock test (heat cycle test: TCT) was performed to investigate the occurrence of cracks in the circuit board. In the heat cycle test, each circuit board is held at −40 ° C. for 30 minutes, then heated to room temperature (RT) and held for 10 minutes, then heated to + 125 ° C. and held for 30 minutes, and then cooled. The temperature increase / decrease cycle of holding at room temperature for 10 minutes was repeated 300 times.
[0042]
Then, after completion of the 30, 100, and 300 cycles, five test samples were taken out and etched with an FeCl 3 solution to remove the Ag-Cu component of the Cu circuit board and the brazing material, thereby obtaining an AlN substrate. The reaction product layer produced above was exposed. Further, the reaction product layer was removed with an etching solution, and PT (fluorescent flaw detection test) was performed on the surface of each AlN substrate to inspect for the occurrence of fine cracks. And the soundness rate (eta) of the circuit board after completion | finish of each cycle was computed according to the following (1) formula, and the heat-resistant cycle property of each circuit board was evaluated.
[0043]
[Expression 1]
Figure 0003834351
Here, D is the total length of the copper plate edge path where cracks can occur in the longitudinal direction of the joint portion of the circuit board, and Σd is the length (d1, d2,... Dn) of each crack generated on the path. ). Therefore, a soundness factor η of 100% means that no cracks are generated, whereas a soundness factor η of 0% means that cracks are generated over the entire surface of the substrate.
[0044]
The measurement survey results are shown in Table 1 below.
[0045]
[Table 1]
Figure 0003834351
[0046]
As is apparent from the results shown in Table 1, in the ceramic circuit boards according to the respective examples, the bonding strength of the metal circuit board is almost the same as that of the conventional comparative example, while the brazing filler metal wire is added by adding carbon powder. As a result of the expansion coefficient being close to the linear expansion coefficient of the substrate and the residual stress after bonding being reduced, it was confirmed that cracks did not occur in TCT until at least 100 cycles, and the heat cycle characteristics were excellent.
[0047]
On the other hand, in the ceramic circuit board according to Comparative Example 1 that does not contain carbon powder in the brazing filler metal layer, the bonding strength of the metal circuit board is slightly higher than that in Example 1, but it has been found that the heat cycle resistance is low. . Further, in Comparative Example 2 in which the carbon powder content is too small, the effect of improving the heat cycle property is small. On the other hand, in Comparative Example 4 in which the carbon content is excessive, the heat cycle performance is good, but the bonding strength of the metal circuit board is greatly reduced, and the strength as a whole circuit board becomes insufficient. did.
[0048]
【The invention's effect】
As described above, according to the ceramic circuit board according to the present invention, the silver-copper brazing filler metal layer contains carbon powder and an active metal, and the linear expansion coefficient of the brazing filler metal layer is increased by the carbon powder. It becomes close to the linear expansion coefficient. Therefore, the residual stress after joining the metal circuit board is reduced. In addition, when the active metal component is added, a strong metallized interface is formed on the joint surface, the strength of the ceramic substrate at the joint can be substantially increased, and a large thermal stress is generated when a thermal cycle is applied Also, cracks are less likely to occur. In addition, by including In or the like in the brazing material phase, the melting point of the brazing material can be lowered, the joining temperature of the metal circuit board can be lowered, and the residual stress of the circuit board after the joining operation can be reduced. Therefore, it is possible to provide a ceramic circuit board having excellent heat cycle characteristics and high reliability.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a ceramic circuit board according to the present invention.
[Explanation of symbols]
1 Ceramic circuit board (AlN circuit board)
2 Ceramic substrate (AlN substrate)
3 Metal circuit board (Cu circuit board)
4 Metal plate (Cu plate, back copper plate)
5 Silver-copper brazing filler metal layer 7 Semiconductor element (Si chip)

Claims (6)

カーボン粉末と、Ti,Zr,HfおよびNbから選択される少なくとも1種の活性金属とを含有する銀−銅系ろう材層を介してセラミックス基板に金属回路板を接合して成り、上記カーボン粉末の平均粒径が10μm以下であり、上記銀−銅系ろう材層におけるカーボン粉末の含有量が0.1〜5.0重量%であることを特徴とするセラミックス回路基板。The carbon powder is formed by bonding a metal circuit board to a ceramic substrate via a silver-copper brazing material layer containing carbon powder and at least one active metal selected from Ti, Zr, Hf and Nb. A ceramic circuit board, wherein the average particle size of the carbon powder is 10 μm or less, and the content of the carbon powder in the silver-copper brazing filler metal layer is 0.1 to 5.0% by weight . 銀−銅系ろう材層における活性金属の含有量が0.5〜10重量%であることを特徴とする請求項1記載のセラミックス回路基板。  2. The ceramic circuit board according to claim 1, wherein the content of the active metal in the silver-copper brazing filler metal layer is 0.5 to 10% by weight. 銀−銅系ろう材層は、さらにIn,Zn,CdおよびSnから選択される少なくとも1種の元素を含有することを特徴とする請求項1記載のセラミックス回路基板。  2. The ceramic circuit board according to claim 1, wherein the silver-copper brazing material layer further contains at least one element selected from In, Zn, Cd, and Sn. In,Zn,CdおよびSnから選択される少なくとも1種の元素は5〜20重量%含有されていることを特徴とする請求項記載のセラミックス回路基板。4. The ceramic circuit board according to claim 3, wherein at least one element selected from In, Zn, Cd and Sn is contained in an amount of 5 to 20% by weight. 銀−銅系ろう材層はAg−Cu−In−Ti系ろう材層であることを特徴とする請求項記載のセラミックス回路基板。4. The ceramic circuit board according to claim 3, wherein the silver-copper brazing material layer is an Ag-Cu-In-Ti brazing material layer. 金属回路板を接合した側と反対側のセラミックス基板表面に、上記銀−銅系ろう材層を介して金属板を接合したことを特徴とする請求項1記載のセラミックス回路基板。  2. The ceramic circuit board according to claim 1, wherein a metal plate is bonded to the surface of the ceramic substrate opposite to the side on which the metal circuit board is bonded via the silver-copper brazing material layer.
JP08655896A 1996-04-09 1996-04-09 Ceramic circuit board Expired - Lifetime JP3834351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08655896A JP3834351B2 (en) 1996-04-09 1996-04-09 Ceramic circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08655896A JP3834351B2 (en) 1996-04-09 1996-04-09 Ceramic circuit board

Publications (2)

Publication Number Publication Date
JPH09283656A JPH09283656A (en) 1997-10-31
JP3834351B2 true JP3834351B2 (en) 2006-10-18

Family

ID=13890351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08655896A Expired - Lifetime JP3834351B2 (en) 1996-04-09 1996-04-09 Ceramic circuit board

Country Status (1)

Country Link
JP (1) JP3834351B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1122780A3 (en) 2000-01-31 2004-01-02 Ngk Insulators, Ltd. Laminated radiation member, power semiconductor apparatus and method for producing the same
JP5016756B2 (en) * 2001-07-19 2012-09-05 東芝マテリアル株式会社 Nitride-based ceramic member and metal member joined body and nitride-based ceramic circuit board using the same
JP4608409B2 (en) * 2005-10-19 2011-01-12 株式会社住友金属エレクトロデバイス High heat dissipation type electronic component storage package
WO2008004552A1 (en) * 2006-07-04 2008-01-10 Kabushiki Kaisha Toshiba Ceramic-metal bonded body, method for manufacturing the bonded body and semiconductor device using the bonded body
JP5430655B2 (en) 2009-05-27 2014-03-05 京セラ株式会社 Brazing material, heat dissipation base using the same, and electronic device
JP2014091673A (en) * 2012-11-07 2014-05-19 Denki Kagaku Kogyo Kk Nitride based ceramic circuit board
JP2014118310A (en) * 2012-12-14 2014-06-30 Denki Kagaku Kogyo Kk Ceramic circuit board
US10424529B2 (en) 2014-02-21 2019-09-24 Denka Company Limited Ceramic circuit board
JP6307386B2 (en) * 2014-08-20 2018-04-04 デンカ株式会社 Ceramic circuit board
EP3492441A4 (en) * 2016-07-28 2020-03-04 Kabushiki Kaisha Toshiba Bonding body, circuit board and semiconductor device
JP7301740B2 (en) * 2017-05-30 2023-07-03 デンカ株式会社 Ceramic circuit board and its manufacturing method
JP7240511B2 (en) 2019-09-02 2023-03-15 株式会社東芝 zygote
JPWO2022075409A1 (en) * 2020-10-07 2022-04-14

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2811020B2 (en) * 1990-04-17 1998-10-15 日本特殊陶業株式会社 Joint of ceramic and steel and method of manufacturing the same
JPH05136290A (en) * 1991-11-11 1993-06-01 Toshiba Corp Ceramics circuit substrate
JP2945198B2 (en) * 1991-12-25 1999-09-06 川崎製鉄株式会社 Joining method of copper plate and ceramics
JP2522739B2 (en) * 1992-03-24 1996-08-07 日本碍子株式会社 Ceramics wiring board

Also Published As

Publication number Publication date
JPH09283656A (en) 1997-10-31

Similar Documents

Publication Publication Date Title
JP4077888B2 (en) Ceramic circuit board
JPH07202063A (en) Ceramic circuit board
JP3834351B2 (en) Ceramic circuit board
JPH09275166A (en) Semiconductor device member using aluminum nitride base material and its manufacturing method
JP2001332854A (en) Ceramic circuit board
JP3887645B2 (en) Manufacturing method of ceramic circuit board
JP3095490B2 (en) Ceramic-metal joint
JP4360847B2 (en) Ceramic circuit board, heat dissipation module, and semiconductor device
JPH05347469A (en) Ceramic circuit board
JP3495051B2 (en) Ceramic-metal joint
JPH0957487A (en) Brazing filler metal
JP5016756B2 (en) Nitride-based ceramic member and metal member joined body and nitride-based ceramic circuit board using the same
JP4557398B2 (en) Electronic element
JPH08102570A (en) Ceramic circuit board
JP3526710B2 (en) Circuit board manufacturing method
JP3914648B2 (en) Metal-ceramic bonding substrate
JP3302714B2 (en) Ceramic-metal joint
JP3370060B2 (en) Ceramic-metal joint
JPH06263554A (en) Jointed substrate of ceramics-metal
JP2000086368A (en) Nitride ceramic substrate
JP4601796B2 (en) Ceramic circuit board with terminals
JP2003285195A (en) Ceramic circuit board and method for manufacturing the same
JPH0597533A (en) Composition for bonding ceramic-metal and bonded product of ceramic-metal
JPH05246769A (en) Ceramic-metal joining composition and ceramic-metal joined body using the same
JP3577109B2 (en) Metallized substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

EXPY Cancellation because of completion of term