JPH04168792A - Manufacture of high heat radiating ceramic circuit board with excellent thermal shock resistance - Google Patents

Manufacture of high heat radiating ceramic circuit board with excellent thermal shock resistance

Info

Publication number
JPH04168792A
JPH04168792A JP29357490A JP29357490A JPH04168792A JP H04168792 A JPH04168792 A JP H04168792A JP 29357490 A JP29357490 A JP 29357490A JP 29357490 A JP29357490 A JP 29357490A JP H04168792 A JPH04168792 A JP H04168792A
Authority
JP
Japan
Prior art keywords
layer
copper
silver
weight
thermal shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29357490A
Other languages
Japanese (ja)
Inventor
Yumiko Kouno
有美子 河野
Masato Kumagai
正人 熊谷
Kenji Fukuda
憲司 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP29357490A priority Critical patent/JPH04168792A/en
Publication of JPH04168792A publication Critical patent/JPH04168792A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Abstract

PURPOSE:To enhance thermal shock resistance by printing wax paste made by mixing titanium hydride powder to silver-copper eutectic powder with a specified weight ratio on AlN ceramic sintered object, by drying it and bonding a copper plate. CONSTITUTION:A wax layer 2 is formed on an AlN substrate 1, a copper plate 3 placed on said layer and heated and bonded in vacuum state, and then wax layer 2 forms a titanium nitride layer 5 together with a silver and copper layer 4. And the titanium nitride layer 5 is located between the AlN layer 1 and the silver and copper layer 4. The wax layer 2 uses wax paste having 100 part in weight of silver and copper eutectic powder mixed with 1 part to 5 part of titanium hydride powder and can reduce a defect 7 created within the silver and copper wax layer 4 or between the silver and copper wax layer 4 and the copper plate 3.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、パワー半導体用等に適した高い放熱性、耐熱
衝撃性を有するセラミックス基板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a ceramic substrate having high heat dissipation and thermal shock resistance suitable for power semiconductors and the like.

[従来の技術] 近年、素子の高集積密度化、高速化、大電力制御化の傾
向に伴い、素子で発生する大量の熱を速やかに放散する
ことのできる基板が求められてきた。
[Prior Art] In recent years, with the trend toward higher integration density, higher speed, and higher power control of elements, there has been a demand for a substrate that can quickly dissipate a large amount of heat generated by the elements.

そのような基板の1つとして、高熱伝導性絶縁セラミッ
クスであるAρNセラミックスをベースとし、その上に
、熱伝導性か良く電気伝導性にも優れた金属である銅を
接合して回路を形成した基板が注目されている。このよ
うな基板の製法として従来、大きく分類して次の(1)
(2)が開示されている。
One such substrate is based on AρN ceramics, which is an insulating ceramic with high thermal conductivity, and a circuit is formed by bonding copper, a metal with good thermal conductivity and excellent electrical conductivity, on top of it. Boards are attracting attention. Conventionally, the manufacturing methods for such boards can be broadly classified into the following (1):
(2) is disclosed.

(1)表面を酸化させたAεNセラミックスと銅板を配
置し加熱してCu−0共品を発生させて直接接合する方
法(東芝レビュー 41.9pp811〜814 (1986)(2)積層
箔、合金板、五合扮、合金粉等のいずれかの形態で、活
性金属入りのろう材をARNセラミックスと′銅板の間
に介在させ、不活性雰囲気で加熱し接合するいわゆる活
性金属法(特開昭56−1.63093、特開平2−1
49478号公報) 上記(2)の技術手段は(1)の直接接合に比べ、接着
力も強く、信顆性の高い接合状態を得ることができるが
、銅とAβN基板の熱膨張差に起因する残留応力が発生
し、接合、冷却後あるいは素子搭載復電力0N−OFF
切換に伴う熱衝撃によってクラックが発生しやす(、耐
熱衝撃性に劣る問題があった。因みに、銅及びA、f2
Nの熱膨張率はそれぞれ17 X 10−6/’C,4
〜5X10−6/°Cである。 上記問題の解決策とし
て従来よりろう材層を304zm以下の合金層としたり
(特開昭60−32648号公報)、チタン層の厚さを
0、5 μmから10gmとする(特開昭60−177
634号公報)など、ろう材層や活性金属層を薄くする
方法が提案されてきた。
(1) Method of placing and heating AεN ceramics with oxidized surfaces and a copper plate to generate Cu-0 and directly bonding them (Toshiba Review 41.9 pp. 811-814 (1986) (2) Laminated foil, alloy plate The so-called active metal method (Japanese Unexamined Patent Application Publication No. 1983-1981) involves interposing a brazing filler metal containing an active metal in the form of a filler metal, an alloy powder, etc. between ARN ceramics and a copper plate, and heating and bonding in an inert atmosphere. -1.63093, JP-A-2-1
Publication No. 49478) The technical means of (2) above has stronger adhesive force than the direct bonding of (1) and can obtain a bonded state with high reliability, but this is due to the difference in thermal expansion between the copper and the AβN substrate. Residual stress occurs, and after bonding and cooling, the return power on the element is 0N-OFF.
Cracks are likely to occur due to thermal shock associated with switching (there was a problem with poor thermal shock resistance. Incidentally, copper, A, f2
The coefficient of thermal expansion of N is 17 x 10-6/'C, 4, respectively.
~5X10-6/°C. As a solution to the above problem, the brazing material layer has been conventionally made into an alloy layer with a thickness of 304 zm or less (Japanese Unexamined Patent Publication No. 60-32648), and the thickness of the titanium layer has been changed from 0.5 μm to 10 gm (Japanese Unexamined Patent Publication No. 60-32648). 177
634), methods of thinning the brazing material layer and the active metal layer have been proposed.

ろう材層や活性金属層は硬く変形しにくいため、応力緩
和することなく、AI2.Nセラミックスに応力を伝達
してしまう。このような層の厚さを薄くすることによっ
て、確かにAεNセラミックスに加わる残留応力は低減
され、その結果として耐熱衝撃性は向上するが、実際の
生産においてこのような薄い接合層は、ややもするとろ
う切れ等の欠陥を誘起し、信頼性の高い接合が困難であ
ると指摘されていた。特開平2−149478号公報で
は、銀と銅の混合粉末100重量部に対する水素化チタ
ンが5重量部未満では生成される窒化チタン層が少なく
なり、窒化アルミニウム焼結体との接合強度が低くなる
と説明している。
Since the brazing material layer and active metal layer are hard and difficult to deform, AI2. This will transmit stress to the N ceramics. Although reducing the thickness of such a layer certainly reduces the residual stress applied to AεN ceramics and improves thermal shock resistance as a result, such a thin bonding layer is somewhat difficult to use in actual production. It has been pointed out that this causes defects such as solder breaks, making it difficult to achieve highly reliable joining. JP-A-2-149478 discloses that if the amount of titanium hydride is less than 5 parts by weight with respect to 100 parts by weight of mixed powder of silver and copper, the amount of titanium nitride layer formed will decrease, and the bonding strength with the aluminum nitride sintered body will decrease. Explaining.

なお、ろう材ペーストとろう材箔を比較するとAnNセ
ラミックス上に配設する場合に、ろう材箔は回路パター
ンにあわせて加工、積層しなければならないのに対し、
ろう材ペーストはスクリーン印刷・乾燥によって手軽に
塗布することができ、作業性が優れている。しかし、ろ
う材ペーストは接合層を薄(していった時に接合性が顕
著に低下するという問題があった。
Comparing brazing paste and brazing foil, when disposing them on AnN ceramics, brazing foil must be processed and laminated according to the circuit pattern, whereas
Brazing paste can be easily applied by screen printing and drying, and has excellent workability. However, the problem with brazing paste is that when the bonding layer is made thinner, the bonding performance deteriorates significantly.

[発明が解決しようとする課題] 本発明者らは、接合の信郭性を低下させることなく耐熱
衝撃性を向上させるためのろう材層の構造を種々検討し
た結果、接合欠陥の起き易さ、及びAρNセラミックス
に加わる残留応力の大きさはろう材層の厚さだけでなく
ろう材に含まれるチタンの量にも大きく支配され、しか
も、従来技術の開示とは全く異なる事実を知見し、新し
い技術を見出した。本発明はこの知見に基いて完成され
たもので、ろう材ペーストを用いる活性金属法に改善を
加え、上記従来技術の欠点を解消することを目的とする
ものである。
[Problems to be Solved by the Invention] As a result of various studies on the structure of the brazing metal layer in order to improve the thermal shock resistance without reducing the reliability of the joint, the present inventors found that the ease of occurrence of joint defects , and the magnitude of residual stress applied to AρN ceramics is largely controlled not only by the thickness of the brazing filler metal layer but also by the amount of titanium contained in the brazing filler metal, and moreover, we have discovered a fact that is completely different from what is disclosed in the prior art, Discovered a new technology. The present invention was completed based on this knowledge, and aims to improve the active metal method using a brazing filler metal paste and eliminate the drawbacks of the prior art described above.

[課題を解決するための手段] 本発明は銀銅共晶粉100重量部に水素化チタン粉末1
重量部以上5重量部未満を混合したろう材ペーストをA
ρNセラミックス焼結体に印刷し、乾燥した後、銅板を
接合することを特徴とする耐熱衝撃性に優れた高放熱性
セラミックス回路基板の製造方法である。
[Means for Solving the Problems] The present invention includes 100 parts by weight of silver-copper eutectic powder and 1 part by weight of titanium hydride powder.
A brazing paste containing 5 parts by weight or more and less than 5 parts by weight
This is a method for manufacturing a highly heat-dissipating ceramic circuit board with excellent thermal shock resistance, which is characterized by printing on a ρN ceramic sintered body, drying it, and then bonding a copper plate.

[作用] 本発明者らは、水素化チタンを含む銀銅共晶ろう材ペー
ストを用いる場合に、ろう材層を薄くしていった時に問
題となる接合欠陥について種々の検討を行った。
[Function] The present inventors conducted various studies regarding bonding defects that become a problem when thinning the brazing material layer when using a silver-copper eutectic brazing material paste containing titanium hydride.

その結果、本発明者らの調査によれば ■ 水素化チタンが銀銅ろう材100重量部に対して1
重量部であっても窒化チタン層は十分形成されており、
5重量部以上の場合に比べ、極端に少ないという状況で
はないこと。
As a result, according to the investigation by the present inventors, ■ titanium hydride is 1% by weight per 100 parts by weight of silver-copper brazing material.
Even though it is a heavy part, the titanium nitride layer is sufficiently formed,
The amount must not be extremely low compared to the case where the amount is 5 parts by weight or more.

■ 接合欠陥は、ろう材層と銅板の間、あるいはろう材
層内部で発生する頻度が高く窒化チタン層でほとんど生
じないこと。
■ Bonding defects often occur between the brazing metal layer and the copper plate or inside the brazing metal layer, but rarely occur in the titanium nitride layer.

■ ろう材層の厚さが同じでも、そのろう材の組成とし
て水素化チタンの比率を高めてゆくと接合欠陥は低減し
てゆくこと。例えば乾燥後のろう材層の厚さが、35μ
mの場合には水素化チタン3重量部以上で十分に接合欠
陥の低減が可能であること。
■ Even if the thickness of the brazing filler metal layer remains the same, as the proportion of titanium hydride in the brazing filler metal composition increases, the number of bonding defects decreases. For example, the thickness of the brazing material layer after drying is 35μ
In the case of m, it is possible to sufficiently reduce bonding defects with 3 parts by weight or more of titanium hydride.

■ 水素化チタンの比率を高めてゆ(と、ろう材成分の
銅板への拡散が著しくなること。
■ If the ratio of titanium hydride is increased, the diffusion of the brazing material components into the copper plate will become significant.

■ この拡散部の組織は、接合部より十分離れ、ろう材
成分が侵入していない通常の銅の組織の部分に比べて硬
いので、ろう材層の厚さが同じでも、ろう材中の水素化
チタンの比率の高いものほど接合体全体で見たとき通常
の銅より硬い部分の割合が多いこと。
■ The structure of this diffusion zone is far enough away from the joint and is harder than the normal copper structure where the brazing metal components have not penetrated, so even if the thickness of the brazing metal layer is the same, the hydrogen The higher the proportion of titanium chloride, the higher the proportion of hard parts in the entire bonded body compared to ordinary copper.

が見出された。was discovered.

すなわち、接合欠陥は、従来開示されていたような窒化
チタン層の欠除として生ずるのではなく、ろう材層と銅
板の間及びろう材層内部で、すなわち、ろう材と銅板、
あるいはろう材同志の合金化の欠除として生ずる。
That is, bonding defects do not occur as a lack of the titanium nitride layer as previously disclosed, but between the brazing material layer and the copper plate and within the brazing material layer, i.e., between the brazing material and the copper plate.
Alternatively, it occurs as a result of lack of alloying between the filler metals.

第2図はこのことを模式的に説明するもので、第2図(
a)に示すようにAl2N層1の上にろう材層2を形成
し、その上に銅板3を載せて真空中で加熱接合すると、
第2図(b)に示すようにろう材層は銀銅層4と窒化チ
タン層5を形成し、窒化チタン層5はARN層1と銀銅
層4の間に介在する。従来、ろう材層を薄くすると第2
図(c)に示すように、この窒化チタン層5内に欠陥6
が生ずるとされていた。
Figure 2 schematically explains this.
As shown in a), a brazing material layer 2 is formed on an Al2N layer 1, a copper plate 3 is placed on top of the brazing material layer 2, and the copper plate 3 is placed on top of the brazing material layer 2 and bonded by heating in a vacuum.
As shown in FIG. 2(b), the brazing material layer forms a silver-copper layer 4 and a titanium nitride layer 5, and the titanium nitride layer 5 is interposed between the ARN layer 1 and the silver-copper layer 4. Conventionally, when the brazing filler metal layer is made thinner, the second
As shown in Figure (c), there are defects 6 in this titanium nitride layer 5.
was believed to occur.

本発明者らの研究によれば欠陥が生ずるのは第2図(d
)に示すように、銀銅ろう材層4内又は銀銅ろう材層4
と銅板3との間に欠陥7が生じ、窒化チタン層5には欠
陥が生じ難い。
According to the research conducted by the present inventors, defects occur in Figure 2 (d
), inside the silver-copper brazing material layer 4 or in the silver-copper brazing material layer 4
Defects 7 occur between the copper plate 3 and the titanium nitride layer 5, and defects are unlikely to occur in the titanium nitride layer 5.

ろう材中の水素化チタンの比率を高めてゆくことは、第
2図(d)に示す欠陥7を低減するのに役立つが、従来
開示されていたよりもずっと低い比率で、すなわち、銀
銅ろう材100重量部に対し水素化チタン1重量部ない
し5重量部未満で十分欠陥7を低減させることができる
。逆に、従来開示されていた水素化チタン10重量部以
上又は5重量部以上といった範囲では、接合部の残留応
力の低減、耐熱衝撃撃性の向上を狙ってろう材層を薄く
しても、ろう相成分の銅板への拡散が著しく結果として
銅板の組織を硬くしてしまい、むしろ逆効果となってい
ることが明らかになった。
Increasing the proportion of titanium hydride in the brazing filler metal helps to reduce the defect 7 shown in Figure 2(d), but at a much lower proportion than previously disclosed, i.e. Defects 7 can be sufficiently reduced by using 1 part by weight of titanium hydride to less than 5 parts by weight per 100 parts by weight of the material. On the other hand, in the conventionally disclosed range of titanium hydride of 10 parts by weight or more or 5 parts by weight or more, even if the brazing material layer is made thinner with the aim of reducing residual stress in the joint and improving thermal shock resistance, It has become clear that the diffusion of the waxy phase components into the copper plate significantly results in the hardening of the structure of the copper plate, which has the opposite effect.

本発明は、例えば、水素化チタンと共晶組成に配合され
た銀銅混粉又は合金粉を有機物中に分散、混練してペー
ストとし、通常のスクリーン印刷法を用いて、AρN焼
結体上に印刷し乾燥により低沸点有機物を除去してペー
ストを固化した後、銅板を積層配置し、不活性雰囲気又
は真空中で800〜900 ”Cに加熱し、接合する通
常の方法でセラミックス回路基板を製造するものである
が、本発明の最も特徴とする点は水素化チタン量の限定
にあり、銀銅粉末100重量部に対し1重量部以上5重
量部未満としたことにある。
In the present invention, for example, titanium hydride and a silver-copper mixed powder or alloy powder blended in a eutectic composition are dispersed and kneaded in an organic substance to form a paste, and then printed on an AρN sintered body using an ordinary screen printing method. After printing on the paste and drying to remove low-boiling point organic substances and solidify the paste, the ceramic circuit board is assembled using the usual method of stacking copper plates, heating to 800-900''C in an inert atmosphere or vacuum, and bonding. The most distinctive feature of the present invention lies in the limitation of the amount of titanium hydride, which is 1 part by weight or more and less than 5 parts by weight per 100 parts by weight of silver-copper powder.

AgNセラミックスへのろう材のぬれ性を改善し、良好
な接合状態を得るには水素化チタン量は銀銅粉末100
重量部に対して1重量部以上であることが必要である。
To improve the wettability of the brazing filler metal to AgN ceramics and obtain a good bonding condition, the amount of titanium hydride should be 100% silver copper powder.
It is necessary that the amount is 1 part by weight or more.

接合部残留応力の低減、耐熱衝撃性の向上を狙ってろう
材層を薄くすると、ろう材層が厚い時と比べて接合欠陥
が生成しやすいので、水素化チタンの量を増加して接合
欠陥を抑制する。たとえば、乾燥時におけるろう材層の
厚さが45〜50LLmといった範囲では銀銅粉末10
0重量部に対し水素化チタン2重量部でも良好な接合が
得られるが、ろう材層を30〜35μmまで薄くすると
水素化チタン2重量部では欠陥が発生しやすい。そこで
水素化チタンを3〜4重量部にまで増加させると、この
ような薄いろう材層でも良好な接合を得ることができる
When the brazing filler metal layer is made thinner in order to reduce residual stress in the joint and improve thermal shock resistance, bonding defects are more likely to occur than when the brazing filler metal layer is thicker, so increasing the amount of titanium hydride will reduce the bonding defects. suppress. For example, if the thickness of the brazing filler metal layer when dry is in the range of 45 to 50 LLm, 10
Good bonding can be obtained even with 2 parts by weight of titanium hydride to 0 parts by weight, but defects are likely to occur with 2 parts by weight of titanium hydride when the brazing filler metal layer is thinned to 30 to 35 μm. Therefore, by increasing the amount of titanium hydride to 3 to 4 parts by weight, good bonding can be obtained even with such a thin brazing filler metal layer.

水素化チタンが5重量部以上の範囲ではろう相成分の銅
板への拡散が激しく、その結果銅板の組織を硬くするの
で好ましくない。例えばろう材層の乾燥時厚さを15μ
mというように、ろう材層厚をいくら薄くしても、残留
応力の低減が十分なされるとは言い難い。
If titanium hydride is in a range of 5 parts by weight or more, the wax phase component will diffuse into the copper plate rapidly, resulting in hardening of the structure of the copper plate, which is not preferable. For example, the dry thickness of the brazing filler metal layer is 15 μm.
No matter how thin the brazing filler metal layer is, for example, m, it is difficult to say that the residual stress can be sufficiently reduced.

[実施例] −,44u mの水素化チタン粉末と一22μmの銀銅
共晶粉末とを種々の重量比にて混合し、ニトロセルロー
スを含む有機バインダーを加えて混練し粘度50,00
0−60,0OOcpsとなるよう調整した後、36m
mX54mmX’0.635mmtのAl2Nセラミッ
クス焼結体の両面に120メツシユ〜325メツシユの
種々のスクリーンを用いて印刷し、大気中で最高)温度
120°Cで乾燥し、乾燥後厚さ10 Limから50
LLmのろう材層を得た。これら各々に銅板を積層し0
.1 k g/crn”〜1 k g/cm’程度の荷
重をかけてlXl0−5〜l0XIO−5Torrの真
空中で温度880″CX30分の保持を行い、炉冷して
接合体を得た。
[Example] A titanium hydride powder of -44 μm and a silver-copper eutectic powder of -22 μm were mixed at various weight ratios, and an organic binder containing nitrocellulose was added and kneaded to give a viscosity of 50.00.
After adjusting to 0-60,0OOcps, 36m
Print on both sides of an Al2N ceramic sintered body measuring m x 54 mm x '0.635 mm using various screens of 120 mesh to 325 mesh, dry in the atmosphere at a temperature of 120 ° C (maximum), and after drying, the thickness ranges from 10 Lim to 50
A brazing filler metal layer of LLm was obtained. Copper plates are laminated on each of these.
.. A load of about 1 kg/crn" to 1 kg/cm' was applied, the temperature was maintained at 880" CX for 30 minutes in a vacuum of 1X10-5 to 10XIO-5 Torr, and the assembly was cooled in a furnace to obtain a joined body.

接合状態を超音波探傷試験により評価し、さらに耐熱衝
撃試験を行った。試験結果を第1図に示した。
The bonding state was evaluated by ultrasonic flaw detection, and a thermal shock resistance test was also conducted. The test results are shown in Figure 1.

第1図から明らかなように、水素化チタン3重量部であ
っても乾燥後ろう材厚さ35μm以上の領域で良好な接
合状態が得られ、乾燥後ろう材厚さが40〜50LLm
では水素化チタンがさらに少ない方が耐熱衝撃性にすぐ
れることが分かる。
As is clear from Fig. 1, even with 3 parts by weight of titanium hydride, a good bonding condition can be obtained in the region where the thickness of the brazing material after drying is 35 μm or more, and the thickness of the brazing material after drying is 40 to 50 LLm.
It can be seen that the smaller the amount of titanium hydride, the better the thermal shock resistance.

[発明の効果] 本発明によれば接合欠陥を抑制しつつ接合部の残留応力
低減を行い、接合の信頼性、耐熱衝撃性ともに優れた高
放熱性セラミックス回路基板を製造することができる。
[Effects of the Invention] According to the present invention, it is possible to suppress bonding defects while reducing residual stress in the bonded portion, and to manufacture a highly heat-dissipating ceramic circuit board with excellent bonding reliability and thermal shock resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の効果を示すグラフ、第2図は本発明の
原理説明図である。
FIG. 1 is a graph showing the effects of the present invention, and FIG. 2 is a diagram explaining the principle of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 銀銅共晶粉100重量部に水素化チタン粉末1重量
部以上5重量部未満を混合したろう材ペーストをAlN
セラミックス焼結体に印刷し、乾燥した後、銅板を接合
することを特徴とする耐熱衝撃性に優れた高放熱性セラ
ミックス回路基板の製造方法。
1 A brazing paste made by mixing 100 parts by weight of silver-copper eutectic powder with 1 part by weight or more and less than 5 parts by weight of titanium hydride powder is mixed with AlN.
A method for manufacturing a highly heat-dissipating ceramic circuit board with excellent thermal shock resistance, which comprises printing on a ceramic sintered body, drying it, and then bonding a copper plate.
JP29357490A 1990-11-01 1990-11-01 Manufacture of high heat radiating ceramic circuit board with excellent thermal shock resistance Pending JPH04168792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29357490A JPH04168792A (en) 1990-11-01 1990-11-01 Manufacture of high heat radiating ceramic circuit board with excellent thermal shock resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29357490A JPH04168792A (en) 1990-11-01 1990-11-01 Manufacture of high heat radiating ceramic circuit board with excellent thermal shock resistance

Publications (1)

Publication Number Publication Date
JPH04168792A true JPH04168792A (en) 1992-06-16

Family

ID=17796498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29357490A Pending JPH04168792A (en) 1990-11-01 1990-11-01 Manufacture of high heat radiating ceramic circuit board with excellent thermal shock resistance

Country Status (1)

Country Link
JP (1) JPH04168792A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6533161B1 (en) * 1993-06-18 2003-03-18 Siemens Aktiengesellschaft Process for producing a gas-tight soldered joint and use of the process in the production of components with a vacuum-tight casing
JP2008108957A (en) * 2006-10-26 2008-05-08 Denki Kagaku Kogyo Kk Production method of junction structure
WO2011108498A1 (en) * 2010-03-02 2011-09-09 株式会社トクヤマ Method for manufacturing a metallized substrate
US9301390B2 (en) 2009-03-30 2016-03-29 Tokuyama Corporation Process for producing metallized substrate, and metallized substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154898A (en) * 1987-12-14 1989-06-16 Tanaka Kikinzoku Kogyo Kk Solder
JPH02149478A (en) * 1988-12-01 1990-06-08 Denki Kagaku Kogyo Kk Production of copper joined aluminum nitride substrate
JPH03101153A (en) * 1989-09-13 1991-04-25 Denki Kagaku Kogyo Kk Manufacture of aluminum nitride substrate containing copper circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154898A (en) * 1987-12-14 1989-06-16 Tanaka Kikinzoku Kogyo Kk Solder
JPH02149478A (en) * 1988-12-01 1990-06-08 Denki Kagaku Kogyo Kk Production of copper joined aluminum nitride substrate
JPH03101153A (en) * 1989-09-13 1991-04-25 Denki Kagaku Kogyo Kk Manufacture of aluminum nitride substrate containing copper circuit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6533161B1 (en) * 1993-06-18 2003-03-18 Siemens Aktiengesellschaft Process for producing a gas-tight soldered joint and use of the process in the production of components with a vacuum-tight casing
JP2008108957A (en) * 2006-10-26 2008-05-08 Denki Kagaku Kogyo Kk Production method of junction structure
JP4750670B2 (en) * 2006-10-26 2011-08-17 電気化学工業株式会社 Manufacturing method of ceramic circuit board
US9301390B2 (en) 2009-03-30 2016-03-29 Tokuyama Corporation Process for producing metallized substrate, and metallized substrate
WO2011108498A1 (en) * 2010-03-02 2011-09-09 株式会社トクヤマ Method for manufacturing a metallized substrate
CN102783256A (en) * 2010-03-02 2012-11-14 株式会社德山 Method for manufacturing a metallized substrate
JP5731476B2 (en) * 2010-03-02 2015-06-10 株式会社トクヤマ Method for manufacturing metallized substrate
US9374893B2 (en) 2010-03-02 2016-06-21 Tokuyama Corporation Production method of metallized substrate

Similar Documents

Publication Publication Date Title
US8518554B2 (en) Ceramic metal composite and semiconductor device using the same
US20080272180A1 (en) Method of manufacturing heat spreader module
US5981085A (en) Composite substrate for heat-generating semiconductor device and semiconductor apparatus using the same
TWI615929B (en) Power module substrate, power module substrate having heatsink, power module, method for producing power module substrate, paste for connecting copper plate, and method for producing laminated body
WO2013115359A1 (en) Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, and paste for bonding copper member
WO2015046280A1 (en) Cu/ceramic material joint, method for manufacturing cu/ceramic material joint, and substrate for power module
JPH0261539B2 (en)
JP3180622B2 (en) Power module substrate and method of manufacturing the same
JP6048541B2 (en) Power module substrate, power module substrate with heat sink, power module, power module substrate manufacturing method, and copper member bonding paste
JP4104253B2 (en) Board integrated structure
US7161807B2 (en) Heat spreader module
JPH05347469A (en) Ceramic circuit board
JP6896734B2 (en) Circuit boards and semiconductor modules
JPH04168792A (en) Manufacture of high heat radiating ceramic circuit board with excellent thermal shock resistance
TWI744474B (en) Ceramic/aluminum bonded body, insulating circuit substrate, led module, ceramic member, method of manufacturing ceramic/aluminum bonded body and method of manufacturing insulating circuit substrate
JPH08102570A (en) Ceramic circuit board
JPS59228742A (en) Substrate for mounting semiconductor element
JPH11220073A (en) Circuit substrate with heat sink
JP3120826B2 (en) Terminal structure of power module substrate
WO2019159257A1 (en) METHOD FOR MANUFACTURING CERAMIC/AL-SiC COMPOSITE MATERIAL JOINED BODY, AND METHOD FOR MANUFACTURING HEAT SINK-EQUIPPED SUBSTRATE FOR POWER MODULE
JPH0477369A (en) Production of metal-ceramic laminated substrate
JP3797823B2 (en) Circuit board composite
JPH06263554A (en) Jointed substrate of ceramics-metal
JP2607699Y2 (en) Lightweight substrates for semiconductor devices
JP3529085B2 (en) Circuit board with heat sink