JP2000349098A - Bonded body of ceramic substrate and semiconductor device, and its manufacture - Google Patents

Bonded body of ceramic substrate and semiconductor device, and its manufacture

Info

Publication number
JP2000349098A
JP2000349098A JP11157679A JP15767999A JP2000349098A JP 2000349098 A JP2000349098 A JP 2000349098A JP 11157679 A JP11157679 A JP 11157679A JP 15767999 A JP15767999 A JP 15767999A JP 2000349098 A JP2000349098 A JP 2000349098A
Authority
JP
Japan
Prior art keywords
layer
ceramic substrate
metal
melting point
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11157679A
Other languages
Japanese (ja)
Inventor
Hiroshi Hiiragidaira
啓 柊平
Kazutaka Sasaki
一隆 佐々木
Kenjiro Higaki
賢次郎 桧垣
Takashi Ishii
隆 石井
Hirohiko Nakada
博彦 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11157679A priority Critical patent/JP2000349098A/en
Publication of JP2000349098A publication Critical patent/JP2000349098A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01072Hafnium [Hf]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0133Ternary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0134Quaternary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

PROBLEM TO BE SOLVED: To provide a bonded body of a ceramic substrate and a semiconductor device, which can be bonded at low temperatures and with lower cost without breaking or deforming the ceramic substrate, and has a high bonding strength and extremely small variations in the bonding strength and durability in a cooling/heating cycle. SOLUTION: A metal layer is formed on a ceramic substrate, a conductive layer is bonded to the metal layer with a brazing material having a melting point of 200 to 660 deg.C, and a semiconductor device is bonded to the conductive layer with a brazing material having a melting point less than 200 deg.C. It is preferable that the conductive layer is made of Cu or a Cu alloy, or Al or an Al alloy, and that the metal layer comprises at least one metal selected from a group consisting of W, Mo, Ni, Au, Cu, Ag, and Ti.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子その他
の接合部の接合強度が高く、ヒートサイクルにおける信
頼性に優れたセラミック基板と半導体素子の接合体、及
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joined body of a ceramic substrate and a semiconductor element having a high joining strength of a semiconductor element and other joints and excellent in reliability in a heat cycle, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】半導体装置に用いられる絶縁基材として
は、従来より酸化アルミニウム系セラミック(Al23
を主成分とするセラミック、以下アルミナと言う)、窒
化アルミニウム系セラミック(AlNを主成分とするセ
ラミック、以下窒化アルミニウムと言う)、窒化ケイ素
系セラミック(Si34を主成分とするセラミック、以
下窒化ケイ素と言う)等のセラミックが用いられてい
る。これらのセラミック基材上に半導体素子を搭載する
場合、通常はセラミック基材上にタングステン(W)や
モリブデン(Mo)を主成分とするメタライズ回路や銅
(Cu)を主成分とする回路を形成し、これらを積層し
たものが半導体IC用回路基板として用いられてきた。
2. Description of the Related Art Conventionally, as an insulating base material used for a semiconductor device, an aluminum oxide-based ceramic (Al 2 O 3
As a main component, hereinafter referred to as alumina), an aluminum nitride-based ceramic (a ceramic containing AlN as a main component, hereinafter referred to as aluminum nitride), a silicon nitride-based ceramic (a ceramic mainly containing Si 3 N 4 as a main component, hereinafter) Ceramics such as silicon nitride) are used. When a semiconductor element is mounted on these ceramic substrates, a metallized circuit mainly containing tungsten (W) or molybdenum (Mo) or a circuit mainly containing copper (Cu) is formed on the ceramic substrate. A laminate of these has been used as a circuit board for a semiconductor IC.

【0003】絶縁基材となる上記のセラミックは電気絶
縁性及び機械強度に優れており、且つ高い熱伝導率を有
している。その中でも窒化アルミニウムや窒化ケイ素は
高い熱伝導率を有しており、市販のもので窒化ケイ素が
60W/mK程度、及び窒化アルミニウムが170W/
mK程度である。また、窒化アルミニウムは室温から銀
ろう付け温度(約800℃)までの平均熱膨張率が5.
5×10-6/℃と小さいため、Si半導体素子(熱膨張
率4.0×10-6/℃)との接合時の整合性は良い。ま
た、窒化ケイ素は窒化アルミニウムに比べて熱伝導率は
低いが、その熱膨張係数が窒化アルミニウムのそれとほ
ぼ同程度であるため、最近では基材の厚みを薄くするこ
とによって熱抵抗を抑え、回路基板用の基材として利用
され始めている。
[0003] The above-mentioned ceramics used as an insulating base material are excellent in electrical insulation and mechanical strength, and have high thermal conductivity. Among them, aluminum nitride and silicon nitride have high thermal conductivity, and commercially available silicon nitride is about 60 W / mK, and aluminum nitride is about 170 W / mK.
It is about mK. Aluminum nitride has an average coefficient of thermal expansion from room temperature to silver brazing temperature (about 800 ° C.) of 5.
Since it is as small as 5 × 10 −6 / ° C., the matching at the time of bonding with a Si semiconductor element (thermal expansion coefficient 4.0 × 10 −6 / ° C.) is good. Also, silicon nitride has a lower thermal conductivity than aluminum nitride, but its thermal expansion coefficient is almost the same as that of aluminum nitride. It has begun to be used as a substrate for substrates.

【0004】しかしながら、窒化アルミニウムを含め、
一般に絶縁基材として用いられるセラミックの熱膨張係
数は、接合すべき導体回路に比べて小さい。特に銅(熱
膨張係数16.7×10-6/℃)やアルミニウム(熱膨
張係数23.1×10-6/℃)を主成分とする導体回路
をセラミック基材上に形成する場合には、両者の整合性
が悪いため、導体回路の接合組み込み実装段階及び実際
に使用される実用段階で生じる接合界面での熱応力によ
り、セラミック基材が破損又は変形し易い。このため従
来から、それらの接合は間に種々の熱応力緩和のための
介在層を介挿して行われてきた。
[0004] However, including aluminum nitride,
In general, the coefficient of thermal expansion of ceramic used as an insulating base material is smaller than that of a conductor circuit to be joined. Particularly when a conductor circuit mainly composed of copper (coefficient of thermal expansion 16.7 × 10 −6 / ° C.) or aluminum (coefficient of thermal expansion 23.1 × 10 −6 / ° C.) is formed on a ceramic substrate. Since the matching between the two is poor, the ceramic substrate is easily damaged or deformed by the thermal stress at the bonding interface generated in the bonding and mounting stage of the conductor circuit and the practical stage of actual use. For this reason, conventionally, such joining has been performed with an intervening layer for relaxing various thermal stresses interposed therebetween.

【0005】一般に、窒化物セラミックと金属との接合
に関しては、両者の間に種々の介在層を形成して接合し
た事例が知られている。例えば、特公平2−34908
号公報には、セラミック側から順に低弾性率金属及び/
又は展延性を有する金属からなる層、脆性材料層、低熱
膨張率材料層を介在させた接合構造が記載されている。
しかし、この種の多層介在層による接合は、接合層での
熱伝導率を低下させ易く、窒化アルミニウム等の放熱基
板への適応には実用上限界がある。
[0005] Regarding the bonding between a nitride ceramic and a metal, it is generally known that various intervening layers are formed between the two to form a bonding. For example, Japanese Patent Publication 2-34908
In the publication, low-modulus metals and / or
Alternatively, there is described a bonding structure in which a layer made of a spreadable metal, a brittle material layer, and a low thermal expansion material layer are interposed.
However, this type of bonding with a multilayered intervening layer tends to lower the thermal conductivity of the bonding layer, and there is a practical limit to adaptation to a heat dissipation substrate such as aluminum nitride.

【0006】そこで通常は、窒化アルミニウム基材とリ
ードフレームや外囲器等の金属部材とを接合する場合、
窒化アルミニウム基材の表面にW、Mo等のメタライズ
層を設け、これを介して銀ロウ付けによって金属部材の
接合を行ってきた。例えば、特開昭63−289950
号公報に記載されるように、窒化アルミニウム基材上の
Wメタライズ層に高熱伝導で且つ熱緩衝性の高い無酸素
銅のリードフレームを銀ロウ付けし、場合によっては窒
化アルミニウム基材上のWメタライズ層と無酸素銅リー
ドフレームに濡れ性を改善するためのNi層を形成し
て、これらを銀ロウ付けにより接合している。
Therefore, usually, when joining an aluminum nitride base material to a metal member such as a lead frame or an envelope,
A metallized layer of W, Mo, or the like is provided on the surface of the aluminum nitride base material, and the metal members have been joined by silver brazing through the metallized layer. For example, JP-A-63-289950
As described in the publication, a lead frame made of oxygen-free copper having high thermal conductivity and high thermal buffering properties is silver-brazed on the W metallized layer on the aluminum nitride substrate, A Ni layer for improving the wettability is formed on the metallized layer and the oxygen-free copper lead frame, and these are joined by silver brazing.

【0007】しかしながら、銀ロウ層を介して銅系の部
材を窒化アルミニウム基板に接合する場合には、銀ロウ
と窒化アルミニウムとの熱膨張差によるロウ付時の熱応
力作用が大きいため、冷却後に窒化アルミニウム基板に
割れや反り等の破損変形が生じ易い。従って、銀リッチ
でより軟質の特殊で高価な銀ロウ材を用いて冷却時の応
力を低下させたり、銀ロウ層をより薄くするために少量
領域での厳密なコントロールが必要になるという問題が
ある。
However, when a copper-based member is joined to an aluminum nitride substrate via a silver brazing layer, a thermal stress effect at the time of brazing due to a difference in thermal expansion between the silver brazing and the aluminum nitride is large. The aluminum nitride substrate is liable to be damaged or deformed such as cracking or warping. Therefore, there is a problem that the stress at the time of cooling is reduced by using a special and expensive silver brazing material that is richer and richer in silver, and strict control in a small area is required to make the silver brazing layer thinner. is there.

【0008】このため、銀ロウ等のロウ材層を介在させ
ずに、導体の金属部材を窒化アルミニウム基材に接合す
る種々の方法が検討されてきた。その1つに、Wメタラ
イズ層やロウ材層を介することなく、金属部材の銅と窒
化アルミニウム基材とを直接接合する方法として、いわ
ゆるDBC(ダイレクトボンディングカッパー)法があ
る。
For this reason, various methods for joining a metal member of a conductor to an aluminum nitride base material without interposing a brazing material layer such as silver brazing have been studied. As one of the methods, there is a so-called DBC (direct bonding copper) method as a method for directly joining copper of a metal member and an aluminum nitride base material without interposing a W metallization layer or a brazing material layer.

【0009】例えば、特開昭59−40404号公報に
は、窒化アルミニウム表面にその焼結体の焼結助剤であ
るアルミニウム、希土類元素、アルカリ土類元素の酸化
物からなる結合層又は単に窒化アルミニウム自体の酸化
層を形成し、少量の同種酸化物結合剤(酸素のみの場合
を含む)を含むか又は予めこれらの層を表面に形成した
金属被接合材を用意し、窒化アルミニウム上の上記結合
層と金属被接合材の上記結合層の親和性を利用して両者
を直接接合する方法が開示されている。具体的には、金
属が銅である場合には表面の銅酸化物を利用し、銅の融
点以下で且つ銅酸化物と銅の共晶温度以上の温度範囲で
熱処理を行って、表面に酸化層を形成した窒化アルミニ
ウムと接合している。
For example, JP-A-59-40404 discloses a bonding layer formed of an oxide of aluminum, a rare earth element, or an alkaline earth element, which is a sintering aid for a sintered body, or simply nitrided on an aluminum nitride surface. Prepare a metal work piece which forms an oxide layer of aluminum itself and contains a small amount of the same kind of oxide binder (including the case of only oxygen) or has these layers formed on the surface in advance, There is disclosed a method of directly joining a bonding layer and a metal-joined material by utilizing the affinity of the bonding layer. Specifically, when the metal is copper, the surface is oxidized by using copper oxide on the surface and performing heat treatment at a temperature not higher than the melting point of copper and not lower than the eutectic temperature of copper oxide and copper. It is bonded to the aluminum nitride on which the layer is formed.

【0010】また、類似の方法が特開昭60−3234
3号公報にも開示されており、同公報には窒化アルミニ
ウム基材と銅放熱板との間に薄い活性金属(Ti、Z
r、Hfなど)を含む銅合金共晶層を介在させる接合法
が紹介されている。更に、「エレクトロニクスセラミッ
クス」1988年11月号の第17〜21頁には、DB
C法が報告されている。これによると、まず窒化アルミ
ニウム基材表面に数μmまでの薄い酸化アルミニウム層
を形成し、これにCu2O−Cu共晶層を介して銅との
接合を行っている。
A similar method is disclosed in Japanese Patent Laid-Open No. 60-3234.
No. 3 discloses a thin active metal (Ti, Z) between an aluminum nitride base material and a copper radiator plate.
(R, Hf, etc.) is introduced. Further, "Electronic Ceramics", November 1988, pages 17-21, DB
Method C has been reported. According to this, first, a thin aluminum oxide layer having a thickness of up to several μm is formed on the surface of an aluminum nitride base material, and is bonded to copper via a Cu 2 O—Cu eutectic layer.

【0011】しかし、以上のような銅酸化物と銅との共
晶域を利用して銅とセラミックを接合する方法は、上記
報文「エレクトロニクスセラミックス」中の図4に記載
のように、セラミック上の酸化物層の厚みを狭い範囲で
コントロールしない限り、接合強度のバラツキが大きく
なり易い。更に、酸化雰囲気を接合界面に導入するため
銅板の接合界面に溝を形成する必要があり、セラミック
基材と銅板の間に空間が生じるという問題がある。ま
た、活性金属ロウ材を用いて接合する際に位置ずれが起
こったり、回路形成時のエッチング時にエッチング液が
周りこむことによって、セラミック基材と銅板の間に空
間が生じていた。
However, the above-described method of joining copper and ceramic using the eutectic region of copper oxide and copper is disclosed in FIG. Unless the thickness of the upper oxide layer is controlled in a narrow range, the variation in bonding strength tends to increase. Further, since an oxidizing atmosphere is introduced into the bonding interface, it is necessary to form a groove in the bonding interface of the copper plate, and there is a problem that a space is generated between the ceramic base material and the copper plate. In addition, a space is generated between the ceramic base material and the copper plate due to misalignment at the time of joining using the active metal brazing material, or due to the etchant flowing around during etching at the time of circuit formation.

【0012】しかも、この銅共晶域を利用する方法で
も、基本的には、窒化アルミニウムと銅部材の間の熱膨
張率差によって、基板の割れや反り等の破損変形が生じ
易い。更に、1000℃近辺での銅−酸化銅共晶接合の
ため特殊な酸素分圧雰囲気を作る必要があるが、これに
よって銅部材表面が酸化されるため、銅部材に更に半田
接合を行う際には表面を研磨する等の余分の手間がかか
る。また、銅部材を窒化アルミニウム基材に実装する場
合、その非実装部を設ける際の位置決め及び実装する溶
融部との境目の形成が面倒で、これを再現性よく行うこ
とが極めて難しいという問題もある。
In addition, even in the method utilizing the copper eutectic region, basically, the substrate tends to be easily damaged or deformed, such as cracking or warping, due to the difference in the coefficient of thermal expansion between the aluminum nitride and the copper member. Furthermore, it is necessary to create a special oxygen partial pressure atmosphere for copper-copper oxide eutectic bonding at around 1000 ° C., but this oxidizes the copper member surface. Requires extra work such as polishing the surface. In addition, when a copper member is mounted on an aluminum nitride base material, positioning at the time of providing the non-mounting portion and formation of a boundary with a fusion portion to be mounted are troublesome, and it is extremely difficult to perform this with good reproducibility. is there.

【0013】一方、特許第2112778号には、活性
金属を含むロウ材を金属箔や金属板より0.05〜0.2
5mm大きくした、熱サイクルに強いパワーモジュール
用基板が紹介されている。その実施例には、アルミナ基
材と銅板回路の間に少量のTiを添加した活性銀ロウを
挟み、真空雰囲気中にて850℃で圧接したパワーモジ
ュール用基板が記載されており、この基板に−40℃×
30分と+125℃×30分の熱サイクルを負荷したと
ころ、200サイクルでアルミナ基材にヘアークラック
が生じたとの記載がある。
[0013] On the other hand, Japanese Patent No. 21112778 discloses that a brazing material containing an active metal is formed from a metal foil or a metal plate by 0.05 to 0.2.
A power module substrate that is 5 mm larger and resistant to thermal cycles is introduced. This example describes a power module substrate pressed at 850 ° C. in a vacuum atmosphere with an active silver braze containing a small amount of Ti interposed between an alumina substrate and a copper plate circuit. -40 ° C x
There is a description that when a heat cycle was applied for 30 minutes and at + 125 ° C. for 30 minutes, hair cracks occurred on the alumina base material in 200 cycles.

【0014】また、特開平9−275165号公報に
は、接合層の外周端縁がその上の導体層より外側に配置
されたパワーモジュールが開示されている。その実施例
によると、窒化アルミニウム基材に銀ロウを挟んで銅箔
回路を圧接し、更に銅箔回路に無電解ニッケルメッキを
行った例が記載され、これに−40℃×30分と+12
5℃×30分の熱サイクルを負荷したところ、1000
サイクルまでは問題なく耐えたとの記述がある。また、
同公報には、銀ロウ材に活性金属を添加し、更に銀ロウ
と導体層との間に両者の中間の熱膨張係数を持つ金属を
介挿するのが望ましいとも記載されている。
Japanese Patent Application Laid-Open No. 9-275165 discloses a power module in which an outer peripheral edge of a bonding layer is disposed outside a conductor layer thereon. According to the embodiment, there is described an example in which a copper foil circuit is pressed against an aluminum nitride base material with a silver brazing sandwiched therebetween, and further, the copper foil circuit is subjected to electroless nickel plating.
When a thermal cycle of 5 ° C. × 30 minutes was applied, 1000
There is a statement that it endured without any problems up to the cycle. Also,
The publication also states that it is desirable to add an active metal to the silver brazing material and to insert a metal having a thermal expansion coefficient intermediate between the silver brazing material and the conductor layer.

【0015】しかし、以上の例のように一般的な銀ロウ
材や活性金属を添加した銀ロウは、その接合に適した温
度が700〜900℃と高温であり、接合後の冷却過程
でセラミック基材とロウ材との間又は介挿される金属と
セラミック基材との間の温度差が大きくなる。このた
め、接合界面のセラミック基材側に大きな熱応力がかか
り、界面付近でセラミック基材に損傷が生じ易いと言う
問題がある。また、接合温度が高温になれば、それだけ
エネルギーコストがかさみ不経済である。
However, as described in the above example, a general silver brazing material or a silver brazing material to which an active metal is added has a high temperature suitable for bonding of 700 to 900 ° C. The temperature difference between the substrate and the brazing material or between the interposed metal and the ceramic substrate increases. Therefore, there is a problem that a large thermal stress is applied to the ceramic substrate side of the joining interface, and the ceramic substrate is likely to be damaged near the interface. Also, the higher the joining temperature, the higher the energy cost and the more uneconomical.

【0016】[0016]

【発明が解決しようとする課題】本発明者らは、窒化ア
ルミニウム又は窒化ケイ素を主成分とするセラミック基
材に金属部材を高い信頼性で実装するため、セラミック
基材上に銅又はアルミニウムを主体とする銅体層を形成
するに当たり、上記した従来の方法に検討を加え、セラ
ミック基材の破損変形を防止すると共に、ロウ付け時及
び実装時の材料費や加工費の増加を回避し、両者を高強
度で接合する技術について研究を重ねてきた。
SUMMARY OF THE INVENTION In order to mount a metal member on a ceramic substrate containing aluminum nitride or silicon nitride as a main component with high reliability, the present inventors have made copper or aluminum mainly on the ceramic substrate. In forming the copper body layer, the above-described conventional method was examined to prevent breakage and deformation of the ceramic base material, to avoid an increase in material and processing costs during brazing and mounting, We have been studying the technology to join steel with high strength.

【0017】その結果、本発明者らは、既に特願平10
−66370号にて、セラミック基材上にまず高融点金
属層を設け、Cu、Ni、Feのような金属からなる介
在層を介してCuの導体層を接続する提案を行った。こ
れにより、従来方法の欠点であったセラミック基材の破
損変形や接合強度のバラツキ等を相当抑制できることが
分かった。
As a result, the present inventors have found that Japanese Patent Application No.
In -66370, a proposal was made to first provide a high-melting-point metal layer on a ceramic substrate and connect a Cu conductor layer via an intervening layer made of a metal such as Cu, Ni, or Fe. As a result, it has been found that breakage and deformation of the ceramic substrate and variations in bonding strength, which are disadvantages of the conventional method, can be considerably suppressed.

【0018】また、これに加えて、導体層の長さ及び幅
を金属介在層のそれよりも0.05mm以上小さくする
ことも提案した。これにより、導体層とセラミック基材
との間に放電現象が生じるのを避けると共に、導体層か
らセラミック基材にかかる応力の集中箇所と金属介在層
からセラミック基材にかかる応力の集中箇所とを分離す
ることができるため、セラミック基材が受ける応力を分
散して破損変形を更に抑えることができた。
[0018] In addition, it has been proposed that the length and width of the conductor layer be smaller than that of the metal intervening layer by 0.05 mm or more. This avoids the occurrence of a discharge phenomenon between the conductor layer and the ceramic substrate, and reduces the concentration of stress applied to the ceramic substrate from the conductor layer and the concentration of stress applied to the ceramic substrate from the metal intervening layer. Since the ceramic substrate can be separated, the stress applied to the ceramic base material is dispersed, so that breakage and deformation can be further suppressed.

【0019】しかしながら、最も使用環境が過酷で基板
サイズが大きく、工作機械や電気自動車、電鉄等の用途
に使われている高出力のハイパワーモジュールにおいて
は、従来の接合構造では応力緩和が必ずしも十分でない
ため、更に冷熱サイクルにおいても接合の信頼性の高い
半導体装置用部材が要望されている。
However, in a high-power high-power module used in applications such as machine tools, electric vehicles, electric railways and the like, where the use environment is the harshest and the substrate size is large, stress relaxation is not always sufficient with the conventional joint structure. Therefore, there is a demand for a semiconductor device member having high bonding reliability even in a thermal cycle.

【0020】本発明は、セラミック基板上に導体層と半
導体素子を接合した接続構造について、導体層及び半導
体素子の接合を従来より一層低温下で行うことができ、
コストダウンが可能であると共にセラミック基板の破損
変形をなくし、更には接合強度が高く且つそのバラツキ
が格段に小さく、冷熱サイクルにおける耐久信頼性の高
いセラミック基板と半導体素子の接合体を提供すること
を目的とする。
According to the present invention, in a connection structure in which a conductor layer and a semiconductor element are joined on a ceramic substrate, the joining of the conductor layer and the semiconductor element can be performed at a lower temperature than before.
An object of the present invention is to provide a bonded body of a ceramic substrate and a semiconductor element which can reduce costs, eliminate breakage and deformation of a ceramic substrate, further have high bonding strength and extremely small variation, and have high durability and reliability in a thermal cycle. Aim.

【0021】[0021]

【課題を解決するための手段】本発明が提供するセラミ
ック基板と半導体素子の接合体は、セラミック基板上に
金属介在層を備え、該金属介在層上に融点が200〜6
60℃のロウ材により導体層が接合され、該導体層上に
融点が200℃未満のロウ材により半導体素子が接合さ
れていることを特徴とする。
According to the present invention, there is provided a bonded body of a ceramic substrate and a semiconductor element provided with a metal intervening layer on a ceramic substrate, and having a melting point of 200 to 6 on the metal intervening layer.
A conductor layer is joined by a brazing material at 60 ° C., and a semiconductor element is joined to the conductor layer by a brazing material having a melting point of less than 200 ° C.

【0022】このセラミック基板と半導体素子の接合体
においては、前記導体層が銅又は銅合金若しくはアルミ
ニウム又はアルミニウム合金からなること、また、前記
金属介在層がタングステン、モリブデン、ニッケル、
金、銅、銀、チタンから選ばれた少なくとも1種の金属
を含むことが好ましい。また、前記金属介在層と導体層
の接合界面において、金属介在層の端部外周縁が全周に
わたり導体層の端部外周縁から0.05mm以上外側に
存在することが好ましい。
In the joined body of the ceramic substrate and the semiconductor element, the conductor layer is made of copper, a copper alloy, aluminum or an aluminum alloy, and the metal intervening layer is made of tungsten, molybdenum, nickel,
It is preferable to include at least one metal selected from gold, copper, silver, and titanium. Further, it is preferable that the outer peripheral edge of the end portion of the metal intervening layer exists at least 0.05 mm outside the outer peripheral edge of the end portion of the conductor layer over the entire periphery at the joint interface between the intervening metal layer and the conductor layer.

【0023】上記本発明のセラミック基板と導体層の接
合体の製造方法は、セラミック基板上に金属介在層を積
層して形成し、該金属介在層上に融点が200〜660
℃のロウ材を用いて導体層を接合した後、該導体層上に
融点が200℃未満のロウ材を用いて半導体素子を接合
することを特徴とする。
In the method for manufacturing a joined body of a ceramic substrate and a conductor layer according to the present invention, a metal intervening layer is formed by laminating on a ceramic substrate, and a melting point of 200 to 660 is formed on the metal intervening layer.
The method is characterized in that after joining the conductor layer using a brazing material at a temperature of ° C, a semiconductor element is joined onto the conductor layer using a brazing material having a melting point of less than 200 ° C.

【0024】[0024]

【発明実施の形態】基板材料として用いるセラミック焼
結体は、通常知られているY23等の希土類元素化合
物、CaO等のアルカリ土類元素化合物、及び/又はそ
の両方を添加したもの、及び必要に応じてTiNのよう
な遷移元素化合物等の各種添加成分の含まれたものでよ
く、中でも窒化アルミニウム又は窒化ケイ素を主成分と
するセラミックが好ましい。セラミック焼結体の相対密
度は95%以上が好ましく、98%以上が更に好まし
い。相対密度が95%未満では焼結体の強度が落ち、製
品として用いたとき耐ヒートサイクル性あるいは熱衝撃
に対する信頼性が低下することがあるからである。尚、
セラミック基板の金属介在層形成面には予め酸素を含む
薄層が形成されているものであってもよく、更には例え
ばAl、Si、希土類元素、アルカリ土類元素等を含む
ものであってもよい。
BEST MODE FOR CARRYING OUT THE INVENTION A ceramic sintered body used as a substrate material is obtained by adding a generally known rare earth element compound such as Y 2 O 3 , an alkaline earth element compound such as CaO, and / or both. It may contain various additional components such as a transition element compound such as TiN as necessary, and among them, a ceramic mainly containing aluminum nitride or silicon nitride is preferable. The relative density of the ceramic sintered body is preferably at least 95%, more preferably at least 98%. If the relative density is less than 95%, the strength of the sintered body decreases, and when used as a product, heat cycle resistance or reliability against thermal shock may be reduced. still,
A thin layer containing oxygen may be formed in advance on the metal intervening layer forming surface of the ceramic substrate, and further, for example, a layer containing Al, Si, a rare earth element, an alkaline earth element, etc. Good.

【0025】セラミック基板上に形成する金属介在層の
主成分は、W、Mo、Ni、Ti、Cu、Ag、Au等
の金属である。これらの金属の少なくとも1種を含む金
属介在層には、セラミック基板との接合性を改善するた
め、セラミック焼結体中に添加される上記の希土類元
素、アルカリ土類元素、Si、Al並びにその他の遷移
元素を含むガラスフリットを含んでもよい。ただし、金
属介在層の焼付け後の成分構成は金属成分を40体積%
以上とし、前述のようなガラスフリットの量は60体積
%以下とするのが好ましい。金属成分が40体積%未満
では、金属介在層の熱伝導性が低下し易くなるためであ
る。
The main component of the metal intervening layer formed on the ceramic substrate is a metal such as W, Mo, Ni, Ti, Cu, Ag, and Au. In order to improve the bondability with the ceramic substrate, the above-mentioned rare earth element, alkaline earth element, Si, Al and other elements added to the ceramic sintered body are added to the metal intervening layer containing at least one of these metals. May be included. However, after baking of the metal intervening layer, the composition of the metal component was 40% by volume.
As described above, the amount of the glass frit as described above is preferably set to 60% by volume or less. If the content of the metal component is less than 40% by volume, the thermal conductivity of the metal intervening layer tends to decrease.

【0026】上記金属介在層は、後に詳述する方法によ
り、予めセラミック基板上に形成しておく。例えば、W
及び/又はMoの高融点金属を含む金属介在層は、その
ペーストをセラミック粉末成形体上に塗布して焼成する
コファイアメタライズ法、又はペーストをセラミック焼
結体に塗布して焼き付けるポストファイアメタライズ法
により形成する。また、Ti−Cu−Agを含む金属介
在層は、Ti、Cu、Agを含むペースト又はロウ材シ
ートを用い、高真空中で加熱焼成して形成することがで
きる。尚、金属介在層は2層以上を積層してもよい。
The metal intervening layer is previously formed on a ceramic substrate by a method described later in detail. For example, W
And / or a cofire metallizing method in which the paste is applied to a ceramic powder compact and fired, or a postfire metallizing method in which the paste is applied to a ceramic sintered body and baked. Is formed. The metal intervening layer containing Ti-Cu-Ag can be formed by using a paste or a brazing material sheet containing Ti, Cu, and Ag and heating and firing in a high vacuum. Note that two or more metal intervening layers may be stacked.

【0027】上記金属介在層を介してセラミック基板に
接合される導体層は、銅又はアルミニウムを主体とす
る。銅を主体とする導体層としては、無酸素銅、タフピ
ッチ銅等の銅単体を初め、銅モリブデン合金、銅タング
ステン合金、銅モリブデン・タングステン合金等の銅合
金、あるいは高い熱伝導度と低い熱率膨張率を兼ね備え
た銅−モリブデン−銅のようなクラッド材があげられ
る。アルミニウムを主体とする導体層としては、アルミ
ニウム単体のほか、ジュラルミン、超ジュラルミン、超
々ジュラルミン等のAl−Mg系、Al−Mn系、Al
−Mg−Si系の合金がある。また、アルミニウムと銅
の合金、例えばAl−Cu系、Al−Cu−Si系、A
l−Cu−Mg−Ni系の合金であってもよい。
The conductor layer joined to the ceramic substrate via the metal interposed layer is mainly made of copper or aluminum. Examples of the conductor layer mainly composed of copper include simple copper such as oxygen-free copper and tough pitch copper, as well as copper alloys such as copper molybdenum alloy, copper tungsten alloy, copper molybdenum / tungsten alloy, or high thermal conductivity and low heat conductivity. A clad material having a coefficient of expansion such as copper-molybdenum-copper can be used. Examples of the conductor layer mainly composed of aluminum include, in addition to aluminum simple substance, Al-Mg-based, Al-Mn-based, Al-Mn-based,
-There is an Mg-Si based alloy. Also, alloys of aluminum and copper, for example, Al-Cu based, Al-Cu-Si based, A
It may be an l-Cu-Mg-Ni-based alloy.

【0028】また、これらの導体層上には、必要に応じ
て、例えばコバール等のFe−Ni−Co系合金、42
アロイ等のFe−Ni系合金、Ni又はNi系合金、C
u又はCu系合金、並びにW、Mo又はMo系合金等か
らなり、半導体装置用部材としてセラミック基板の外囲
に配設される金属部材が、直接又は間接に接合されてい
てもよい。
If necessary, an Fe—Ni—Co alloy such as Kovar, 42
Fe-Ni alloys such as alloys, Ni or Ni alloys, C
A metal member made of u or Cu-based alloy, W, Mo or Mo-based alloy, and disposed around the ceramic substrate as a semiconductor device member may be directly or indirectly joined.

【0029】これらの導体層を金属介在層を介してセラ
ミック基板に接合するロウ材は、200℃以上660℃
以下の融点を有することが必要である。かかる融点を有
するロウ材を用いることにより、導体層を700℃以下
の低い温度で接合することができるので、接合時にセラ
ミック基板が受ける熱応力を低減させ、十分な強度でバ
ラツキのない接合を得ることができる。また、このロウ
材層の厚みは2〜200μmとするのが好ましく、2〜
100μmが更に好ましい。ロウ材層の厚みが2μm未
満になると接合部の不均一によりロウ隙を生じてしま
い、200μmを越えるとロウ材自身とセラミック基板
の熱膨張係数の差異により生じる熱応力が無視できなく
なるからである。
The brazing material for joining these conductor layers to the ceramic substrate via the metal intervening layer is 200 ° C. or more and 660 ° C.
It is necessary to have the following melting point. By using a brazing material having such a melting point, the conductor layer can be joined at a low temperature of 700 ° C. or less, so that the thermal stress applied to the ceramic substrate during joining can be reduced, and a joint having sufficient strength and no variation can be obtained. be able to. The thickness of the brazing material layer is preferably 2 to 200 μm,
100 μm is more preferred. When the thickness of the brazing material layer is less than 2 μm, a gap is generated due to non-uniformity of the joint, and when the thickness exceeds 200 μm, the thermal stress caused by the difference in the thermal expansion coefficient between the brazing material itself and the ceramic substrate cannot be ignored. .

【0030】また、導体層と半導体素子を接合するロウ
材は、200℃未満の融点を有することが必要である。
融点200℃未満のロウ材を用いることにより、セラミ
ック基板と導体層を接合したロウ材の融点よりも低い温
度で半導体素子を接合することができ、セラミック基板
と導体層との接合特性を保持できる。このロウ材層の厚
みも、上記と同様の理由により、2〜200μmとする
のが好ましく、2〜100μmが更に好ましい。尚、導
体層上に接合される半導体素子には、特に制約はない。
Also, the brazing material for joining the conductor layer and the semiconductor element needs to have a melting point of less than 200 ° C.
By using a brazing material having a melting point of less than 200 ° C., the semiconductor element can be joined at a temperature lower than the melting point of the brazing material joining the ceramic substrate and the conductor layer, and the joining characteristics between the ceramic substrate and the conductor layer can be maintained. . The thickness of the brazing material layer is preferably 2 to 200 μm, more preferably 2 to 100 μm, for the same reason as described above. Note that there is no particular limitation on the semiconductor element bonded on the conductor layer.

【0031】次に、本発明のセラミック基板と半導体素
子の接合体の製造方法を説明する。まず、前記したセラ
ミック基板に金属介在層を形成する。W及び/又はMo
を含む金属介在層の方法のうち、ポストファイアメタラ
イズ法では、予めセラミック基板となる焼結体を用意
し、その表面に必要により前述の表面処理(酸素含有薄
層の形成等)を行い、これにW及び/又はMoを含むペ
ーストを印刷等により塗布した後、焼成してペーストを
焼き付ける。ペーストは金属単体又はこれらの混合物、
更にはこれに前記ガラスフリットを含ませ、これらに有
機バインダーと有機溶媒(バインダー粘度調整剤)を混
練して作製する。塗布されたペーストの厚みは、5〜6
0μmの範囲が好ましい。この厚みが5μm未満では厚
みむらにより空孔が生じやすく、60μmを越えると印
刷後の乾燥割れを生じたり、金属介在層そのものの熱膨
張係数の大きさに起因する熱応力が無視できなくなり、
耐ヒートサイクル性が低下するからである。
Next, a method for manufacturing a joined body of a ceramic substrate and a semiconductor element according to the present invention will be described. First, a metal intervening layer is formed on the above-mentioned ceramic substrate. W and / or Mo
In the method of forming a metal interposed layer containing, in the postfire metallization method, a sintered body to be a ceramic substrate is prepared in advance, and the surface is subjected to the above-described surface treatment (formation of an oxygen-containing thin layer or the like) as necessary. Is coated with a paste containing W and / or Mo by printing or the like, and then baked to bake the paste. Paste is a simple metal or a mixture of these,
Further, the above-mentioned glass frit is added to the mixture, and an organic binder and an organic solvent (binder viscosity modifier) are kneaded with the glass frit. The thickness of the applied paste is 5-6
A range of 0 μm is preferred. If the thickness is less than 5 μm, pores are likely to be generated due to uneven thickness, and if it exceeds 60 μm, dry cracks may occur after printing, or thermal stress caused by the magnitude of the thermal expansion coefficient of the metal intervening layer itself cannot be ignored,
This is because heat cycle resistance is reduced.

【0032】W及び/又はMoを含む金属介在層をコフ
ァイアメタライズ法により形成する場合には、所定の組
成に配合したセラミック原料粉末に成形用有機バインダ
ーを加え、これを成形した成形体に上記と同様にW及び
/又はMoを含むペーストを塗布し、成形体の焼結と同
時にペーストを焼き付ける。このコファイアメタライズ
法の場合には、ペースト中の高融点金属粒子は可能な限
り微粒を用い、セラミック原料粉末の焼結促進のための
添加剤についても低温で液相を作るものを選ぶことによ
って、より低温で同時焼結できるようにすること、また
双方の収縮率も同程度にするように工夫し、焼結時のセ
ラミック基板の変形を防止することが重要である。ま
た、低温で焼結させることにより、セラミック基板の結
晶粒子が微細になり、基板強度が上がることも期待され
る。
When the metal intervening layer containing W and / or Mo is formed by the cofire metallization method, an organic binder for molding is added to a ceramic raw material powder having a predetermined composition, and the above-described molded body is molded. A paste containing W and / or Mo is applied in the same manner as described above, and the paste is baked simultaneously with the sintering of the molded body. In the case of this co-firing metallization method, the refractory metal particles in the paste should be as fine as possible, and the additives for promoting sintering of the ceramic raw material powder should be selected so as to produce a liquid phase at a low temperature. It is important to simultaneously sinter at a lower temperature, and to make the contraction ratios of both the same to prevent deformation of the ceramic substrate during sintering. Further, by sintering at a low temperature, it is expected that the crystal grains of the ceramic substrate become finer and the substrate strength is increased.

【0033】また、Ti、Cu、Agを含む金属介在層
の形成は、これらの活性金属粉末に有機バインダーを混
ぜたペーストをセラミック基板に印刷するか、又はこれ
らの活性金属のロウ材シートをセラミック基板に載せ、
高真空中にて600〜900℃で焼付ける。尚、このT
i−Cu−Ag組成のロウ材やペーストを用いて、セラ
ミック基板に銅板やアルミニウム板を直接接合すること
もできるが、接合温度が700〜900℃と高くなり、
熱応力が大きくなるため、耐ヒートサイクル性等におい
て信頼性が低下するので好ましくない。
The formation of the metal intervening layer containing Ti, Cu and Ag can be performed by printing a paste obtained by mixing an organic binder with these active metal powders on a ceramic substrate, or by forming a sheet of brazing material of these active metals on a ceramic substrate. Put on the board,
Bake at 600-900 ° C in high vacuum. In addition, this T
A copper plate or an aluminum plate can be directly bonded to a ceramic substrate using a brazing material or paste having an i-Cu-Ag composition, but the bonding temperature increases to 700 to 900 ° C.
Since thermal stress increases, reliability in heat cycle resistance and the like decreases, which is not preferable.

【0034】更に別の金属介在層の形成方法として、A
g又はAg−Pdにガラスフリットを添加したペースト
をセラミック基板上に塗布し、1000℃以下の温度で
焼き付ける方法もある。しかしながら、この方法では十
分な接合強度が得られないことが多いため、上記2つの
方法のいずれかを採用するのが好ましい。
As another method of forming the metal intervening layer, A
There is also a method of applying a paste obtained by adding a glass frit to g or Ag-Pd on a ceramic substrate and baking at a temperature of 1000 ° C. or less. However, this method often does not provide sufficient bonding strength, and it is preferable to employ either of the above two methods.

【0035】以上のように金属介在層をセラミック基板
表面に形成した後、そのまま金属介在層上に導体層のロ
ウ付けを行うか、若しくは濡れ性改善のためにNi系、
Cu系、Au系のメッキ層を施してからロウ付けを行
う。特にAl又はAl合金の導体層の接合を行う場合、
Ni及び/又はAuのメッキ層を形成することにより、
ロウ材との濡れ性が改善され、接合の均一性が向上する
ので好ましい。また、必要に応じて、メッキ層として異
種の2層以上を積層形成することもできる。例えば、そ
の代表例であるNi−P組成を有するメッキ層を施す場
合、金属介在層表面に予めNi−B組成を有するメッキ
層を形成した後、その上にNi−P組成のメッキ層を形
成することができる。尚、メッキ層の形成は、電解メッ
キ又は無電解メッキのいずれでもよく、メッキの他にも
印刷法や蒸着法等の方法を採用することもできる。この
ようにして形成したメッキ層は、非酸化性雰囲気中で焼
成することが好ましい。
After the metal intervening layer is formed on the surface of the ceramic substrate as described above, the conductor layer is brazed on the metal intervening layer as it is, or a Ni-based or
After applying a Cu-based or Au-based plating layer, brazing is performed. In particular, when joining a conductor layer of Al or Al alloy,
By forming a plating layer of Ni and / or Au,
It is preferable because the wettability with the brazing material is improved and the uniformity of the bonding is improved. Further, if necessary, two or more different types of layers can be laminated as a plating layer. For example, when a plating layer having a Ni-P composition, which is a typical example, is applied, a plating layer having a Ni-B composition is formed in advance on the surface of the metal intervening layer, and a plating layer having a Ni-P composition is formed thereon. can do. The formation of the plating layer may be either electrolytic plating or electroless plating, and a method such as a printing method or a vapor deposition method may be employed in addition to the plating. The plating layer thus formed is preferably fired in a non-oxidizing atmosphere.

【0036】上記の金属介在層又はその上に設けたメッ
キ層上に、ロウ材を挟んで導体層を形成するための素材
と密着させ、窒素ガス及び/又は水素ガス含有雰囲気又
はアルゴンガス含有雰囲気等の非酸化性雰囲気中か又は
真空中において、ロウ材の融点以上の温度で加熱して導
体層を接合する。尚、この接合のための焼成の際に、必
要に応じて、例えば炭素質、アルミナ質、窒化アルミニ
ウム質等の耐火物を素材とする治具を用いて双方の仮固
定を行うこと、更に必要であれば、両者を積層したセッ
ト上に適当な荷重をかけてもよい。
The above metal intervening layer or the plating layer provided thereon is brought into close contact with a material for forming a conductor layer with a brazing material interposed therebetween, and an atmosphere containing a nitrogen gas and / or a hydrogen gas or an atmosphere containing an argon gas is provided. In a non-oxidizing atmosphere such as described above or in a vacuum, the conductor layers are joined by heating at a temperature higher than the melting point of the brazing material. In addition, at the time of firing for this bonding, if necessary, it is necessary to temporarily fix both of them using a jig made of a refractory material such as carbonaceous material, alumina material, aluminum nitride material, etc. Then, an appropriate load may be applied to the set in which both are laminated.

【0037】導体層の接合に用いるロウ材は、融点が2
00〜660℃のものである。導体層がCu又はCu合
金の場合は、Sn−Pb系、Ag−Cu系、Sn−Ag
系、Sn−Cu系が好ましく、Au−Sn系やAu−S
i系でもよい。具体的には、Sn−Pb系ではSn:P
b=1:9等、Ag−Cu系ではAg:Cu:Zn:C
d=45:15:16:24等、Sn−Ag系ではS
n:Ag=9:1、Sn:Ag=96.5:3.5、S
n:Ag:Cu=95.8:3.5:0.7、Sn:A
g:Bi=91.8:3.4:4.8等、Sn−Cu系で
はSn:Cu=99.3:0.7等が挙げられる。導体層
がAl又はAl合金の場合には、Al−Si系、Al−
Zn系、Sn−Zn等のロウ材が好ましい。尚、上記系
列に当てはまらなくとも、融点が200〜660℃であ
って、金属介在層と導体層又はそれらに施したメッキ層
に対して濡れ性が良好なロウ材を使用することができ
る。
The brazing material used for joining the conductor layers has a melting point of 2
It is a thing of 00-660 degreeC. When the conductor layer is Cu or Cu alloy, Sn-Pb-based, Ag-Cu-based, Sn-Ag
System, Sn-Cu system is preferable, and Au-Sn system or Au-S
i-type may be used. Specifically, in the Sn-Pb system, Sn: P
Ag: Cu: Zn: C in Ag-Cu system such as b = 1: 9
d = 45: 15: 16: 24 etc., S in Sn-Ag system
n: Ag = 9: 1, Sn: Ag = 96.5: 3.5, S
n: Ag: Cu = 95.8: 3.5: 0.7, Sn: A
g: Bi = 91.8: 3.4: 4.8 etc., and Sn: Cu = 99.3: 0.7 etc. in Sn-Cu system. When the conductor layer is made of Al or an Al alloy, Al-Si based, Al-
A brazing material such as Zn-based or Sn-Zn is preferable. Even if it does not apply to the above series, it is possible to use a brazing material having a melting point of 200 to 660 ° C. and good wettability with respect to the metal intervening layer and the conductor layer or the plating layer applied thereto.

【0038】上記のごとく導体層をセラミック基板上に
接合した後、セラミック基板に導体層を接合した上記ロ
ウ材の融点より低い融点を有するロウ材、好ましくは2
00℃未満の融点を有するロウ材を用いて半導体素子を
接合する。融点が200℃未満のロウ材を使用すること
により、導体層を接合している上記ロウ材層の融点より
低い温度で半導体素子を接合することができ、セラミッ
ク基板と導体層の間の良好な接合特性を維持することが
できる。
After the conductor layer is bonded to the ceramic substrate as described above, a brazing material having a melting point lower than the melting point of the brazing material bonded to the ceramic substrate, preferably 2.
The semiconductor element is joined using a brazing material having a melting point of less than 00 ° C. By using a brazing material having a melting point of less than 200 ° C., the semiconductor element can be joined at a temperature lower than the melting point of the brazing material layer joining the conductor layers, and a good connection between the ceramic substrate and the conductor layer can be obtained. Bonding characteristics can be maintained.

【0039】導体層と半導体チップを接合するロウ材と
しては、導体層がCu又はCu合金なら、Sn−Pb
系、Sn−Bi系、Sn−Zn系、In系、Bi系のロ
ウ材が好ましい。具体的には、Sn−Pb系ではSn:
Pb=6:4、Sn:Pb:Ag=62:36:2、S
n:Pb:Bi=43:43:14等、Sn−Bi系で
はSn:Bi=42:58等、Sn−Zn系ではSn:
Zn=91:9、Sn:Zn:Bi=89:8:3等、
In系ではIn100%、In:Sn=1:1、In:
Ag:Pb=60:2.5:37.5等、Bi系ではB
i:Pb:Sn:Cd=50:25:12.5:12.5
(ウッドメタル)、Bi:Pb:Sn=50:28:2
2(ローズメタル)、Bi:Pb:Sn=46.1:1
9.7:34.2(マロットメタル)等が挙げられる。導
体層がAl又はAl合金の場合も同じロウ材を使用でき
るが、濡れ性を改善するため導体層であるAl又はAl
合金にNiメッキやAuメッキを施してから、半導体素
子を接合するのが好ましい。尚、上記系列に当てはまら
なくとも、融点が200℃未満であって、半導体素子と
導体層又はそれらに施したメッキ層に対して濡れ性が良
好なロウ材であれば使用することができる。
As the brazing material for joining the conductor layer and the semiconductor chip, if the conductor layer is Cu or a Cu alloy, Sn-Pb
, Sn-Bi, Sn-Zn, In, and Bi-based brazing materials are preferred. Specifically, in the Sn-Pb system, Sn:
Pb = 6: 4, Sn: Pb: Ag = 62: 36: 2, S
n: Pb: Bi = 43: 43: 14 etc., Sn: Bi = 42: 58 etc. for Sn-Bi system, Sn: Sn: Zn system
Zn = 91: 9, Sn: Zn: Bi = 89: 8: 3, etc.
In the In system, In 100%, In: Sn = 1: 1, In:
Ag: Pb = 60: 2.5: 37.5 etc.
i: Pb: Sn: Cd = 50: 25: 12.5: 12.5
(Wood metal), Bi: Pb: Sn = 50: 28: 2
2 (rose metal), Bi: Pb: Sn = 46.1: 1
9.7: 34.2 (marrot metal). The same brazing material can be used when the conductor layer is Al or an Al alloy, but the conductor layer Al or Al
It is preferable to bond the semiconductor element after performing Ni plating or Au plating on the alloy. Even if it does not apply to the above series, any brazing material having a melting point of less than 200 ° C. and good wettability with respect to the semiconductor element and the conductor layer or the plating layer applied thereto can be used.

【0040】また、この半導体素子と導体層とセラミッ
クの接合体をAl、Mo、Al−SiC、Cu−Mo、
Cu−W等のヒートシンクベースやパッケージ中に組込
む際には、上記半導体素子を接合するのに用いたロウ材
の中から選ばれた2種以上のロウ材のうち、より高融点
のロウ材で半導体素子を接合し、より低融点のロウ材で
ヒートシンクベースやパッケージに接合することもでき
る。あるいは、更に軟化温度の低い例えば樹脂を用いる
か、若しくはボルト等を使用した機械的な接合を行うこ
ともできる。更に、半導体素子を接合する際に、半導体
素子を接合するロウ材を用いて同時に接合することもで
きる。
Further, the joined body of the semiconductor element, the conductor layer and the ceramic is made of Al, Mo, Al-SiC, Cu-Mo,
When assembling into a heat sink base or a package of Cu-W or the like, a brazing material having a higher melting point among two or more brazing materials selected from brazing materials used for bonding the semiconductor element. The semiconductor element can be joined and joined to a heat sink base or a package with a lower melting point brazing material. Alternatively, mechanical joining using, for example, a resin having a lower softening temperature, or using a bolt or the like can also be performed. Furthermore, when joining the semiconductor elements, the joining can be performed simultaneously using a brazing material for joining the semiconductor elements.

【0041】[0041]

【実施例】実施例1 コファイアメタライズ法に従って、以下のごとくセラミ
ック基板上に金属介在層を形成した。即ち、平均粒径
0.6μmのAlN粉末に、Y23粉末を3重量%、C
aCO3粉末をCaO換算で1重量%添加し、有機バイ
ンダーと共にエタノール中で混合した後、焼結体厚みが
0.635mmになるようにシート成形した。これを焼
結上がりで2インチ角になるように切り出し、その表面
上にWペーストを印刷した後、窒素気流中にて800℃
で脱バインダーを行い、更に1700℃にて同時焼結し
た。
EXAMPLE 1 A metal intervening layer was formed on a ceramic substrate as follows in accordance with the cofire metallization method. That is, 3% by weight of Y 2 O 3 powder was added to AlN powder having an average particle size of 0.6 μm, and C
After adding 1% by weight of aCO 3 powder in terms of CaO and mixing in ethanol with an organic binder, a sheet was formed so that the thickness of the sintered body became 0.635 mm. This is cut into 2 inch squares after sintering, and W paste is printed on the surface, and then 800 ° C. in a nitrogen stream.
To remove the binder, and simultaneously sintered at 1700 ° C.

【0042】得られたW層上に電解Niメッキを1μm
の厚みに施した後、このNiメッキ層上にSn:Pb=
1:9の半田シート(融点268℃)を挟んで導体層と
なるCu板を載せ、水素雰囲気中にて310℃で接合し
た。更に、このCu板上に電解Niメッキを厚み1μm
に施し、半導体素子をSn:Pb=6:4の半田シート
(融点183℃)を挟んで載せ、水素雰囲気中にて23
0℃で接合した。
Electrolytic Ni plating was applied on the obtained W layer to a thickness of 1 μm.
After applying a thickness of Sn: Pb =
A Cu plate serving as a conductor layer was placed with a 1: 9 solder sheet (melting point: 268 ° C.) interposed therebetween and joined at 310 ° C. in a hydrogen atmosphere. Further, electrolytic Ni plating was applied on this Cu plate to a thickness of 1 μm.
, And the semiconductor element is mounted with a Sn: Pb = 6: 4 solder sheet (melting point: 183 ° C.) interposed therebetween in an atmosphere of hydrogen.
Bonded at 0 ° C.

【0043】このようにして作製した試料10個を、−
40℃×30分〜+125℃×30分のヒートサイクル
テストに3000サイクル以上供した後、光学顕微鏡を
用いて200倍にて各接合部を観察したところ、剥離等
の欠陥は見られなかった。また、各試料について超音波
探傷分析により微小クラックやポアの発生を調査した
が、これらの存在は確認されなかった。
The ten samples thus prepared were replaced with-
After subjecting to a heat cycle test of 40 ° C. × 30 minutes to + 125 ° C. × 30 minutes or more for 3000 cycles or more, each joint was observed at 200 × using an optical microscope, and no defects such as peeling were found. In addition, the occurrence of minute cracks and pores was examined for each sample by ultrasonic flaw analysis, but the presence of these was not confirmed.

【0044】比較例1 上記実施例1と同様にして、コファイアメタライズ法に
よりAlN基板上にW層を形成した。このW層上に電解
Niメッキを1μmの厚みに施した後、Niメッキ層上
にAg:Cu=72:18のロウ材シート(融点780
℃)を挟んでCu板を載せ、水素雰囲気中にて850℃
で接合した。このCu板上に電解Niメッキを厚み1μ
mに施し、半導体素子をSn:Pb=6:4の半田シー
ト(融点183℃)を挟んで載せ、水素雰囲気中にて2
30℃で接合した。
Comparative Example 1 In the same manner as in Example 1, a W layer was formed on an AlN substrate by a cofire metallization method. After applying an electrolytic Ni plating to a thickness of 1 μm on the W layer, a brazing material sheet of Ag: Cu = 72: 18 (melting point: 780) was formed on the Ni plating layer.
℃) sandwich the Cu plate, 850 ℃ in a hydrogen atmosphere
Joined. Electrolytic Ni plating is applied on this Cu plate to a thickness of 1 μm.
m, and the semiconductor element is placed with a Sn: Pb = 6: 4 solder sheet (melting point: 183 ° C.) interposed therebetween, and placed in a hydrogen atmosphere for 2 hours.
Bonded at 30 ° C.

【0045】このようにして作製した試料10個を、実
施例1と同様のヒートサイクルテストに供したところ、
500サイクル経過時に7個に割れが発生した。そこで
残りの3個の試料について、光学顕微鏡を用いて200
倍にて各接合部を観察したところ、Cu板の端部外周縁
下のAlN基板に微小クラックが確認された。この残り
3個の試料について、更にヒートサイクルテストを続け
たところ、1000サイクルで全3個の試料に割れが発
生した。
The ten samples thus produced were subjected to the same heat cycle test as in Example 1.
After 500 cycles, seven cracks occurred. Therefore, the remaining three samples were analyzed using an optical microscope for 200 hours.
Observation of each joint at 2 × revealed microcracks on the AlN substrate under the outer peripheral edge of the Cu plate. When the heat cycle test was further continued for the remaining three samples, cracks occurred in all three samples in 1000 cycles.

【0046】実施例2 ポストファイアメタライズ法に従って、以下のごとくセ
ラミック基板上に金属介在層を形成した。即ち、平均粒
径0.6μmのAlN粉末に、Y23粉末を3重量%、
CaCO3粉末をCaO換算で1重量%添加し、有機バ
インダーと共にエタノール中で混合した後、焼結体厚み
が0.635mmになるようにシート成形した。これを
焼結上がりで2インチ角になるように切り出し、窒素気
流中にて800℃で脱バインダーを行い、更に1700
℃にて焼結した。このAlN焼結体の基板上にWペース
トを印刷し、窒素気流中にて800℃で脱バインダーを
行った後、1650℃で焼き付けた。
Example 2 An intervening metal layer was formed on a ceramic substrate as follows in accordance with the post-fire metallization method. That is, 3 wt% of Y 2 O 3 powder was added to AlN powder having an average particle size of 0.6 μm,
After adding CaCO 3 powder in an amount of 1% by weight in terms of CaO and mixing with an organic binder in ethanol, a sheet was formed so that the thickness of the sintered body became 0.635 mm. This is cut out into a 2-inch square after sintering, debindered at 800 ° C. in a nitrogen stream, and
Sintered at ℃. A W paste was printed on the substrate of the AlN sintered body, debindered at 800 ° C. in a nitrogen stream, and baked at 1650 ° C.

【0047】得られたW層上に電解Niメッキを1μm
の厚みに施した後、このNiメッキ層上にSn:Pb=
1:9の半田シート(融点268℃)を挟んで導体層と
なるCu板を載せ、水素雰囲気中にて310℃で接合し
た。更に、このCu板上に電解Niメッキを厚み1μm
に施し、半導体素子をSn:Pb=6:4の半田シート
(融点183℃)を挟んで載せ、水素雰囲気中にて23
0℃で接合した。
Electrolytic Ni plating was applied on the obtained W layer to a thickness of 1 μm.
After applying a thickness of Sn: Pb =
A Cu plate serving as a conductor layer was placed with a 1: 9 solder sheet (melting point: 268 ° C.) interposed therebetween and joined at 310 ° C. in a hydrogen atmosphere. Further, electrolytic Ni plating was applied on this Cu plate to a thickness of 1 μm.
, And the semiconductor element is mounted with a Sn: Pb = 6: 4 solder sheet (melting point: 183 ° C.) interposed therebetween in an atmosphere of hydrogen.
Bonded at 0 ° C.

【0048】このようにして作製した試料10個を、実
施例1と同様のヒートサイクルテストに3000サイク
ル以上供した後、光学顕微鏡を用いて200倍にて各接
合部を観察したところ、剥離等の欠陥は見られなかっ
た。また、各試料について超音波探傷分析により微小ク
ラックやポアの発生を調査したが、これらの存在は確認
されなかった。
After subjecting the ten samples thus prepared to the same heat cycle test as in Example 1 for 3,000 cycles or more, each joint was observed at a magnification of 200 using an optical microscope. No defects were found. In addition, the occurrence of minute cracks and pores was examined for each sample by ultrasonic flaw analysis, but the presence of these was not confirmed.

【0049】比較例2 上記実施例2と同様にして、ポストファイアメタライズ
法により、AlN基板上にW層を形成した。このW層上
に電解Niメッキを1μmの厚みに施した後、Niメッ
キ層上にAg:Cu=72:18のロウ材シート(融点
780℃)を挟んでCu板を載せ、水素雰囲気中にて8
50℃で接合した。このCu板上に電解Niメッキを厚
み1μmに施し、半導体素子をSn:Pb=6:4の半
田シート(融点183℃)を挟んで載せ、水素雰囲気中
にて230℃で接合した。
Comparative Example 2 In the same manner as in Example 2 described above, a W layer was formed on an AlN substrate by a post-fire metallization method. After applying electrolytic Ni plating to a thickness of 1 μm on the W layer, a Cu plate is placed on the Ni plating layer with a brazing material sheet of Ag: Cu = 72: 18 (melting point: 780 ° C.) sandwiched, and placed in a hydrogen atmosphere. 8
Bonded at 50 ° C. Electrolytic Ni plating was applied to the Cu plate to a thickness of 1 μm, and the semiconductor elements were mounted with a Sn: Pb = 6: 4 solder sheet (melting point: 183 ° C.) interposed therebetween and joined at 230 ° C. in a hydrogen atmosphere.

【0050】このようにして作製した試料10個を、実
施例1と同様のヒートサイクルテストに供したところ、
500サイクル経過時に8個に割れが発生した。そこで
残りの2個の試料について、光学顕微鏡を用いて200
倍にて各接合部を観察したところ、Cu板の端部外周縁
下のAlN基板に微小クラックが確認された。この残り
2個の試料について、更にヒートサイクルテストを続け
たところ、1000サイクルで全2個の試料に割れが発
生した。
The ten samples thus produced were subjected to the same heat cycle test as in Example 1.
Eight cracks occurred after 500 cycles. Then, the remaining two samples were analyzed using an optical microscope for 200 hours.
Observation of each joint at 2 × revealed microcracks on the AlN substrate under the outer peripheral edge of the Cu plate. When the heat cycle test was further continued for the remaining two samples, cracks occurred in all two samples at 1000 cycles.

【0051】実施例3 上記実施例1と同様にして、コファイアメタライズ法に
よりAlN基板上にW層を形成し、このW層上に電解N
iメッキを1μmの厚みに施した。このNiメッキ層上
に、Si:Al=12:88のロウ材シート(融点57
5℃)を挟んでAl板を載せ、水素雰囲気中にて600
℃で接合した。その後、このAl板上に電解Niメッキ
を厚み1μmに施し、半導体素子をSn:Pb=6:4
の半田シート(融点183℃)を挟んで載せ、水素雰囲
気中230℃で接合した。
Example 3 A W layer was formed on an AlN substrate by a cofire metallization method in the same manner as in Example 1 described above.
i-plating was applied to a thickness of 1 μm. On this Ni plating layer, a brazing material sheet of Si: Al = 12: 88 (melting point 57
5 ° C), place an Al plate on it, and place it in a hydrogen atmosphere for 600
Bonded at ° C. Thereafter, electrolytic Ni plating was applied to the Al plate to a thickness of 1 μm, and the semiconductor element was Sn: Pb = 6: 4.
(183 ° C. melting point), and joined at 230 ° C. in a hydrogen atmosphere.

【0052】また、上記Al板の代わりにCu板を用
い、上記Si−Al系ロウ材シートの代わりにAg:C
u;Zn:Cd=45:15:16:24のロウ材シー
ト(融点605℃)を使用して、水素雰囲気中650℃
でCu板の接合を行った以外は、上記と同様にしてAl
N基板に半導体素子を接合した。
Further, a Cu plate is used in place of the Al plate, and Ag: C is used instead of the Si—Al-based brazing material sheet.
u; 650 ° C. in a hydrogen atmosphere using a brazing material sheet (melting point 605 ° C.) of Zn: Cd = 45: 15: 16: 24.
Except that the Cu plate was joined in
The semiconductor element was bonded to the N substrate.

【0053】更に、上記Al板の代わりにCu板を用
い、Sn:Pb=1:9の半田シート(融点268℃)
を用いて310℃でCu板の接合を行ったこと、及び上
記Sn−Pb系半田シートの代わりにIn:Sn=1:
1の半田シート(融点117℃)を使用して、水素雰囲
気中180℃で半導体素子の接合を行ったこと以外は、
上記と同様にしてAlN基板に半導体素子を接合した。
Further, a Cu plate is used instead of the Al plate, and a solder sheet of Sn: Pb = 1: 9 (melting point: 268 ° C.)
And bonding of the Cu plate at 310 ° C., and In: Sn = 1: 1 instead of the Sn—Pb-based solder sheet.
Except that the semiconductor element was joined at 180 ° C. in a hydrogen atmosphere using the solder sheet 1 (melting point 117 ° C.)
The semiconductor element was joined to the AlN substrate in the same manner as described above.

【0054】このようにして作製した各試料それぞれ1
0個を、実施例1と同様のヒートサイクルテストに30
00サイクル以上供した後、光学顕微鏡を用いて200
倍にて各接合部を観察したところ、剥離等の欠陥は見ら
れなかった。また、各試料について超音波探傷分析によ
り微小クラックやポアの発生を調査したが、これらの存
在は確認されなかった。
Each of the samples thus prepared was 1
0 pieces were subjected to the same heat cycle test as in Example 1 for 30
After having been subjected to at least 00 cycles, 200
Observation of each joint at 2 × revealed no defects such as peeling. In addition, the occurrence of minute cracks and pores was examined for each sample by ultrasonic flaw analysis, but the presence of these was not confirmed.

【0055】実施例4 ポストファイアメタライズ法に従って、以下のごとくセ
ラミック基板上に金属介在層を形成した。即ち、平均粒
径0.8μmのSi34粉末に、Y23粉末を3重量
%、Al23粉末を1重量%添加し、有機バインダーと
共にエタノール中で混合した後、実施例1と同様に成形
して、窒素気流中にて800℃で脱バインダーを行い、
更に1700℃にて焼結した。このSi34焼結体の基
板上にWペーストを印刷し、1600℃で焼き付けた。
Example 4 According to the post-fire metallization method, a metal intervening layer was formed on a ceramic substrate as follows. That is, the Si 3 N 4 powder having an average particle diameter of 0.8 [mu] m, Y 2 O 3 powder 3 wt%, Al 2 O 3 powder was added 1% by weight, were mixed in ethanol together with an organic binder, examples Molded in the same manner as 1 and debindered at 800 ° C in a nitrogen stream,
Further sintering was performed at 1700 ° C. A W paste was printed on the substrate of the Si 3 N 4 sintered body and baked at 1600 ° C.

【0056】得られたW層上に電解Niメッキを1μm
の厚みに施した後、このNiメッキ層上にSn:Pb=
1:9の半田シート(融点268℃)を挟んで導体層と
なるCu板を載せ、水素雰囲気中にて310℃で接合し
た。更に、このCu板上に電解Niメッキを厚み1μm
に施し、半導体素子をSn:Pb=6:4の半田シート
(融点183℃)を挟んで載せ、水素雰囲気中にて23
0℃で接合した。
Electrolytic Ni plating was applied on the obtained W layer to a thickness of 1 μm.
After applying a thickness of Sn: Pb =
A Cu plate serving as a conductor layer was placed with a 1: 9 solder sheet (melting point: 268 ° C.) interposed therebetween and joined at 310 ° C. in a hydrogen atmosphere. Further, electrolytic Ni plating was applied on this Cu plate to a thickness of 1 μm.
, And the semiconductor element is mounted with a Sn: Pb = 6: 4 solder sheet (melting point: 183 ° C.) interposed therebetween in an atmosphere of hydrogen.
Bonded at 0 ° C.

【0057】このようにして作製した試料10個を、実
施例1と同様のヒートサイクルテストに3000サイク
ル以上供した後、光学顕微鏡を用いて200倍にて各接
合部を観察したところ、剥離等の欠陥は見られなかっ
た。また、各試料について超音波探傷分析により微小ク
ラックやポアの発生を調査したが、これらの存在は確認
されなかった。
After subjecting the ten samples thus produced to the same heat cycle test as in Example 1 for 3,000 cycles or more, each joint was observed at 200 times using an optical microscope. No defects were found. In addition, the occurrence of minute cracks and pores was examined for each sample by ultrasonic flaw analysis, but the presence of these was not confirmed.

【0058】比較例3 上記実施例4と同様にして、ポストファイアメタライズ
法により、Si34基板上にW層を形成した。このW層
上に電解Niメッキを1μmの厚みに施した後、Niメ
ッキ層上にAg:Cu=72:18のロウ材シート(融
点780℃)を挟んでCu板を載せ、水素雰囲気中にて
850℃で接合した。このCu板上に電解Niメッキを
厚み1μmに施し、半導体素子をSn:Pb=6:4の
半田シート(融点183℃)を挟んで載せ、水素雰囲気
中にて230℃で接合した。
Comparative Example 3 A W layer was formed on a Si 3 N 4 substrate by a post-fire metallization method in the same manner as in Example 4 described above. After applying electrolytic Ni plating to a thickness of 1 μm on the W layer, a Cu plate is placed on the Ni plating layer with a brazing material sheet of Ag: Cu = 72: 18 (melting point: 780 ° C.) sandwiched, and placed in a hydrogen atmosphere. At 850 ° C. Electrolytic Ni plating was applied to the Cu plate to a thickness of 1 μm, and the semiconductor elements were mounted with a Sn: Pb = 6: 4 solder sheet (melting point: 183 ° C.) interposed therebetween and joined at 230 ° C. in a hydrogen atmosphere.

【0059】このように作製した試料10個を、実施例
1と同様のヒートサイクルテストに供したところ、50
0サイクル経過時に5個に割れが発生した。そこで残り
の5個の試料について、光学顕微鏡を用いて200倍に
て各接合部を観察したところ、Cu板の端部外周縁下の
Si34基板に微小クラックが確認された。この残り5
個の試料について、更にヒートサイクルテストを続けた
ところ、1000サイクルで全5個の試料に割れが発生
した。
When 10 samples thus produced were subjected to the same heat cycle test as in Example 1, 50 samples were obtained.
Five cracks occurred after 0 cycles. When the remaining five samples were observed at 200 × magnification using an optical microscope at a magnification of × 200, microcracks were confirmed on the Si 3 N 4 substrate below the outer peripheral edge of the Cu plate. This remaining 5
When the heat cycle test was further continued for each of the samples, cracks occurred in all five samples in 1000 cycles.

【0060】実施例5 上記実施例4と同様にして、ポストファイアメタライズ
法によりSi34基板上にW層を形成し、このW層上に
電解Niメッキを1μmの厚みに施した。このNiメッ
キ層上に、Si:Al=12:88のロウ材シート(融
点575℃)を挟んでAl板を載せ、水素雰囲気中にて
600℃で接合した。その後、このAl板上に電解Ni
メッキを厚み1μmに施し、その上に半導体素子をS
n:Pb=6:4の半田シート(融点183℃)を挟ん
で載せ、水素雰囲気中230℃で接合した。
Example 5 In the same manner as in Example 4 described above, a W layer was formed on a Si 3 N 4 substrate by a post-fire metallization method, and electrolytic Ni plating was applied to the W layer to a thickness of 1 μm. An Al plate was placed on this Ni plating layer with a brazing material sheet of Si: Al = 12: 88 (melting point: 575 ° C.) interposed and joined at 600 ° C. in a hydrogen atmosphere. Then, electrolytic Ni is placed on this Al plate.
Plating is applied to a thickness of 1 μm, and a semiconductor element is
A solder sheet of n: Pb = 6: 4 (melting point: 183 ° C.) was sandwiched and bonded at 230 ° C. in a hydrogen atmosphere.

【0061】また、上記Al板の代わりにCu板を用
い、上記Si−Al系ロウ材シートの代わりにAg:C
u;Zn:Cd=45:15:16:24のロウ材シー
ト(融点605℃)を使用して、水素雰囲気中650℃
でCu板の接合を行った以外は、上記と同様にしてSi
34基板に半導体素子を接合した。
Further, a Cu plate is used instead of the Al plate, and Ag: C is used instead of the Si—Al-based brazing material sheet.
u; 650 ° C. in a hydrogen atmosphere using a brazing material sheet (melting point 605 ° C.) of Zn: Cd = 45: 15: 16: 24.
Except that the bonding of the Cu plate was performed in the same manner as above.
Bonding the semiconductor element to the 3 N 4 substrate.

【0062】更に、上記Al板の代わりにCu板を用
い、Sn:Pb=1:9の半田シート(融点268℃)
を用いて310℃でCu板の接合を行ったこと、及び上
記Sn−Pb系半田シートの代わりにIn:Sn=1:
1の半田シート(融点117℃)を使用して、水素雰囲
気中180℃で半導体素子の接合を行ったこと以外は、
上記と同様にしてSi34基板に半導体素子を接合し
た。
Further, a Cu sheet is used instead of the Al sheet, and a solder sheet of Sn: Pb = 1: 9 (melting point: 268 ° C.)
And bonding of the Cu plate at 310 ° C., and In: Sn = 1: 1 instead of the Sn—Pb-based solder sheet.
Except that the semiconductor element was joined at 180 ° C. in a hydrogen atmosphere using the solder sheet 1 (melting point 117 ° C.)
The semiconductor element was bonded to the Si 3 N 4 substrate in the same manner as described above.

【0063】このようにして作製した各試料それぞれ1
0個を、実施例1と同様のヒートサイクルテストに30
00サイクル以上供した後、光学顕微鏡を用いて200
倍にて各接合部を観察したところ、剥離等の欠陥は見ら
れなかった。また、各試料について超音波探傷分析によ
り微小クラックやポアの発生を調査したが、これらの存
在は確認されなかった。
Each of the samples thus prepared was 1
0 pieces were subjected to the same heat cycle test as in Example 1 for 30
After having been subjected to at least 00 cycles, 200
Observation of each joint at 2 × revealed no defects such as peeling. In addition, the occurrence of minute cracks and pores was examined for each sample by ultrasonic flaw analysis, but the presence of these was not confirmed.

【0064】実施例6 上記実施例2と同様にしてAlN基板(W層なし)を、
また上記実施例4と同様にしてSi34基板(W層な
し)をそれぞれ作製した。これらのAlN基板及びSi
34基板上に、Ti−Cu−Agの合金箔(Ti:C
u:Ag=2:28:70、融点780℃)を載せ、真
空中において850℃で1時間加熱してTi−Cu−A
g金属介在層を形成した。
Example 6 An AlN substrate (without a W layer) was prepared in the same manner as in Example 2 above.
In the same manner as in Example 4, Si 3 N 4 substrates (without W layer) were produced. These AlN substrates and Si
In 3 N 4 substrate, Ti-Cu-Ag alloy foil (Ti: C
u: Ag = 2: 28: 70, melting point: 780 ° C.), and heated in a vacuum at 850 ° C. for 1 hour to obtain Ti—Cu—A.
g A metal intervening layer was formed.

【0065】これらのTi−Cu−Ag層上にSn:P
b=1:9のロウ材シート(融点268℃)を挟んでC
u板を載せ、水素雰囲気中にて310℃で接合した。更
に、これらのCu板上に半導体素子をSn:Pb=6:
4の半田シート(融点183℃)を挟んで載せ、水素雰
囲気中にて230℃で接合した。
On these Ti—Cu—Ag layers, Sn: P
b = 1: 9 brazing material sheet (melting point 268 ° C.)
A u-plate was placed and joined at 310 ° C. in a hydrogen atmosphere. Further, a semiconductor element is formed on these Cu plates by Sn: Pb = 6:
No. 4 (melting point: 183 ° C.) was sandwiched between them and joined at 230 ° C. in a hydrogen atmosphere.

【0066】このようにして作製した各試料それぞれ1
0個を、実施例1と同様のヒートサイクルテストに30
00サイクル以上供した後、光学顕微鏡を用いて200
倍にて各接合部を観察したところ、剥離等の欠陥は見ら
れなかった。また、各試料について超音波探傷分析によ
り微小クラックやポアの発生を調査したが、これらの存
在は確認されなかった。
Each of the samples thus prepared was 1
0 pieces were subjected to the same heat cycle test as in Example 1 for 30
After having been subjected to at least 00 cycles, 200
Observation of each joint at 2 × revealed no defects such as peeling. In addition, the occurrence of minute cracks and pores was examined for each sample by ultrasonic flaw analysis, but the presence of these was not confirmed.

【0067】比較例4 上記実施例2と同様にしてAlN基板(W層なし)を、
また上記実施例4と同様にしてSi34基板(W層な
し)をそれぞれ作製した。これらのW層を有しないAl
N基板及びSi34基板上に、Ti:Cu:Ag=2:
28:70のロウ材シート(融点780℃)を載せ、更
にその上にCu板を載せて、真空中において800℃で
1時間加熱することにより、各基板上にCu板をTi−
Cu−Agロウ材で直接接合した。これらの各Cu板上
に、半導体素子をSn:Pb=6:4の半田シート(融
点183℃)を挟んで載せ、水素雰囲気中にて230℃
で接合した。
Comparative Example 4 An AlN substrate (without W layer) was prepared in the same manner as in Example 2 above.
In the same manner as in Example 4, Si 3 N 4 substrates (without W layer) were produced. Al without these W layers
On a N substrate and a Si 3 N 4 substrate, Ti: Cu: Ag = 2:
A 28:70 brazing material sheet (melting point: 780 ° C.) was placed, and a Cu plate was further placed thereon, and heated at 800 ° C. for 1 hour in a vacuum, so that the Cu plate was
It was directly joined with a Cu-Ag brazing material. A semiconductor element is placed on each of these Cu plates with a Sn: Pb = 6: 4 solder sheet (melting point: 183 ° C.) interposed therebetween, and the semiconductor element is placed at 230 ° C. in a hydrogen atmosphere.
Joined.

【0068】このように作製した各試料それぞれ10個
を、−40℃〜+125℃のヒートサイクルテストに供
したところ、500サイクル経過時に、AlN基板の試
料では9個に及びSi34基板の試料では7個に割れが
発生した。そこで残りの各試料について、光学顕微鏡を
用いて200倍にて各接合部を観察したところ、AlN
基板の試料1個とSi34基板の試料のうち2個には、
Cu板の端部外周縁下のSi34基板に微小クラックが
確認された。これらの残りの各試料について、更にヒー
トサイクルテストを続けたところ、1000サイクルで
全ての試料に割れが発生した。
When 10 samples of each of the samples thus prepared were subjected to a heat cycle test at −40 ° C. to + 125 ° C., after 500 cycles, 9 samples of the AlN substrate and 9 samples of the Si 3 N 4 substrate were obtained. In the sample, seven cracks occurred. Then, for each of the remaining samples, each joint was observed at a magnification of 200 using an optical microscope.
One sample of the substrate and two of the samples of the Si 3 N 4 substrate
Microcracks were observed on the Si 3 N 4 substrate below the outer peripheral edge of the Cu plate. When the heat cycle test was further continued for each of these remaining samples, cracks occurred in all the samples at 1000 cycles.

【0069】実施例7 上記実施例1と同様にコファイアメタライズ法によりW
層を有するAlN基板を作製した。また、上記実施例4
と同様にポストファイアメタライズ法によりW層を有す
るSi34基板を作製した。
Embodiment 7 In the same manner as in Embodiment 1 above, W
An AlN substrate having a layer was produced. In addition, the fourth embodiment
A Si 3 N 4 substrate having a W layer was manufactured by the post-fire metallization method in the same manner as in the above.

【0070】これら各基板上のW層に電解Niメッキを
1μmの厚みに施した後、このNiメッキ層上にSn:
Pb=1:9の半田シート(融点268℃)を挟んで導
体層となるCu板を載せ、水素雰囲気中にて310℃で
接合した。この際、Cu板の寸法を小さくし、Cu板の
端部外周縁が全周にわたってW層の端部外周縁から0.
05mmだけ内側に位置するように、両者を治具で位置
決めして接合した。その後、このCu板上に電解Niメ
ッキを厚み1μmに施し、半導体素子をSn:Pb=
6:4の半田シート(融点183℃)を挟んで載せ、水
素雰囲気中にて230℃で接合した。
After a W layer on each of these substrates was subjected to electrolytic Ni plating to a thickness of 1 μm, Sn:
A Cu plate serving as a conductor layer was placed with a Pb = 1: 9 solder sheet (melting point: 268 ° C.) interposed therebetween and joined at 310 ° C. in a hydrogen atmosphere. At this time, the dimensions of the Cu plate were reduced, and the outer peripheral edge of the Cu plate was set to be 0.1 mm from the outer peripheral edge of the W layer over the entire circumference.
Both were positioned and joined by a jig so that they were located inside by 05 mm. Thereafter, electrolytic Ni plating was applied to the Cu plate to a thickness of 1 μm, and the semiconductor element was Sn: Pb =
A 6: 4 solder sheet (melting point: 183 ° C.) was sandwiched and joined at 230 ° C. in a hydrogen atmosphere.

【0071】このようにして作製した各試料それぞれ1
0個を、実施例1と同様のヒートサイクルテストに30
00サイクル以上供した後、光学顕微鏡を用いて200
倍にて各接合部を観察したところ、剥離等の欠陥は見ら
れなかった。また、各試料について超音波探傷分析によ
り微小クラックやポアの発生を調査したが、これらの存
在は確認されなかった。
Each of the samples thus prepared was 1
0 pieces were subjected to the same heat cycle test as in Example 1 for 30
After having been subjected to at least 00 cycles, 200
Observation of each joint at 2 × revealed no defects such as peeling. In addition, the occurrence of minute cracks and pores was examined for each sample by ultrasonic flaw analysis, but the presence of these was not confirmed.

【0072】[0072]

【発明の効果】本発明によれば、導体層及び半導体素子
の接合を従来よりも一層低温下で行うことができ、従っ
てコストダウンが可能あると共にセラミック基板の破損
変形がなく、しかも接合強度が高く且つそのバラツキが
格段に小さく、冷熱サイクルにおける耐久信頼性の高い
セラミック基板と半導体素子の接合体を提供することが
できる。
According to the present invention, the joining of the conductor layer and the semiconductor element can be performed at a lower temperature than in the prior art, so that the cost can be reduced, the ceramic substrate is not damaged and deformed, and the joining strength is improved. It is possible to provide a bonded body of a ceramic substrate and a semiconductor element which is high and has extremely small variation and has high durability and reliability in a thermal cycle.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桧垣 賢次郎 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 (72)発明者 石井 隆 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 (72)発明者 仲田 博彦 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 Fターム(参考) 5F047 AA14 AB01 BA06 BA18 BA19 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenjiro Higaki 1-1-1, Koyo Kita, Itami City, Hyogo Prefecture Inside the Itami Works, Sumitomo Electric Industries, Ltd. (72) Inventor Takashi Ishii 1, Kokon Kita Kita, Itami City, Hyogo Prefecture No. 1-1 Sumitomo Electric Industries, Ltd. Itami Works (72) Inventor Hirohiko Nakata 1-1-1, Koyo-Kita-Kita, Itami-shi, Hyogo F-term in Sumitomo Electric Industries, Ltd. Itami Works F-term (reference) 5F047 AA14 AB01 BA06 BA18 BA19

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 セラミック基板上に金属介在層を備え、
該金属介在層上に融点が200〜660℃のロウ材によ
り導体層が接合され、該導体層上に融点が200℃未満
のロウ材により半導体素子が接合されていることを特徴
とするセラミック基板と半導体素子の接合体。
A metal intervening layer on a ceramic substrate;
A ceramic substrate, wherein a conductor layer is joined on the metal intervening layer with a brazing material having a melting point of 200 to 660 ° C, and a semiconductor element is joined on the conductor layer with a brazing material having a melting point of less than 200 ° C. And a semiconductor element.
【請求項2】 前記導体層が銅又は銅合金若しくはアル
ミニウム又はアルミニウム合金からなることを特徴とす
る、請求項1に記載のセラミック基板と半導体素子の接
合体。
2. The joined body of a ceramic substrate and a semiconductor element according to claim 1, wherein the conductor layer is made of copper, a copper alloy, aluminum, or an aluminum alloy.
【請求項3】 前記金属介在層がタングステン、モリブ
デン、ニッケル、金、銅、銀、チタンから選ばれた少な
くとも1種の金属を含むことを特徴とする、請求項1又
は2に記載のセラミック基板と半導体素子の接合体。
3. The ceramic substrate according to claim 1, wherein the metal intervening layer contains at least one metal selected from tungsten, molybdenum, nickel, gold, copper, silver, and titanium. And a semiconductor element.
【請求項4】 前記セラミック基板が窒化アルミニウム
又は窒化ケイ素を主成分とすることを特徴とする、請求
項1〜3のいずれかに記載のセラミック基板と半導体素
子の接合体。
4. The joined body of a ceramic substrate and a semiconductor device according to claim 1, wherein said ceramic substrate contains aluminum nitride or silicon nitride as a main component.
【請求項5】 前記金属介在層と導体層の接合界面にお
いて、金属介在層の端部外周縁が全周にわたり導体層の
端部外周縁から0.05mm以上外側に存在することを
特徴とする、請求項1〜4のいずれかに記載のセラミッ
ク基板と導体層の接合体。
5. At the joint interface between the metal intervening layer and the conductor layer, an outer peripheral edge of the end of the metal intervening layer is present outside the outer peripheral edge of the conductor layer by 0.05 mm or more over the entire circumference. A joined body of the ceramic substrate and the conductor layer according to any one of claims 1 to 4.
【請求項6】 セラミック基板上に金属介在層を積層し
て形成し、該金属介在層上に融点が200〜660℃の
ロウ材を用いて導体層を接合した後、該導体層上に融点
が200℃未満のロウ材を用いて半導体素子を接合する
ことを特徴とするセラミック基板と半導体素子の接合体
の製造方法。
6. A metal intermediate layer is formed by laminating on a ceramic substrate, and a conductive layer is joined on the metal intermediate layer using a brazing material having a melting point of 200 to 660 ° C., and then a melting point is formed on the conductive layer. A method for manufacturing a joined body of a ceramic substrate and a semiconductor element, wherein the semiconductor element is joined using a brazing material having a temperature of less than 200 ° C.
【請求項7】 前記金属介在層上に導体層を接合する際
に、金属介在層の端部外周縁が全周にわたり導体層の端
部外周縁から0.05mm以上外側に位置するように接
合することを特徴とする、請求項6に記載のセラミック
基板と半導体素子の接合体の製造方法。
7. When joining a conductor layer onto the metal intervening layer, the joining is performed such that the outer peripheral edge of the end of the metal intervening layer is positioned at least 0.05 mm outside the outer peripheral edge of the end of the conductor layer over the entire circumference. The method for manufacturing a joined body of a ceramic substrate and a semiconductor element according to claim 6, wherein:
JP11157679A 1999-06-04 1999-06-04 Bonded body of ceramic substrate and semiconductor device, and its manufacture Pending JP2000349098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11157679A JP2000349098A (en) 1999-06-04 1999-06-04 Bonded body of ceramic substrate and semiconductor device, and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11157679A JP2000349098A (en) 1999-06-04 1999-06-04 Bonded body of ceramic substrate and semiconductor device, and its manufacture

Publications (1)

Publication Number Publication Date
JP2000349098A true JP2000349098A (en) 2000-12-15

Family

ID=15655027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11157679A Pending JP2000349098A (en) 1999-06-04 1999-06-04 Bonded body of ceramic substrate and semiconductor device, and its manufacture

Country Status (1)

Country Link
JP (1) JP2000349098A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101486253B1 (en) * 2006-04-26 2015-01-26 와틀로 일렉트릭 매뉴팩츄어링 컴파니 Ceramic heater and method of securing a thermocouple thereto
US20160152004A1 (en) * 2013-04-26 2016-06-02 Kyocera Corporation Composite laminate and electronic device
KR101929613B1 (en) * 2015-10-23 2018-12-14 주식회사 케이씨씨 Ceramic circuit board and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101486253B1 (en) * 2006-04-26 2015-01-26 와틀로 일렉트릭 매뉴팩츄어링 컴파니 Ceramic heater and method of securing a thermocouple thereto
US20160152004A1 (en) * 2013-04-26 2016-06-02 Kyocera Corporation Composite laminate and electronic device
KR101929613B1 (en) * 2015-10-23 2018-12-14 주식회사 케이씨씨 Ceramic circuit board and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP4077888B2 (en) Ceramic circuit board
JPH07202063A (en) Ceramic circuit board
JP3845925B2 (en) Semiconductor device member using aluminum nitride substrate and method for manufacturing the same
EP0935286A1 (en) Copper circuit junction substrate and method of producing the same
WO2003046981A1 (en) Module structure and module comprising it
JP2000323618A (en) Copper circuit clad substrate and manufacture thereof
JPH06296084A (en) Thermal conductor of high conductivity, wiring board provided therewith and manufacture thereof
EP0915512B1 (en) Ceramic substrate having a metal circuit
JP3834351B2 (en) Ceramic circuit board
JP3887645B2 (en) Manufacturing method of ceramic circuit board
JP2000272977A (en) Ceramics circuit substrate
JPH08102570A (en) Ceramic circuit board
JP2000349098A (en) Bonded body of ceramic substrate and semiconductor device, and its manufacture
JP2005050886A (en) Compound substrate and its manufacturing method
JP2000086368A (en) Nitride ceramic substrate
JP3239549B2 (en) Ceramic radiator for semiconductor and method of manufacturing the same
JP2000323619A (en) Semiconductor device material using ceramic, and manufacture thereof
JP2001156413A (en) Copper circuit junction substrate and its manufacturing method
JPH0786444A (en) Manufacture of compound heat dissipating substrate for semiconductor
JPH0794624A (en) Circuit board
JPS61121489A (en) Cu wiring sheet for manufacture of substrate
JPH06263554A (en) Jointed substrate of ceramics-metal
JPH0997865A (en) Radiation part
JP2005252121A (en) Package for storing semiconductor element and method for manufacturing the same
JP2002043481A (en) Ceramic module and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708