JPH0576503B2 - - Google Patents

Info

Publication number
JPH0576503B2
JPH0576503B2 JP59248173A JP24817384A JPH0576503B2 JP H0576503 B2 JPH0576503 B2 JP H0576503B2 JP 59248173 A JP59248173 A JP 59248173A JP 24817384 A JP24817384 A JP 24817384A JP H0576503 B2 JPH0576503 B2 JP H0576503B2
Authority
JP
Japan
Prior art keywords
vinyl cyanide
resin
cyanide compound
weight
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59248173A
Other languages
Japanese (ja)
Other versions
JPS61126168A (en
Inventor
Yukihisa Mizutani
Sumio Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP24817384A priority Critical patent/JPS61126168A/en
Publication of JPS61126168A publication Critical patent/JPS61126168A/en
Publication of JPH0576503B2 publication Critical patent/JPH0576503B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ポリフエニレンエーテル樹脂とゴム
補強された樹脂とからなる組成物を支持体とする
メツキ物品に関するものである。 〔従来の技術〕 ポリフエニレンエーテル樹脂は機械的特性、電
気的特性および耐熱性がすぐれ、更に吸水性が低
く、寸法安定性が良い等の特徴を有している。一
方その欠点である成形加工性および耐衝撃性に劣
る点については、ポリフエニレンエーテル樹脂に
耐衝撃性ポリスチレン等のゴム補強樹脂とポリマ
ーブレンドすることによつて改良され、近年広く
利用されはじめている樹脂である。 これらのポリフエニレンエーテル系樹脂につい
ても、成形品表面にメツキを施すことが試みられ
ている。メツキ製品の多くは、スチレン−ブタジ
エン−アクリロニトリル系重合体(ABS樹脂)
の成形品表面にメツキしたものが使われている
が、ABS樹脂は耐熱性が低いために、高耐熱性
の要求される用途には使用されていない。高耐熱
性の要求される用途へのメツキ製品としては、ポ
リフエニレンエーテル系樹脂、ポリアミド樹脂お
よびポリアセタール樹脂などにメツキしたものの
使用が試みられている。ポリアミドは吸水性が大
きく、この影響でメツキの密着強さが低下した
り、メツキ作業中に硬度が低下しキズが付きやす
くなる。また、ポリアセタール樹脂は、成形品中
の残留ひずみが大きいとクラツクが発生しやすい
ために、成形品は残留ひずみの減少のため必ずア
ニールする必要がある。更にポリアミド樹脂やポ
リアセタール樹脂は、成形収縮率が大きく、大型
で寸法精度が要求される用途には余り用いられて
いない。一方、ポリフエニレンエーテル系樹脂
は、上述の如く、耐熱性、寸法安定性に優れ、更
に吸水性も低いなどの特徴があるために、成形品
表面にメツキを施し、自動車のホイールキヤツプ
などの用途に、亜鉛やアルミダイキヤスト品の代
替えとして広く利用されるようになつてきてい
る。 一般に、樹脂成形品へのメツキは、基本的な工
程としてエツチング→キヤタリスト→アクセレー
ター→無電解メツキ→電気メツキ工程が採用され
ている。エツチング液は、樹脂の種類に応じて異
なつた組成が採用されているが、ポリフエニレン
エーテル系樹脂やABS樹脂などは通常クロム酸
−硫酸混液が使用されていることは公知である。
しかし、ポリフエニレンエーテル樹脂と耐衝撃性
ポリスチレンとからなる組成物の成形品をクロム
酸−硫酸混液でエツチング処理すると、無電解メ
ツキはほとんど析出しない(科学と工業57(5)、
193〜203(1983))。これは、エツチングのときに
表面にクロム化合物が形成、残留するために、次
工程のキヤタリストの吸着を妨害して、キヤタリ
スト中のパラジウムの吸着が妨げられ無電解メツ
キ工程での反応を起りにくくすることが一原因と
考えられている。又、表面に残留したクロム化合
物はメツキの密着性も著しく低下させる。これら
の傾向は、エツチング液中のクロム酸濃度が高く
なるにしたがつて顕著に現われる。クロム酸によ
るこれらの影響を減少または防止し、パラジウム
の吸着性を向上させて無電解メツキでの金属の析
出を可能にすることを目的として、上記の刊行物
および特公昭58−7667号公報に記載されていると
おり、エツチング処理後に、例えばB−200ニユ
ートライザー(奥野製薬工業(株)製)のような特殊
な表面調整の工程を用いる必要があることは公知
のことである。 〔発明が解決しようとする問題点〕 しかしながら、上記のような特殊表面調整を施
してもポリフエニレンエーテル樹脂と耐衝撃性ポ
リスチレンとからなる樹脂組成物の成形品は、メ
ツキの密着性が不充分で実用に耐え得るレベルで
はない。メツキの密着性を改良するために、特公
昭58−7667号公報に記載のポリフエニレンエーテ
ル樹脂、スチレン−無水マレイン酸共重合体、不
飽和度の低いエラストマーおよびCaCO3、MgO
の1種または2種以上よりなる樹脂組成物、特開
昭58−194923号公報に記載のポリフエニレンエー
テル、耐衝撃性ポリスチレン、アルミナおよび随
意にスチレン−ブタジエンラジアルテレブロツク
共重合体よりなる樹脂組成物などが提案されてい
る。しかしながらこれらの樹脂組成物の成形品に
メツキを施す際にも、前述のB−200ニユートラ
イザーのような特殊の表面調整の工程が必要であ
る。このような工程を経てメツキすると、電極用
治具(以下ラツクと称する)のゲルコート部分へ
も無電解メツキにより金属の析出が起るために、
次の工程の電気メツキに移す前にラツクの交換が
必要となる。すなわち、ワンラツク化が不可能な
ため、全自動化できず作業性が大幅に低下すると
共にラツク交換作業費、特殊な処理工程付加によ
る薬液費の増加および総メツキ時間が長くなるこ
とによる生産性の低下などの為にメツキ製品とし
て価格高になる。更にラツクの交換時にキズなど
が発生することがあり不良率の増加につながり好
ましくない。一方、CaCO3、MgOまたはアルミ
ナなどのフイラーを添加すると光沢等の外観が悪
くなり、このような成形品にメツキしても光輝性
が劣り商品価値が低下し好ましくない。 〔問題点を解決するための手段及び作用〕 本発明者らは、優れたメツキの密着性を有し、
前述のような特殊表面調整工程を経ないでメツキ
することに関して、鋭意検討した結果、ポリフエ
ニレンエーテル樹脂にシアン化ビニル化合物を含
む共重合体をブレンドすることによつて、前述の
ような特殊表面調整工程を経ないでも無電解メツ
キで金属の析出が起り、メツキできることを見い
だした。すなわち、ポリフエニレンエーテル系樹
脂組成物中に少量のシアン化ビニル化合物成分が
存在すると、B−200ニユートライザーのような
特殊表面調整をしなくても、驚くべきことにキヤ
タリストの吸着すなわちパラジウムの吸着が促進
され、充分にメツキができることを見いだした。
更にメツキの密着性が向上するという好ましい結
果が得られ、実用に十分耐え得るものであること
を見い出した。 すなわち、本発明は、 ポリフエニレンエーテル樹脂を含む樹脂組成物
であつて、この樹脂組成物中に、一般式:
[Industrial Application Field] The present invention relates to a plating article having a support comprising a composition comprising a polyphenylene ether resin and a rubber-reinforced resin. [Prior Art] Polyphenylene ether resins have excellent mechanical properties, electrical properties, and heat resistance, as well as low water absorption and good dimensional stability. On the other hand, its disadvantages of poor moldability and impact resistance have been improved by polymer blending polyphenylene ether resin with rubber reinforcing resin such as impact-resistant polystyrene, which has begun to be widely used in recent years. It is resin. For these polyphenylene ether resins as well, attempts have been made to plate the surfaces of molded products. Many of Metsuki's products are made of styrene-butadiene-acrylonitrile polymer (ABS resin).
However, ABS resin has low heat resistance, so it is not used in applications that require high heat resistance. As plated products for applications requiring high heat resistance, attempts have been made to use plated products such as polyphenylene ether resins, polyamide resins, and polyacetal resins. Polyamide has high water absorption, which reduces the adhesion strength of plating and reduces hardness during plating work, making it more likely to be scratched. Furthermore, polyacetal resins tend to crack when the residual strain in the molded product is large, so the molded product must be annealed to reduce the residual strain. Furthermore, polyamide resins and polyacetal resins have a high molding shrinkage rate, and are not often used in applications requiring large size and dimensional accuracy. On the other hand, as mentioned above, polyphenylene ether resins have excellent heat resistance, dimensional stability, and low water absorption, so they are plated on the surface of molded products and used in automobile wheel caps, etc. It is becoming widely used as an alternative to zinc and aluminum die-cast products. Generally, the basic process for plating resin molded products is etching -> catalyst -> accelerator -> electroless plating -> electroplating. Etching solutions have different compositions depending on the type of resin, but it is well known that a mixture of chromic acid and sulfuric acid is usually used for polyphenylene ether resins, ABS resins, etc.
However, when a molded article made of a composition made of polyphenylene ether resin and high-impact polystyrene is etched with a chromic acid-sulfuric acid mixture, almost no electroless plating is deposited (Science and Industry 57(5),
193-203 (1983)). This is because a chromium compound is formed and remains on the surface during etching, which interferes with the adsorption of the catalyst in the next process, preventing the adsorption of palladium in the catalyst and making it difficult for reactions to occur in the electroless plating process. This is thought to be one of the causes. Furthermore, the chromium compound remaining on the surface significantly reduces the adhesion of plating. These tendencies become more pronounced as the concentration of chromic acid in the etching solution increases. In order to reduce or prevent these effects caused by chromic acid and improve the adsorption of palladium to enable metal deposition by electroless plating, the above publications and Japanese Patent Publication No. 7667/1983 As mentioned, it is known that after the etching process, it is necessary to use a special surface conditioning process, such as B-200 Neutralizer (manufactured by Okuno Pharmaceutical Co., Ltd.). [Problems to be Solved by the Invention] However, even after the above-mentioned special surface adjustment, molded products made of resin compositions made of polyphenylene ether resin and high-impact polystyrene have poor plating adhesion. It is not at a level that is sufficient for practical use. In order to improve the adhesion of plating, polyphenylene ether resin, styrene-maleic anhydride copolymer, elastomer with a low degree of unsaturation, CaCO 3 , MgO, etc., as described in Japanese Patent Publication No. 58-7667, were used.
A resin composition comprising one or more of the following, a resin comprising polyphenylene ether, high-impact polystyrene, alumina, and optionally a styrene-butadiene radial teleblock copolymer described in JP-A-58-194923. Compositions and the like have been proposed. However, even when plating molded articles of these resin compositions, a special surface conditioning process such as the above-mentioned B-200 neutralizer is required. When plating through such a process, metal precipitation occurs on the gel coat part of the electrode jig (hereinafter referred to as "Rack") due to electroless plating.
The rack needs to be replaced before moving on to the next step, electroplating. In other words, since it is not possible to make a single rack, full automation is not possible, and work efficiency is significantly reduced.In addition, productivity is reduced due to rack replacement costs, increased chemical costs due to the addition of special processing steps, and a longer total plating time. Because of this, the price is high as a Metsuki product. Furthermore, scratches may occur when replacing the rack, which is undesirable as it increases the defective rate. On the other hand, adding a filler such as CaCO 3 , MgO or alumina deteriorates the appearance such as gloss, and even if such a molded product is plated, the luster is poor and the commercial value is reduced, which is not preferable. [Means and effects for solving the problem] The present inventors have developed a method that has excellent plating adhesion,
As a result of extensive research into plating without going through the special surface conditioning process described above, we found that by blending a copolymer containing a vinyl cyanide compound with polyphenylene ether resin, the special surface preparation process described above could be achieved. It was discovered that metal deposition can occur and plating can be performed by electroless plating without going through a surface conditioning process. In other words, when a small amount of vinyl cyanide compound component is present in a polyphenylene ether resin composition, surprisingly, catalyst adsorption, that is, palladium It was found that the adsorption of the particles was promoted and plating could be achieved satisfactorily.
Furthermore, it was found that the favorable result of improving the adhesion of plating was obtained, and that it was sufficiently durable for practical use. That is, the present invention provides a resin composition containing a polyphenylene ether resin, in which the general formula:

【式】 (式中Rは水素原子またはアルキル基である)で
表されるシアン化ビニル化合物を含むゴム補強樹
脂であり、弾性体ゴム相にシアン化ビニル化合物
及びビニル芳香族化合物がグラフト共重合してお
り、その弾性体ゴム相へのグラフト相として少な
くともシアン化ビニル化合物含有量が16〜40重量
%及び1〜15重量%の範囲にあるシアン化ビニル
化合物とビニル芳香族化合物の共重合体を含み、
又クラフト相以外の樹脂相中の平均のシアン化ビ
ニル化合物含有量が1〜15重量%の範囲のシアン
化ビニル化合物とビニル芳香族化合物と共重合体
を含むゴム補強樹脂を含み、このシアン化ビニル
化合物成分が、最終の樹脂組成物中に0.5〜15重
量%を含む樹脂組成物の成形品を支持体とするメ
ツキ物品である。 本発明において、ポリフエニレンエーテル樹脂
(PPE)としては、一般式:
[Formula] A rubber reinforcing resin containing a vinyl cyanide compound represented by the formula (wherein R is a hydrogen atom or an alkyl group), in which a vinyl cyanide compound and a vinyl aromatic compound are graft copolymerized on an elastic rubber phase. A copolymer of a vinyl cyanide compound and a vinyl aromatic compound having a vinyl cyanide compound content of at least 16 to 40% by weight and 1 to 15% by weight as a graft phase to the elastomer rubber phase. including;
Further, the resin phase other than the kraft phase contains a rubber reinforcing resin containing a vinyl cyanide compound, a vinyl aromatic compound, and a copolymer with an average vinyl cyanide compound content in the range of 1 to 15% by weight, and this cyanide This is a plated article that uses a molded article of a resin composition as a support, in which the vinyl compound component is contained in the final resin composition in an amount of 0.5 to 15% by weight. In the present invention, the polyphenylene ether resin (PPE) has the general formula:

【式】【formula】

【式】 (式中、R1、R2、R3、R4、R5、R6は同一又は異
なるtert−ブチル基を除く炭素数1〜4のアルキ
ル基、アリール基、ハロゲン、水素等の一価の残
基であり、R5、R6は同時に水素ではない。)を繰
り返し単位とし、構成単位が〔〕又は〔〕お
よび〔〕からなる単独重合体あるいは共重合体
およびスチレングラフトポリフエニレンエーテル
樹脂が使用できる。 PPEの単独重合体の代表例としては、ポリ
(2,6−ジメチル−1,4−フエニレン)エー
テル、ポリ(2−メチル−6−エチル−1,4−
フエニレン)エーテル、ポリ(2,6−ジエチル
−1,4−フエニレン)エーテル、ポリ(2−エ
チル−6−nプロピル−1,4−フエニレン)エ
ーテル、ポリ(2,6−ジ−nプロピル−1,4
−フエニレン)エーテル、ポリ(2−メチル−6
−nブチル−1,4−フエニレン)エーテル、ポ
リ(2−エチル−6−イソプロピル−1,4−フ
エニレン)エーテル、ポリ(2−メチル−6−ク
ロル−1,4−フエニレン)エーテル、ポリ(2
−メチル−6−ヒドロキシエチル−1,4−フエ
ニレン)エーテル、ポリ(2−メチル−6−クロ
ロエチル−1,4−フエニレン)エーテル等のホ
モポリマーが挙げられる。 ポリフエニレンエーテル共重合体は、一般式
[Formula] (In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 are the same or different alkyl groups having 1 to 4 carbon atoms excluding tert-butyl groups, aryl groups, halogens, hydrogen, etc. homopolymers or copolymers, and styrene-grafted polypolymers, in which R 5 and R 6 are not hydrogen at the same time) are used as repeating units, and the constituent units are [ ] or [ ] and [ ]. Phenylene ether resin can be used. Representative examples of PPE homopolymers include poly(2,6-dimethyl-1,4-phenylene) ether and poly(2-methyl-6-ethyl-1,4-
phenylene) ether, poly(2,6-diethyl-1,4-phenylene) ether, poly(2-ethyl-6-n-propyl-1,4-phenylene) ether, poly(2,6-di-n-propyl- 1,4
-phenylene)ether, poly(2-methyl-6)
-n-butyl-1,4-phenylene) ether, poly(2-ethyl-6-isopropyl-1,4-phenylene) ether, poly(2-methyl-6-chloro-1,4-phenylene) ether, poly( 2
Examples include homopolymers such as -methyl-6-hydroxyethyl-1,4-phenylene) ether and poly(2-methyl-6-chloroethyl-1,4-phenylene) ether. Polyphenylene ether copolymer has the general formula

【式】 (ここにR3、R4、R5、R6は上記と同一の意味を
有する。)で表わされる2,3,6−トリメチル
フエノール等のアルキル置換フエノールと例え
ば、O−クレゾール等とを共重合して得られるポ
リフエニレンエーテル構造を主体としてなるポリ
フエニレンエーテル共重合体を包含する。 本発明において、シアン化ビニル化合物を含む
ゴム補強樹脂としては、一般式:
[Formula] (where R 3 , R 4 , R 5 , R 6 have the same meanings as above) and an alkyl-substituted phenol such as 2,3,6-trimethylphenol, such as O-cresol, etc. It includes a polyphenylene ether copolymer mainly composed of a polyphenylene ether structure obtained by copolymerizing with. In the present invention, the rubber reinforcing resin containing a vinyl cyanide compound has the general formula:

【式】 (式中Rは水素原子またはアルキル基である)で
表されるシアン化ビニル化合物を含む補強樹脂で
あつて、シアン化ビニル化合物の具体例として
は、アクリロニトリル、メタクリロニトリル、α
−エチルアクリロニトリル、α−プロピルアクリ
ロニトリル、α−ブチルアクリロニトリル等が挙
げられる。該シアン化ビニル化合物を含むゴム補
強樹脂は、最終の樹脂組成物中にシアン化ビニル
化合物が、0.5〜15重量%の割合になる様に配合
する。好ましくは、最終の樹脂組成物中にシアン
化ビニル化合物成分が、1.0〜10重量%の割合に
なるように配合するのが良い。最終の樹脂組成物
中のシアン化ビニル化合物成分が、0.5重量%以
下では、メツキの密着性が劣り、更にはパラジウ
ムの吸着が不十分で、無電解メツキ工程での金属
の析出性が悪くなるために、特殊な表面調整工程
が必要となり好ましくない。最終の樹脂組成物中
にシアン化ビニル化合物成分が15重量%以上で
は、ポリフエニレンエーテル樹脂との相溶性が悪
化し外観、体衝撃性などの機械的特性、メツキの
密着性およびメツキ品の光輝性が低下するために
好ましくない。 本発明において、特殊なゴム補強樹脂として
は、弾性体ゴム相へのグラフト相として少なくと
も前述したシアン化ビニル化合物含有量が(イ)16〜
40重量%及び(ロ)1〜15重量%の範囲にあるシアン
化ビニル化合物とビニル芳香族化合物の共重合体
を含み、又グラフト相以外の樹脂相中の平均のシ
アン化ビニル化合物含有量が1〜15wt%の範囲
のシアン化ビニル化合物とビニル芳香族化合物の
共重合体よりなるものである。グラフト相中のシ
アン化ビニル化合物量1〜15重量%のグラフト相
(ロ)は、ポリフエニレンエーテル樹脂との相溶性が
良好であり、このグラフト相(ロ)が存在すると、ポ
リフエニレンエーテル樹脂との混合性が良くない
高含有量のシアン化ビニル化合物からなるグラフ
トゴム相のポリフエニレンエーテル樹脂中への分
散が非常に良好になり、その結果、樹脂の外観お
よび衝撃強さを非常に優れたレベルに保持する。
更にメツキ物品とした時の光輝性も非常に優れた
ものになる。 グラフト相(イ)中のシアン化ビニル化合物量が16
重量%未満となると耐溶剤性が十分でなくなり又
40重量%を超えるとなると衝撃強さが低下し、熱
変色が激しく又着色性も不十分となる。 このようなゴム補強樹脂に用いるビニル芳香族
化合物は次の一般式:
[Formula] (wherein R is a hydrogen atom or an alkyl group) is a reinforcing resin containing a vinyl cyanide compound, and specific examples of the vinyl cyanide compound include acrylonitrile, methacrylonitrile, α
-ethylacrylonitrile, α-propylacrylonitrile, α-butylacrylonitrile, and the like. The rubber reinforcing resin containing the vinyl cyanide compound is blended so that the vinyl cyanide compound is in a proportion of 0.5 to 15% by weight in the final resin composition. Preferably, the vinyl cyanide compound component is blended in the final resin composition in a proportion of 1.0 to 10% by weight. If the vinyl cyanide compound component in the final resin composition is less than 0.5% by weight, plating adhesion will be poor, and palladium adsorption will be insufficient, resulting in poor metal deposition during the electroless plating process. Therefore, a special surface conditioning process is required, which is not preferable. If the cyanide vinyl compound component is 15% by weight or more in the final resin composition, the compatibility with the polyphenylene ether resin will deteriorate, resulting in poor appearance, mechanical properties such as body impact resistance, plating adhesion, and poor plating quality. This is not preferred because the glitter property decreases. In the present invention, the special rubber reinforcing resin has at least the above-mentioned vinyl cyanide compound content as a graft phase to the elastic rubber phase.
40% by weight and (b) a copolymer of a vinyl cyanide compound and a vinyl aromatic compound in the range of 1 to 15% by weight, and the average content of vinyl cyanide compound in the resin phase other than the graft phase is It consists of a copolymer of a vinyl cyanide compound and a vinyl aromatic compound in a range of 1 to 15 wt%. Graft phase with vinyl cyanide compound content in the graft phase of 1 to 15% by weight
(B) has good compatibility with polyphenylene ether resin, and the presence of this graft phase (B) prevents the high content of vinyl cyanide compounds that have poor miscibility with polyphenylene ether resin. The dispersion of the grafted rubber phase into the polyphenylene ether resin is very good, so that the appearance and impact strength of the resin are maintained at very good levels.
Furthermore, when made into a plated article, the luster is also very excellent. The amount of vinyl cyanide compound in the graft phase (a) is 16
If it is less than % by weight, solvent resistance will not be sufficient or
If it exceeds 40% by weight, impact strength will decrease, thermal discoloration will be severe, and colorability will be insufficient. The vinyl aromatic compound used for such rubber reinforcing resin has the following general formula:

【式】 (式中、R7は水素原子、ハロゲン原子またはア
ルキル基であり、Zは水素原子、ハロゲン原子、
ビニル基又はアルキル基であり、pは1〜5の整
数である。) で表わされるものであり、これらの1種以上使用
することができる。上記ビニル芳香族化合物の具
体例としては、スチレン、α−メチルスチレン、
ビニルトルエン、ビニルエチルベンゼン、ビニル
キシレン、tert−ブチルスチレン、クロルスチレ
ン等があげられる。 シアン化ビニル化合物は前述した一般式:
[Formula] (In the formula, R 7 is a hydrogen atom, a halogen atom, or an alkyl group, and Z is a hydrogen atom, a halogen atom,
It is a vinyl group or an alkyl group, and p is an integer of 1 to 5. ), and one or more of these can be used. Specific examples of the vinyl aromatic compounds include styrene, α-methylstyrene,
Examples include vinyltoluene, vinylethylbenzene, vinylxylene, tert-butylstyrene, and chlorostyrene. The vinyl cyanide compound has the above-mentioned general formula:

〔実施例〕〔Example〕

以下に実施例を示すが、本発明は以下の例に限
定されるものではないことはもちろんである。 以下、部は重量部を表わす。 メツキ方法としては、次に示す表−1の方法の
いずれかの方法に従つて電気銅メツキまで施し、
得られたメツキ物品を密着強さの測定に供した。 樹脂成形物としては、片端1ケ所に2mmφのピ
ンゲートを有する150×150×3mmの平板を用い
た。平板の成形は、5オンスのインライン式射出
成形機で、シリンダー温度290℃、金型温度80℃、
射出速度(ラム移動速度)20mm/秒の条件で、成
形ひずみがかなり残る条件で成形した。なお参考
例1におけるABS樹脂の成形は、シリンダー温
度を240℃に設定したほかは、上記と同じ条件で
実施した。 密着強さは、インストロン試験機で剥離幅10
mm、剥離速度30mm/分、剥離角度90°で剥離強さ
を測定し、その剥離強さの平均値で示した。 成形品表面に吸着されたパラジウムの量は次の
方法にて測定した。アクセレーター工程後水洗、
乾燥した試料150mm×40mm×3mmの平板を磁製ル
ツボで炭化させる。次にマツフル炉で約800℃で
7時間完全に灰化させた後に濃硝酸5ml、(1+
1)塩酸5mlを加え、加熱溶解させる。更に純水
を加え25mlにメスアツプし原子吸光法で測定し
た。測定機は日本ジヤーレル(株)製のAA−1を使
用し、波長247.6nmでランプ電流10mA、空気
12.0/min、アセチレン1.5/minの条件で測
定した。得られたデータを単位表面積当りの吸着
量として求めた。なお、表面積としては、エツチ
ング前の成形品の表面積を用いた。 実施例1〜10のゴム補強樹脂は以下の方法で製
造した。 重量平均粒子径0.4μのポリブタジエンラテツク
スを固形分で24部と水100部とを反応器に仕込み
攪拌下窒素雰囲気にて70℃に昇温した。70℃に到
達後アクリロニトリル9部とスチレン21部及びド
デシルメルカプタン0.1部を含む第一モノマー相、
および過硫酸カリウム0.1部を水50部に溶解させ
た水溶液を各々3時間にわたつて連続的に添加
し、添加終了後更にアクリロニトリル2部、スチ
レン44部及びドデシルメルカプタン0.1部を含む
第二モノマー相、および過硫酸カリウム0.1部を
水50部に溶解した水溶液を各々4時間にわたり連
続的に添加し、添加終了後更に2時間、70℃に保
ち重合を完結した。加えたモノマー類のポリマー
への転化率は93%であつた。このラテツクスに硫
酸アルミニウムを加えて塩析し、ろ過水洗して乾
燥しポリマーを回収した。 該ゴム補強樹脂は、グラフト相としてシアン化
ビニル化合物含有量が29重量%及び6重量%のシ
アン化ビニル化合物とビニル芳香族化合物の共重
合体を含み、又グラフト相以外の樹脂相中の平均
のシアン化ビニル化合物含有量が10重量%のシア
ン化ビニル化合物とビニル芳香族化合物の共重合
体を含んでいた。 実施例1〜4、比較例1、2 クロロホルムに溶解して30℃で測定した固有粘
度が0.62dl/gのポリ(2,6−ジメチル−1,
4−フエニレン)エーテルに、上記のゴム補強樹
脂、ジエンゴム含有量12wt%のジエンゴム補強
ハイインパクトポリスチレン、ポリスチレン(ス
タイロン683…旭化成工業社製)を、更に安定
剤としてオクタデシル−3−(3,5−ジターシ
ヤリーブチル−4−ヒドロキシフエニル)プロピ
オネート(イルガノツクス1076…チバガイギー
社製)を表−2に示す割合にてブレンダーで均一
に混合し、30mm2軸押出機を用いて290℃で溶融
混合してペレツト状の樹脂組成物を得て、前述の
方法により評価した。評価結果を表−2に示す。 比較例から、メツキ方法(A)では、パラジウムの
吸着は、ほとんど起つていないが、B−200ニユ
ートライザーによる特殊表面調整工程を加えたメ
ツキ方法(B)で処理すると、パラジウムの吸着量が
増加し、無電解メツキで金属の析出が起り、メツ
キ性が改良される反面、ラツクのゲルコート部分
にも金属の析出が起つており好ましくない。 本発明の樹脂組成物を用いたものは、メツキ方
法(A)で処理してもパラジウムの吸着が起り、その
結果無電解メツキでの金属の析出も良好であり、
驚くべきことはラツクのゲルコート部分への金属
の析出を起こすことなくメツキができることであ
る。更に、驚くべきことにはメツキの密着強さも
改良されることが判る。 実施例5〜10、比較例3、4 クロロホルムに溶解して30℃で測定した固有粘
度が0.62dl/gのポリ(2,6−ジメチル−1,
4−フエニレン)エーテルに、上記のゴム補強樹
脂、ポリスチレン(スタイロン683…旭化成工
業社製)を、あるいは、ジエンゴム含有量12wt
%のジエンゴム補強ハイインパクトポリスチレン
を、更に安定剤として、スミライザーBBM(住
友化学社製のヒンダードフエノール)またはオク
タデシル−3−(3,5−ジターシヤリーブチル
−4−ヒドロキシフエニル)プロピオネート(イ
ルガノツクス1076…チバガイギー社製)を表−3
に示す割合にてブレンダーで均一に混合し、30mm
2軸押出機を用いて290℃で溶融混合してペレツ
ト状の樹脂組成物を得て、前述の方法により評価
した。評価結果を表−3に示す。 本発明の樹脂組成物を用いたものは、メツキの
密着強さに優れており、更に驚くべきことには、
特殊な表面調整工程を使用しなくても無電解メツ
キ工程で金属が析出し、得られたメツキの密着強
さも十分満足できるものであることが判る。 比較例 5〜8 クロロホルムに溶解して25℃で測定した固有粘
度が0.54dl/gのポリ(2,6−ジメチル−1,
4−フエニレン)エーテルに、スチレン−無水マ
レイン酸共重合体(ダイラーク232…シンクレ
アー・クーパーズ・カンパニー社製)、水素添加
されたA−B−A′型ブロツツク共重合体(クレ
イトンG−1650…シエル・ケミカル・カンパニ
ー社製)、ジエンゴム含有量12wt%のジエンゴム
補強ハイインパクトポリスチレン、スチレン及び
ブタジエンのラジアルテレブロツク共重合体(ソ
ルブレン411…フイリツプスペトロリアム社
製)、MgOおよび水和アルミナを表−4の割合で
配合し、比較例1〜2と同じ方法で評価した。評
価結果を表−4に示す。尚、最終の樹脂組成物中
におけるシアン化ビニル化合物の含有量はいずれ
も0wt%であつた。 これらの樹脂組成物は、メツキ方法(A)で処理し
ても無電解メツキでの金属の析出は起らず、特殊
表面調整工程を付加したメツキ方法(B)でメツキが
できたが、ラツクのゲルコート部分にも無電解メ
ツキで金属の析出が生じた。得られたメツキ品の
密着強さは良好であるが、メツキ品の光輝性に劣
つていた。 参考例 1 市販されているABS樹脂のメツキグレード
(ダイヤペツト3001M…三菱レーヨン社製)を前
述の方法に従つて成形ひずみが残る条件で成形し
表−1のメツキ方法(A)でメツキして評価した。そ
の結果、メツキの密着強さは0.65Kg/cmであつ
た。 実施例5〜10と参考例1から、本実施例は、
ABS樹脂のメツキ品に匹敵することが判る。 実施例 11 実施例3の組成において、ポリフエニレンエー
テルとしてクロロホルムに溶解して30℃で測定し
た固有粘度が0.65dl/gのの2,6−ジメチルフ
エノール(90モル%)、2,3,6−トリメチル
フエノール(10モル%)との共重合体に置き換え
る以外は、実施例5と全く同様に組成物化し評価
した。その結果、メツキの密着強さは0.59Kg/
cm、メツキ品の光輝度はABS樹脂メツキ品に匹
敵する程度であつた。 実施例 12 ゴム補強樹脂として下記の方法で製造した。 重量平均粒子径0.3μのブタジエン/スチレン
9/1の共重合ラテツクスを固形分で60部と水
100部とを反応器に仕込み撹拌下窒素雰囲気下に
て70℃に昇温した。70℃に到達後アクリロニトリ
ル6部とスチレン34部及びドデシルメルカプタン
0.1部を含むモノマー相、および過硫酸カリウム
0.1部を水50部に溶解させた水溶液を各々3時間
にわたつて連続的に添加し、添加終了後更に2時
間、70℃に保ち重合を完結した。加えたモノマー
類のポリマーへの転化率は93%であつた。また、
最終の樹脂組成物中におけるシアン化ビニル化合
物の含有量は2.0wt%であつた。 該ゴム補強樹脂は、グラフト相としてシアン化
ビニル化合物含有量が16重量%及び5重量%のシ
アン化ビニル化合物とビニル芳香族化合物の共重
合体を含み、又グラフト相以外の樹脂相中の平均
のシアン化ビニル化合物含有量が6重量%のシア
ン化ビニル化合物とビニル芳香族化合物の共重合
体を含んでいた。 一方ゴムを含まないアクリロニトリル−スチレ
ン共重合体を以下の方法で製造した。 水120部と平均化ロジン酸カリウム1.0重量部と
を反応器に仕込み70℃に昇温した。70℃に到達後
アクリロニトリル5部、スチレン95部、およびド
デシルメルカプタン0.3部を含むモノマー相、及
び過硫酸カリウム0.2部を水50部に溶解させた水
溶液を別々に7時間にわたり連続的に添加した。
添加終了後更に2時間70℃に保ち重合を完結し
た。加えたモノマー類のポリマーへの転化率は92
%であつた。これらゴム補強樹脂ラテツクスとア
クリロニトリル−スチレン共重合体ラテツクスを
固形分で1対1となる様に混合し、良く分散して
得られたラテツクスに硫酸アルミニウムを加え塩
析、ろ過水洗して乾燥しポリマーを回収した。 このゴム補強樹脂40部とクロロホルムに溶解し
て30℃で測定した固有粘度が、0.55dl/gである
ポリ(2,6−ジメチル−1,4−フエニレン)
エーテル45部、ポリスチレン(スタイロン683
…旭化成工業社製)15部を配合し、更に安定剤と
してスミライザーBBM(住友化学社製のヒンダ
ードフエノール)0.5部とをブレンダーで混合し、
30mm2軸押出機を用いて290℃で溶融混合してペ
レツト状の樹脂組成物を得て、実施例5と同じ方
法に評価した。 結果は、メツキの密着強さが0.71Kg/cm、メツ
キ品の光輝度は、ABS樹脂メツキ品に匹敵する
ほどであつた。
Examples are shown below, but it goes without saying that the present invention is not limited to the following examples. Hereinafter, parts refer to parts by weight. As for the plating method, electrolytic copper plating is applied according to one of the methods shown in Table 1 below.
The resulting plated article was subjected to measurement of adhesion strength. As the resin molding, a 150 x 150 x 3 mm flat plate having a pin gate of 2 mm diameter at one end was used. The flat plate was molded using a 5-ounce inline injection molding machine, with a cylinder temperature of 290°C, a mold temperature of 80°C,
Molding was carried out at an injection speed (ram movement speed) of 20 mm/sec, with considerable molding distortion remaining. The ABS resin molding in Reference Example 1 was carried out under the same conditions as above, except that the cylinder temperature was set at 240°C. Adhesion strength is determined by peeling width 10 using Instron testing machine.
The peel strength was measured at a peeling speed of 30 mm/min and a peeling angle of 90°, and was expressed as the average value of the peel strength. The amount of palladium adsorbed on the surface of the molded article was measured by the following method. Washing with water after accelerator process,
Carbonize the dried sample plate of 150 mm x 40 mm x 3 mm in a porcelain crucible. Next, after completely incinerating in a Matsufuru furnace at about 800℃ for 7 hours, add 5ml of concentrated nitric acid (1+
1) Add 5 ml of hydrochloric acid and heat to dissolve. Further, pure water was added to bring the volume up to 25 ml, and measurement was performed using atomic absorption spectrometry. The measuring device used was AA-1 manufactured by Japan Jarel Co., Ltd., with a wavelength of 247.6 nm, a lamp current of 10 mA, and an air
It was measured under the conditions of 12.0/min and acetylene 1.5/min. The obtained data were calculated as adsorption amount per unit surface area. Note that the surface area of the molded product before etching was used as the surface area. The rubber reinforced resins of Examples 1 to 10 were manufactured by the following method. A reactor was charged with 24 parts of polybutadiene latex having a weight average particle size of 0.4 μm in solid content and 100 parts of water, and the temperature was raised to 70° C. in a nitrogen atmosphere while stirring. After reaching 70°C, a first monomer phase containing 9 parts of acrylonitrile, 21 parts of styrene and 0.1 part of dodecyl mercaptan;
and an aqueous solution in which 0.1 part of potassium persulfate was dissolved in 50 parts of water were each added continuously over 3 hours, and after the addition was completed, a second monomer phase containing 2 parts of acrylonitrile, 44 parts of styrene, and 0.1 part of dodecyl mercaptan was added. , and an aqueous solution prepared by dissolving 0.1 part of potassium persulfate in 50 parts of water were each added continuously over a period of 4 hours, and after the addition was completed, the temperature was maintained at 70°C for an additional 2 hours to complete the polymerization. The conversion rate of the added monomers into polymer was 93%. This latex was salted out by adding aluminum sulfate, filtered, washed with water, and dried to recover the polymer. The rubber-reinforced resin contains a copolymer of a vinyl cyanide compound and a vinyl aromatic compound with a vinyl cyanide compound content of 29% by weight and 6% by weight as a graft phase, and an average content of vinyl cyanide compounds in the resin phase other than the graft phase. The vinyl cyanide compound content included a copolymer of a vinyl cyanide compound and a vinyl aromatic compound with a content of 10% by weight. Examples 1 to 4, Comparative Examples 1 and 2 Poly(2,6-dimethyl-1,
4-phenylene) ether, the above rubber-reinforced resin, diene rubber-reinforced high-impact polystyrene with a diene rubber content of 12 wt%, polystyrene (Styron 683...manufactured by Asahi Kasei Industries, Ltd.), and octadecyl-3-(3,5-) as a stabilizer. Ditertiary butyl-4-hydroxyphenyl) propionate (Irganox 1076, manufactured by Ciba Geigy) was mixed uniformly in a blender in the proportions shown in Table 2, and melt-mixed at 290°C using a 30 mm twin-screw extruder. A pellet-shaped resin composition was obtained and evaluated by the method described above. The evaluation results are shown in Table-2. Comparative examples show that with plating method (A), almost no adsorption of palladium occurs, but with plating method (B), which includes a special surface conditioning process using a B-200 neutralizer, the amount of palladium adsorbed increases. increases, metal precipitation occurs during electroless plating, and although plating performance is improved, metal precipitation also occurs on the gel coated portion of the rack, which is not desirable. In the resin composition of the present invention, palladium is adsorbed even when processed by the plating method (A), and as a result, metal deposition by electroless plating is also good.
What is surprising is that plating can be done without metal precipitation on the gel coated part of the rack. Furthermore, it was surprisingly found that the adhesion strength of plating was also improved. Examples 5 to 10, Comparative Examples 3 and 4 Poly(2,6-dimethyl-1,
4-phenylene) ether, the above rubber reinforcing resin, polystyrene (Styron 683...manufactured by Asahi Kasei Corporation), or diene rubber content 12wt.
% diene rubber-reinforced high-impact polystyrene, and as a stabilizer Sumilizer BBM (hindered phenol manufactured by Sumitomo Chemical Co., Ltd.) or octadecyl-3-(3,5-ditertiarybutyl-4-hydroxyphenyl) propionate (Irganox). 1076...manufactured by Ciba Geigy) Table 3
Mix uniformly with a blender in the proportion shown in 30mm
A pellet-like resin composition was obtained by melt-mixing at 290° C. using a twin-screw extruder, and evaluated by the method described above. The evaluation results are shown in Table-3. Products using the resin composition of the present invention have excellent plating adhesion strength, and more surprisingly,
It can be seen that the metal is deposited in the electroless plating process without using any special surface conditioning process, and the adhesion strength of the resulting plating is sufficiently satisfactory. Comparative Examples 5 to 8 Poly(2,6-dimethyl-1,
4-phenylene) ether, a styrene-maleic anhydride copolymer (Dylarc 232...manufactured by Sinclair Coopers Company), and a hydrogenated A-B-A' type block copolymer (Craton G-1650...Shell). Chemical Company), diene rubber reinforced high impact polystyrene with a diene rubber content of 12 wt%, radial teleblock copolymer of styrene and butadiene (Solblen 411...manufactured by Phillips Petroleum), MgO and hydrated alumina as shown in Table 4. They were blended in the same proportions and evaluated in the same manner as Comparative Examples 1 and 2. The evaluation results are shown in Table 4. Incidentally, the content of the vinyl cyanide compound in the final resin composition was 0 wt% in all cases. These resin compositions did not cause metal precipitation during electroless plating even when processed using the plating method (A), and were plated using the plating method (B) which included a special surface conditioning process, but it was not easy. Electroless plating also caused metal precipitation on the gel coat part of the plate. The resulting plated product had good adhesion strength, but the brightness of the plated product was poor. Reference Example 1 A commercially available ABS resin plating grade (Diapet 3001M, manufactured by Mitsubishi Rayon Co., Ltd.) was molded according to the method described above under conditions where molding distortion remained, and plated using the plating method (A) in Table 1 for evaluation. did. As a result, the adhesion strength of the matsuki was 0.65 kg/cm. From Examples 5 to 10 and Reference Example 1, this example
It can be seen that it is comparable to a plated product made of ABS resin. Example 11 In the composition of Example 3, 2,6-dimethylphenol (90 mol%), 2,3, A composition was prepared and evaluated in exactly the same manner as in Example 5, except that the copolymer with 6-trimethylphenol (10 mol %) was used. As a result, the adhesion strength of Metsuki was 0.59Kg/
cm, the luminance of the plated product was comparable to that of the ABS resin plated product. Example 12 A rubber reinforced resin was produced by the following method. 60 parts solids of butadiene/styrene 9/1 copolymer latex with a weight average particle size of 0.3μ and water.
100 parts of the mixture was charged into a reactor, and the temperature was raised to 70°C under a nitrogen atmosphere while stirring. After reaching 70℃, add 6 parts of acrylonitrile, 34 parts of styrene, and dodecyl mercaptan.
monomer phase containing 0.1 part, and potassium persulfate
Aqueous solutions in which 0.1 part was dissolved in 50 parts of water were each added continuously over 3 hours, and after the addition was completed, the temperature was maintained at 70°C for an additional 2 hours to complete the polymerization. The conversion rate of the added monomers into polymer was 93%. Also,
The content of vinyl cyanide compound in the final resin composition was 2.0 wt%. The rubber-reinforced resin contains a copolymer of a vinyl cyanide compound and a vinyl aromatic compound with a vinyl cyanide compound content of 16% by weight and 5% by weight as a graft phase, and the average content of the vinyl cyanide compound in the resin phase other than the graft phase The vinyl cyanide compound content included a copolymer of a vinyl cyanide compound and a vinyl aromatic compound with a vinyl cyanide compound content of 6% by weight. On the other hand, a rubber-free acrylonitrile-styrene copolymer was produced by the following method. 120 parts of water and 1.0 part by weight of averaged potassium rosinate were charged into a reactor and the temperature was raised to 70°C. After reaching 70°C, a monomer phase containing 5 parts of acrylonitrile, 95 parts of styrene, and 0.3 parts of dodecyl mercaptan, and an aqueous solution of 0.2 parts of potassium persulfate dissolved in 50 parts of water were added separately and continuously over a period of 7 hours.
After the addition was completed, the temperature was kept at 70°C for an additional 2 hours to complete the polymerization. The conversion rate of added monomers to polymer is 92
It was %. These rubber-reinforced resin latex and acrylonitrile-styrene copolymer latex are mixed at a solid content of 1:1, and aluminum sulfate is added to the resulting latex, which is salted out, filtered, washed with water, and dried to form a polymer. was recovered. Poly(2,6-dimethyl-1,4-phenylene) has an intrinsic viscosity of 0.55 dl/g when dissolved in 40 parts of this rubber reinforcing resin and chloroform and measured at 30°C.
45 parts ether, polystyrene (Styron 683
...manufactured by Asahi Kasei Industries, Ltd.), and further mixed with 0.5 parts of Sumilizer BBM (hindered phenol manufactured by Sumitomo Chemical Co., Ltd.) as a stabilizer in a blender.
A pellet-like resin composition was obtained by melt-mixing at 290° C. using a 30 mm twin-screw extruder, and evaluated in the same manner as in Example 5. The results showed that the adhesion strength of the plating was 0.71 kg/cm, and the brightness of the plating product was comparable to that of the ABS resin plating product.

【表】【table】

【表】 * 奥野製薬工業(株)製品
(注) エツチング→ポストエツチング工程を除く各工
程の間には、流水中1〜2分の水洗を含む。
[Table] * Okuno Pharmaceutical Co., Ltd. products
(Note) Rinsing in running water for 1 to 2 minutes is included between each process except the etching → post-etching process.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 △: 〃 〃 〃
よりかなり劣る
実施例13、比較例9 実施例13、比較例9のゴム補強樹脂は以下の方
法で製造した。 重量平均粒子径0.4μのポリブタジエンラテツク
スを固形分で28部と水100部とを反応器に仕込み
撹拌下窒素雰囲気にて70℃に昇温した。70℃に到
達後、アクリロニトリル14部とスチレン26部及び
ドデシルメルカプタン0.1部を含む第一モノマー
層、及び過硫酸カリウム0.1部を水50部に溶解さ
せた水溶液を各々3時間にわたつて連続的に添加
し、添加終了後更にアクリロニトリル4部とスチ
レン28部及びドデシルメルカプタン0.1部を含む
第二モノマー層、及び過硫酸カリウム0.1部を水
50部に溶解させた水溶液を各々4時間にわたり連
続的に添加し、添加終了後更に2時間、70℃に保
ち重合を完結した。加えたモノマー類のポリマー
への転化率は94%であつた。このラテツクスに硫
酸アルミニウムを加えて塩析し、ろ過水洗して乾
燥しポリマーを回収した。 該ゴム補強樹脂は、グラフト相としてシアン化
ビニル化合物含有量が32重量%及び6重量%のシ
アン化ビニル化合物とビニル芳香族化合物の共重
合体を含み、又グラフト相以外の樹脂相中の平均
のシアン化ビニル化合物含有量が10重量%のシア
ン化ビニル化合物とビニル芳香族化合物の共重合
体を含んでいた。 該ゴム補強樹脂以外は実施例1に示すものを使
い、表−5に示す割合にて、ブレンダーで均一に
混合し、290℃で溶融混合してペレツト状の樹脂
組成物を得て、実施例1の方法で評価した、アイ
ゾツト衝撃強さはASTM D256にて評価した。
評価結果を表−5に示す。
[Table] △: 〃 〃 〃
Example 13 and Comparative Example 9 considerably inferior to Example 13 and Comparative Example 9 The rubber reinforced resins of Example 13 and Comparative Example 9 were manufactured by the following method. A reactor was charged with 28 parts of solid content of polybutadiene latex having a weight average particle diameter of 0.4 μm and 100 parts of water, and the temperature was raised to 70° C. in a nitrogen atmosphere while stirring. After reaching 70°C, a first monomer layer containing 14 parts of acrylonitrile, 26 parts of styrene, and 0.1 part of dodecyl mercaptan, and an aqueous solution of 0.1 part of potassium persulfate dissolved in 50 parts of water were each continuously added for 3 hours. After addition, add a second monomer layer containing 4 parts of acrylonitrile, 28 parts of styrene, and 0.1 part of dodecyl mercaptan, and 0.1 part of potassium persulfate to water.
50 parts of each aqueous solution was added continuously over 4 hours, and after the addition was completed, the temperature was maintained at 70°C for another 2 hours to complete the polymerization. The conversion rate of the added monomers into polymer was 94%. This latex was salted out by adding aluminum sulfate, filtered, washed with water, and dried to recover the polymer. The rubber-reinforced resin contains a copolymer of a vinyl cyanide compound and a vinyl aromatic compound with a vinyl cyanide compound content of 32% by weight and 6% by weight as a graft phase, and the average content of the vinyl cyanide compound in the resin phase other than the graft phase is The vinyl cyanide compound content included a copolymer of a vinyl cyanide compound and a vinyl aromatic compound with a content of 10% by weight. Except for the rubber reinforcing resin, those shown in Example 1 were used and mixed uniformly in a blender in the proportions shown in Table 5, and melted and mixed at 290°C to obtain a pellet-like resin composition. The Izot impact strength evaluated by method 1 was evaluated using ASTM D256.
The evaluation results are shown in Table-5.

【表】 最終組成物中のシアン化ビニル化合物成分が15
重量%以上になると、ポリフエニレンエーテル樹
脂との相溶性が悪くなり、メツキの密着性、耐衝
撃性が大幅に低下した。 比較例 10 比較例10のゴム補強樹脂は以下の方法で製造し
た。 重量平均粒子径0.4μのポリブタジエンラテツク
スを固形分で24部と水100部とを反応器に仕込み
撹拌下窒素雰囲気にて70℃に昇温した。70℃に到
達後、アクリロニトリル6部とスチレン23部及び
ドデシルメルカプタン0.1部を含む第一モノマー
層、及び過硫酸カリウム0.1部を水50部に溶解さ
せた水溶液を各々3時間にわたつて連続的に添加
し、添加終了後更にアクリロニトリル1部とスチ
レン44部及びドデシルメルカプタン0.1部を含む
第二モノマー層、及び過硫酸カリウム0.1部を水
50部に溶解させた水溶液を各々4時間にわたり連
続的に添加し、添加終了後更に2時間、70℃に保
ち重合を完結した。加えたモノマー類のポリマー
への転化率は93%であつた。このラテツクスに硫
酸アルミニウムを加えて塩析し、ろ過水洗して乾
燥しポリマーを回収した。 該ゴム補強樹脂は、グラフト相としてシアン化
ビニル化合物含有量が26重量%及び4重量%のシ
アン化ビニル化合物とビニル芳香族化合物の共重
合体を含み、又グラフト相以外の樹脂相中の平均
のシアン化ビニル化合物含有量が7重量%のシア
ン化ビニル化合物とビニル芳香族化合物の共重合
体を含んでいた。 該ゴム補強樹脂以外は実施例1に示すものを使
い、表−6に示す割合にて、ブレンダーで均一に
混合し、290℃で溶融混合してペレツト状の樹脂
組成物を得て、比較的9の方法で評価した。評価
結果を表−6に示す。
[Table] The vinyl cyanide compound component in the final composition is 15
When the amount exceeded % by weight, the compatibility with the polyphenylene ether resin deteriorated, and the plating adhesion and impact resistance were significantly reduced. Comparative Example 10 The rubber-reinforced resin of Comparative Example 10 was produced by the following method. A reactor was charged with 24 parts of polybutadiene latex having a weight average particle size of 0.4 μm in solid content and 100 parts of water, and the temperature was raised to 70° C. in a nitrogen atmosphere while stirring. After reaching 70°C, a first monomer layer containing 6 parts of acrylonitrile, 23 parts of styrene, and 0.1 part of dodecyl mercaptan, and an aqueous solution of 0.1 part of potassium persulfate dissolved in 50 parts of water were each continuously added for 3 hours. After addition, add a second monomer layer containing 1 part of acrylonitrile, 44 parts of styrene, and 0.1 part of dodecyl mercaptan, and 0.1 part of potassium persulfate to water.
50 parts of each aqueous solution was added continuously over 4 hours, and after the addition was completed, the temperature was maintained at 70°C for another 2 hours to complete the polymerization. The conversion rate of the added monomers into polymer was 93%. This latex was salted out by adding aluminum sulfate, filtered, washed with water, and dried to recover the polymer. The rubber-reinforced resin contains a copolymer of a vinyl cyanide compound and a vinyl aromatic compound with a vinyl cyanide compound content of 26% by weight and 4% by weight as a graft phase, and the average content of the vinyl cyanide compound in the resin phase other than the graft phase It contained a copolymer of a vinyl cyanide compound and a vinyl aromatic compound with a vinyl cyanide compound content of 7% by weight. Except for the rubber reinforcing resin, those shown in Example 1 were used, and the proportions shown in Table 6 were uniformly mixed in a blender, and melt-mixed at 290°C to obtain a pellet-like resin composition. Evaluation was made using 9 methods. The evaluation results are shown in Table-6.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、本発明によれば、得ら
れた金属化物品のメツキの密着強さは優れており
十分実用に耐えるものである。 更に驚くべきことには、本発明によれば、ポリ
フエニレンエーテル系樹脂組成物には従来から不
可能であつたエツチング→キヤタリスト→アクセ
レーター→無電解メツキ→電気メツキ工程でも十
分にメツキができることである。このことによつ
て、ラツクのゲルコート部分への無電解メツキの
析出が起らないために、ワンラツク方式が可能と
なり全自動化でのメツキができる。また、B−
200ニユートライザーのような特殊な表面調整工
程が不要となることによるメツキ液費用等の減
少、ラツク交換不要による人件費等の削減などに
よる大幅なコストの低減が計れる他に、生産性ア
ツプ、ラツク交換時に起り得る不良(キズ等)が
なくなるなどの効果が期待できることが明らかで
ある。
As described above, according to the present invention, the plating adhesion strength of the obtained metallized article is excellent and is sufficiently durable for practical use. Even more surprisingly, according to the present invention, it is possible to sufficiently plate the polyphenylene ether resin composition through the etching → catalyst → accelerator → electroless plating → electroplating process, which has conventionally been impossible. It is. This prevents electroless plating from depositing on the gel coated part of the rack, making it possible to use a one-rack method and to perform fully automated plating. Also, B-
In addition to significantly reducing costs, such as reducing plating liquid costs by eliminating the need for a special surface conditioning process like the 200 Neutralizer, and reducing labor costs by eliminating the need to replace racks, it also increases productivity. It is clear that effects such as eliminating defects (such as scratches) that may occur during rack replacement can be expected.

Claims (1)

【特許請求の範囲】 1 ポリフエニレンエーテル樹脂を含む樹脂組成
物であつて、この樹脂組成物中に、 一般式:【式】 (式中Rは水素原子またはアルキル基である)で
表されるシアン化ビニル化合物を含むゴム補強樹
脂であり、弾性体ゴム相にシアン化ビニル化合物
及びビニル芳香族化合物がグラフト共重合してお
り、その弾性体ゴム相へのグラフト相として少な
くともシアン化ビニル化合物含有量が16〜40重量
%及び1〜15重量%の範囲にあるシアン化ビニル
化合物とビニル芳香族化合物の共重合体を含み、
又グラフト相以外の樹脂相中の平均のシアン化ビ
ニル化合物含有量が1〜15重量%の範囲のシアン
化ビニル化合物とビニル芳香族化合物の共重合体
を含むゴム補強樹脂を含み、 このシアン化ビニル化合物成分が、最終の樹脂
組成物中に0.5〜15重量%を含む樹脂組成物の成
形品を支持体とするメツキ物品。 2 シアン化ビニル化合物がアクリロニトリル、
メタクリロニトリル、または両者の混合物である
特許請求の範囲第1項記載のメツキ物品。
[Scope of Claims] 1. A resin composition containing a polyphenylene ether resin, in which the resin composition is represented by the general formula: [Formula] (wherein R is a hydrogen atom or an alkyl group). It is a rubber reinforcing resin containing a vinyl cyanide compound, in which a vinyl cyanide compound and a vinyl aromatic compound are graft copolymerized to an elastic rubber phase, and at least a vinyl cyanide compound is grafted to the elastic rubber phase. Containing a copolymer of a vinyl cyanide compound and a vinyl aromatic compound, the content of which is in the range of 16 to 40% by weight and 1 to 15% by weight,
It also contains a rubber reinforcing resin containing a copolymer of a vinyl cyanide compound and a vinyl aromatic compound with an average vinyl cyanide compound content in the range of 1 to 15% by weight in the resin phase other than the graft phase; A plated article whose support is a molded article of a resin composition containing 0.5 to 15% by weight of a vinyl compound component in the final resin composition. 2 The vinyl cyanide compound is acrylonitrile,
The plating article according to claim 1, which is methacrylonitrile or a mixture of both.
JP24817384A 1984-11-26 1984-11-26 Plated article composed of polyphenylene ether resin composition Granted JPS61126168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24817384A JPS61126168A (en) 1984-11-26 1984-11-26 Plated article composed of polyphenylene ether resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24817384A JPS61126168A (en) 1984-11-26 1984-11-26 Plated article composed of polyphenylene ether resin composition

Publications (2)

Publication Number Publication Date
JPS61126168A JPS61126168A (en) 1986-06-13
JPH0576503B2 true JPH0576503B2 (en) 1993-10-22

Family

ID=17174294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24817384A Granted JPS61126168A (en) 1984-11-26 1984-11-26 Plated article composed of polyphenylene ether resin composition

Country Status (1)

Country Link
JP (1) JPS61126168A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2514337B2 (en) * 1986-11-05 1996-07-10 三菱レイヨン株式会社 Polyphenylene ether resin composition
CA1334695C (en) * 1988-09-07 1995-03-07 Jurou Ohzeki Electroless plating-susceptive, fire retardant polyphenylene ether resin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543886A (en) * 1977-06-10 1979-01-12 Sumitomo Naugatuck Co Ltd Method of producing plated product
JPS58194923A (en) * 1982-03-26 1983-11-14 ゼネラル・エレクトリツク・カンパニイ Metallized product comprising polyphenylene ether, impact-resistant polystyrene, alumina and optional styrene-butadiene radial teleblock copolymer
JPS59193928A (en) * 1983-04-18 1984-11-02 Japan Synthetic Rubber Co Ltd Manufacture of polyphenylene ether composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543886A (en) * 1977-06-10 1979-01-12 Sumitomo Naugatuck Co Ltd Method of producing plated product
JPS58194923A (en) * 1982-03-26 1983-11-14 ゼネラル・エレクトリツク・カンパニイ Metallized product comprising polyphenylene ether, impact-resistant polystyrene, alumina and optional styrene-butadiene radial teleblock copolymer
JPS59193928A (en) * 1983-04-18 1984-11-02 Japan Synthetic Rubber Co Ltd Manufacture of polyphenylene ether composition

Also Published As

Publication number Publication date
JPS61126168A (en) 1986-06-13

Similar Documents

Publication Publication Date Title
US5559186A (en) Thermoplastic resin compositions comprising blends of polyphenylene ether and polystyrene copolymer resins
WO2010061605A1 (en) Resin composition for plating use and resin plated product
CN111372990B (en) Thermoplastic resin composition, method for producing the same, and metal-plated molded article produced using the thermoplastic resin composition
US7540980B2 (en) Conductive resin composition and molded object
JPS61127745A (en) Thermoplastic molding composition based on polyphenylene ether, styrene polymer and polyoctenylene
US4590239A (en) Polyphenylene ether resin composition suitable for electroless plating
US5326811A (en) Plated polyamide resin articles
KR20040094697A (en) Thermoplastic Resin Compositions
JPS6222852A (en) Polyphenylene ether resin composition and plated article thereof
JPH0576503B2 (en)
JP4131995B2 (en) Compositions and methods for improving thermal performance in polyphenylene ether-containing substrates
JP5654377B2 (en) High brightness, low gas thin-walled resin reflector
JP2002194093A (en) Production method for thermoplastic resin composition and thermoplastic resin composition
JP2002206054A (en) Method of producing thermoplastic resin composition and thermoplastic resin composition
EP0102133A2 (en) Metallized article composed of polyphenylene ether resin, high impact polystyrene, alumina and, optionally, a styrene-butadiene radial teleblock copolymer
JPH0314853A (en) Fiberglass reinforced resin composition
KR860001431B1 (en) A blended thermoplastic resin composition
JPH07165998A (en) Thermoplastic resin composition
EP0162663A2 (en) Process for producing heat-resistant moldings
JPH04250005A (en) Manufacture of resin composition
JP2727240B2 (en) Flame retardant resin composition for electroless plating
JPH07258501A (en) Nitrile resin composition
EP0399474B1 (en) Molded and plated article molded from a polyphenylene ether resin composition
JPH07207141A (en) Polyphenylene ether-based resin composition having excellent plating characteristic
JPS6090257A (en) Polyphenylene ether resin composition having improved plating characteristics