JPH05306890A - Vaporizer - Google Patents

Vaporizer

Info

Publication number
JPH05306890A
JPH05306890A JP11259292A JP11259292A JPH05306890A JP H05306890 A JPH05306890 A JP H05306890A JP 11259292 A JP11259292 A JP 11259292A JP 11259292 A JP11259292 A JP 11259292A JP H05306890 A JPH05306890 A JP H05306890A
Authority
JP
Japan
Prior art keywords
heat transfer
vaporizer
coil
vaporization
tubular body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11259292A
Other languages
Japanese (ja)
Inventor
Kazuhiro Oki
和広 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP11259292A priority Critical patent/JPH05306890A/en
Publication of JPH05306890A publication Critical patent/JPH05306890A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve heat exchanging rate, permit the miniaturization of a device by securing a large heat transfer area even in a small space, prevent the frosting of an vaporizer and permit the continuous operation in an atmospheric temperature type vaporizer, in which running cost can be reduced. CONSTITUTION:In an atmospheric temperature type vaporizer, in which a vaporizing pressure regulating valve 20, the vaporizing coil 21 of a vaporizer and a pressure regulator 22 are arranged from the inlet port side of LPG liquid, the vaporizing coil 21 is dipped into heat medium water 24 in a cell 23, a tubular body 25 is provided below the vaporizing coil 21 and a plurality of air blow ports 26 opened in the tubular body 25 are directed upward while the tubular body 25 is connected to a blower 27 for blowing air into the heat medium water 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プロパンガスを主成分
とする液化石油ガス(以下、LPGという)等の液化ガ
ス液を、蒸発器により大気と熱交換して気化させるのに
好適なベーパライザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vaporizer suitable for vaporizing a liquefied gas liquid such as liquefied petroleum gas (hereinafter referred to as LPG) containing propane gas as a main component by heat exchange with the atmosphere by an evaporator. Regarding

【0002】[0002]

【従来の技術】以下、LPGガス蒸発器を例として説明
する。従来、LPGを大量に消費する工場等において、
LPG液を蒸発器によって気化し、工業用等の燃料とし
て供給するため、水を電気ヒータで70°Cから80°
Cまでに加熱し、その温水にLPG液を熱交換させて気
化する電気温水方式がある。
2. Description of the Related Art An LPG gas evaporator will be described below as an example. Conventionally, in factories that consume large amounts of LPG,
Since the LPG liquid is vaporized by the evaporator and supplied as fuel for industrial use, water is supplied from an electric heater at 70 ° C to 80 ° C.
There is an electric hot water method in which the hot water is heated to C and the LPG liquid is heat-exchanged with the hot water to be vaporized.

【0003】また、図2のような、大気温とLPG液と
の温度差を利用してLPG液を気化させる大気温方式も
開発されており、同図において、LPG液が貯留された
容器または貯槽1は、液遮断弁2および気化圧力調整弁
3を介して気化コイル4の入口側に通じている。気化コ
イル4の出口側はドレンキャッチャー5に接続され、な
お、ドレンキャッチャー5には、破損防止等のため、安
全弁6が付設されている。ドレンキャッチャー5の出口
側には、スーパーヒートコイル7と、さらにその下流側
に気化されたLPGを一時的に充満するクッションチャ
ンバー8とが接続され、放出されるLPGの圧力制御の
ための圧力調整器9を介してガス出口側に通じている。
気化コイル4の下方には電動式のファン10が配置さ
れ、ファン10は制御盤11を介して電源に接続されて
いる。制御盤11は、また、前記の液遮断弁2にも接続
されている。
Further, as shown in FIG. 2, an atmospheric temperature system has been developed in which the temperature difference between the atmospheric temperature and the LPG liquid is utilized to vaporize the LPG liquid. In FIG. 2, a container in which the LPG liquid is stored or The storage tank 1 communicates with the inlet side of the vaporization coil 4 via a liquid cutoff valve 2 and a vaporization pressure adjustment valve 3. The outlet side of the vaporization coil 4 is connected to a drain catcher 5, and the drain catcher 5 is provided with a safety valve 6 to prevent damage. A superheat coil 7 and a cushion chamber 8 for temporarily filling vaporized LPG are connected to the outlet side of the drain catcher 5 and the pressure adjustment for controlling the pressure of the released LPG. It communicates with the gas outlet side via the container 9.
An electric fan 10 is arranged below the vaporization coil 4, and the fan 10 is connected to a power source via a control panel 11. The control panel 11 is also connected to the liquid shutoff valve 2.

【0004】上記構成において、容器1から供給された
LPG液は、気化圧力調整弁3によって、例えば1kg
/cm2等に減圧され、LPG液は断熱的に気化して約
−25°C等のミスト状LPGとなり、気化コイル4に
送られる。気化コイル4では、ミスト状LPGが、ファ
ン10から吹き付けられた大気と熱交換し、強制気化さ
れる。気化されたLPGはドレンキャッチャー5を経
て、スーパーヒートコイル7で完全気化され、圧力調整
器9によって減圧されてガス出口側に供給される。
In the above structure, the LPG liquid supplied from the container 1 is, for example, 1 kg by the vaporizing pressure adjusting valve 3.
The pressure is reduced to / cm 2 or the like, and the LPG liquid is vaporized adiabatically to become a mist-like LPG at about −25 ° C. and sent to the vaporization coil 4. In the vaporizing coil 4, the mist-shaped LPG exchanges heat with the atmosphere blown from the fan 10 and is forcedly vaporized. The vaporized LPG passes through the drain catcher 5, is completely vaporized by the superheat coil 7, is decompressed by the pressure regulator 9, and is supplied to the gas outlet side.

【0005】[0005]

【発明が解決しようとする課題】従来の電気温水方式に
おいては、水の加熱のための電力が多く要求され、ラン
ニングコストが高くなり、その低減を図る必要があっ
た。
In the conventional electric hot water system, a lot of electric power for heating water is required, the running cost becomes high, and it is necessary to reduce the running cost.

【0006】大気温方式ではLPG液と熱交換する水を
加熱するための電力を省略でき、電気温水方式の1/2
0程度まで、ランニングコストが低減されるが、同方式
では、熱交換のための伝熱面積が大きくなり、そのため
のスペース確保のため、装置が大型化せざるを得ず、さ
らに、気化コイルが大気に暴露されたままなので、機器
を連続的に運転させると、LPG液との温度差から、コ
イル表面に霜が発生、付着し、シールドになって熱交換
できず、システムダウンするおそれもあった。
In the atmospheric temperature system, the electric power for heating the water that exchanges heat with the LPG liquid can be omitted, and it is 1/2 that of the electric hot water system.
Although the running cost is reduced to about 0, the same method requires a large heat transfer area for heat exchange, and in order to secure the space for that, the device must be increased in size. Since it is still exposed to the atmosphere, if the equipment is operated continuously, the temperature difference with the LPG liquid may cause frost to form and adhere to the coil surface, which may become a shield and prevent heat exchange, possibly causing the system to shut down. It was

【0007】本発明は、上記課題に鑑みてなされたもの
で、大気温式ベーパライザを改良ししてランニングコス
トを低減するとともに小さなスペースにあっても所要の
伝熱面積を確保できもって装置の小型化を可能にし、さ
らに霜の発生、およびそれによるシステムダウンを防止
して装置の連続運転を可能にすることにある。
The present invention has been made in view of the above-mentioned problems, and improves the atmospheric temperature vaporizer to reduce the running cost and to secure a required heat transfer area even in a small space, thus reducing the size of the apparatus. In addition, it is possible to prevent the occurrence of frost and the resulting system down, thereby enabling continuous operation of the device.

【0008】[0008]

【課題を解決するための手段】上記課題の解決のための
知見として、上記課題の原因は、大気自体を熱交換のた
めの媒体とし、大気を単に吹き付けるのみの熱交換方式
として、その構造による熱交換率の低下を考慮していな
い点にあり、さらにそれに派生して、気化コイルが大気
に露出する構造にも問題があるとの結論に到達した。
As a finding for solving the above-mentioned problems, the cause of the above-mentioned problems is that the atmosphere itself is used as a medium for heat exchange, and the atmosphere is simply blown, depending on its structure. This is because the decrease in heat exchange rate is not taken into consideration, and in addition to that, it was concluded that there is also a problem in the structure in which the vaporization coil is exposed to the atmosphere.

【0009】本発明は、上記知見に基づいてなされたも
ので、すなわち本発明は、基本的には、ガス液が通過す
る気化器の気化コイルを熱媒水内に浸せきさせてなり、
前記熱媒水を熱源により加熱させ、前記ガス液と前記熱
媒水とを熱交換させて前記ガス液を気化するベーパライ
ザにおいて、前記熱媒水内に大気を吹き出させるブロア
を備えたことを特徴とする。
The present invention has been made on the basis of the above findings, that is, the present invention is basically made by immersing the vaporizing coil of the vaporizer through which the gas liquid passes in the heat transfer water,
In a vaporizer for evaporating the gas liquid by heating the heat medium water with a heat source to heat-exchange the gas liquid and the heat medium water, a blower for blowing out the atmosphere into the heat medium water is provided. And

【0010】より具体的には、本発明は、セル内に充填
された熱媒水内に、ガス液が通過する気化器の気化コイ
ルを浸せきするとともに、セル内における気化コイルの
下方に管状体を配置させ、該管状体に熱媒水内へ大気を
吹き出すブロアを接続するとともに前記管状体に複数の
大気吹き出し口を開口してなり、前記気化コイルの上流
側に、前記ガス液の状態変化のための気化圧力調整弁を
介在するとともに、前記気化コイルの下流側に、気化さ
れたガスの圧力制御用の圧力調整器を介在させてなるこ
とを特徴とする。
More specifically, according to the present invention, the vaporizing coil of the vaporizer through which the gas liquid passes is immersed in the heat transfer water filled in the cell, and the tubular body is provided below the vaporizing coil in the cell. And a plurality of atmosphere outlets are opened in the tubular body while connecting a blower that blows the atmosphere into the heat transfer water to the tubular body, and the state change of the gas liquid is provided on the upstream side of the vaporization coil. And a pressure regulator for controlling the pressure of the vaporized gas on the downstream side of the vaporization coil.

【0011】[0011]

【作用】上記構成において、ガス液は気化圧力調整弁に
て減圧されて断熱的に気化し、例えば約−25°C等の
低温のミスト状ガスになり、気化器へ送られる。一方、
セル内においては、ブロアによって大気吹き出し口から
熱媒水内に大気が気泡状で吹き出されており、大気と熱
媒水とが熱交換するので、熱媒水の温度、ひいては気化
コイルの温度は吹き出される大気の温度に近似する。こ
のような状態で、気化コイルに送られた前記のミスト状
ガスは、直接には熱媒水と熱交換し、すなわち熱媒水を
媒介として大気と熱交換することにより完全にガス化し
て圧力調整器へ送られ、圧力調整器で所定の圧力とされ
てガス出口側に供給される。
In the above structure, the gas liquid is decompressed by the vaporization pressure control valve and vaporized adiabatically, becomes a mist-like gas at a low temperature of, for example, about -25 ° C, and is sent to the vaporizer. on the other hand,
In the cell, the air is blown out into the heat transfer water from the air outlet by the blower in the form of bubbles, and the heat exchange between the air and the heat transfer water causes the temperature of the heat transfer water and the temperature of the vaporization coil to rise. It is close to the temperature of the air blown out. In such a state, the mist-like gas sent to the vaporization coil directly exchanges heat with the heat transfer water, that is, the heat transfer water exchanges heat with the atmosphere to completely gasify the gas. It is sent to the regulator, adjusted to a predetermined pressure by the pressure regulator and supplied to the gas outlet side.

【0012】熱媒水内に大気が気泡状で吹き出されるた
め、熱媒水が気泡で撹拌されることになり、熱媒水が流
動する。従って従来のような大気のみを吹き付ける場合
に比べて熱伝達率が高くなる。そのため、ミスト状ガス
の熱交換率も高まる。
Since the air is blown into the heat transfer water in the form of bubbles, the heat transfer water is agitated by the bubbles, and the heat transfer water flows. Therefore, the heat transfer coefficient is higher than that in the conventional case where only the atmosphere is blown. Therefore, the heat exchange rate of the mist-like gas also increases.

【0013】[0013]

【実施例】以下、本発明の一実施例を、図1を参照して
説明する。なお、本実施例は上記と同様にLPGのガス
気化のためのものとされている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. It should be noted that, in the present embodiment, similar to the above, the gas vaporization of LPG is performed.

【0014】図1は本実施例の全体系統を示し、同図に
おいて、LPG液入口側から、気化圧力調整弁20と、
気化器の気化コイル21と、圧力調整器22とが順に配
置してなり、LPG出口側に通じている。
FIG. 1 shows the entire system of this embodiment. In FIG. 1, from the LPG liquid inlet side, a vaporization pressure adjusting valve 20 and
The vaporization coil 21 of the vaporizer and the pressure regulator 22 are sequentially arranged, and communicate with the LPG outlet side.

【0015】気化コイル21は、セル23内の不凍性熱
媒水24内に浸せきされている。セル23内において
は、また、気化コイル21の下方の管状体25に形成さ
れた複数の大気吹き出し口26が、上方に向けて開口し
ており、管状体25は、ブロア27に接続されている。
なお、本実施例においては、管状体25は、セル23の
外側における25aの部分にて、不凍性熱媒水24の水
面より上まで突出する、わん曲形状とされている。
The vaporizing coil 21 is immersed in the antifreeze heat transfer water 24 in the cell 23. In the cell 23, a plurality of atmospheric air outlets 26 formed in the tubular body 25 below the vaporization coil 21 are open upward, and the tubular body 25 is connected to the blower 27. ..
In addition, in the present embodiment, the tubular body 25 has a curved shape that protrudes above the water surface of the antifreeze heat transfer water 24 at the portion 25a outside the cell 23.

【0016】上記構成において、入口側から導入された
LPG液は、気化圧力調整弁20によって減圧され、−
25°Cのミスト状LPGとなり、気化コイル21へ流
動する。また、ブロア27を作動させると、大気吹き出
し口26から大気が気泡28となって、熱媒水24の全
体にわたり吹き出され、また、熱媒水24は気泡28の
噴出によって撹拌され、セル23内を流動する。熱媒水
24は大気と熱交換し、熱媒水24の温度は大気温に近
似する。従って気化コイル21もまた、それに近い温度
になる。なお、ブロア27の停止時においては、管状体
25にわん曲部分25aが形成されているため、ブロア
27の内部まで熱媒水24が逆流することはない。
In the above structure, the LPG liquid introduced from the inlet side is decompressed by the vaporizing pressure adjusting valve 20,
It becomes a mist-like LPG at 25 ° C and flows to the vaporization coil 21. Further, when the blower 27 is operated, the atmosphere becomes bubbles 28 from the atmosphere outlet 26 and is blown out over the entire heat transfer water 24. Further, the heat transfer water 24 is agitated by the ejection of the air bubbles 28, and inside the cell 23. To flow. The heat transfer water 24 exchanges heat with the atmosphere, and the temperature of the heat transfer water 24 approximates the atmospheric temperature. Therefore, the vaporization coil 21 also has a temperature close to it. When the blower 27 is stopped, since the curved portion 25a is formed in the tubular body 25, the heat transfer water 24 does not flow back into the blower 27.

【0017】このような気化コイル21内に、上記のよ
うにして生じたミスト状LPGが導入されると、ミスト
状LPGは、コイル21を介して熱媒水24と熱交換
し、完全にガス化して圧力調整器22に送られる。圧力
調整器22では、LPGを供給圧力に応じて減圧し、所
定圧力のLPGが出口側へ供給される。
When the mist-shaped LPG generated as described above is introduced into the vaporization coil 21 as described above, the mist-shaped LPG exchanges heat with the heat transfer water 24 through the coil 21 and is completely gasified. And is sent to the pressure regulator 22. In the pressure regulator 22, the LPG is decompressed according to the supply pressure, and the LPG having a predetermined pressure is supplied to the outlet side.

【0018】熱媒水24は、ミスト状LPGの低温性に
も凍結しない、不凍液とする必要がある。
The heat transfer water 24 is required to be an antifreeze liquid which does not freeze even at low temperature of the mist-like LPG.

【0019】従来の技術に示した大気温方式において
は、一般に大気温とLPGとの温度差が小さいため、良
好な熱交換効率を得るためには、気化コイルにおける伝
熱面積を大きくする必要があった。
In the atmospheric temperature method shown in the prior art, since the temperature difference between the atmospheric temperature and the LPG is generally small, it is necessary to increase the heat transfer area in the vaporization coil in order to obtain good heat exchange efficiency. there were.

【0020】すなわち、従来の技術の他の例である電気
温水方式(以下、単に電気温水方式という)の温水およ
びLPGの温度差と比べると、電気温水方式では温水の
温度を図3(A)の曲線a1に示すように80°Cと
し、LPGの温度を、図3(A)の曲線a2に示すよう
に、気化前において−30°Cであって気化後に−5°
Cとなるものとすると、温度差Δtは、次式(1)で示
すように97°Cになる。
That is, as compared with the temperature difference between the hot water of the electric hot water system (hereinafter, simply referred to as the electric hot water system) and the LPG which is another example of the conventional technique, the temperature of the hot water in the electric hot water system is shown in FIG. of the 80 ° C as indicated by the curve a 1, a temperature of LPG, as shown by the curve a 2 in FIG. 3 (a), -5 ° after vaporization a -30 ° C before vaporizing
Assuming that the temperature difference is C, the temperature difference Δt is 97 ° C. as shown in the following equation (1).

【0021】[0021]

【数1】 [Equation 1]

【0022】一方、大気温方式では、大気温を図3
(B)の曲線b1に示すように0°Cとし、LPGの温
度を、図3(B)の曲線b2に示すように、気化前にお
いて−30°Cであって気化後に−5°Cとなるものす
ると、温度差Δt′は、次式(2)で示すように8°C
になる。
On the other hand, in the atmospheric temperature method, the atmospheric temperature is shown in FIG.
As shown by the curve b 1 in (B), the temperature is set to 0 ° C., and the temperature of the LPG is −30 ° C. before vaporization and −5 ° C. after vaporization as shown in the curve b 2 in FIG. 3 (B). Assuming that the temperature difference is C, the temperature difference Δt ′ is 8 ° C. as shown in the following equation (2).
become.

【0023】[0023]

【数2】 [Equation 2]

【0024】このように、Δt′は、Δtの約1/12
となり、従って、大気温方式においては、LPG液の熱
交換率が低くなり、また大気自体も熱伝導率が低く、総
じて熱交換効率が低下する。
As described above, Δt 'is about 1/12 of Δt.
Therefore, in the atmospheric temperature method, the heat exchange rate of the LPG liquid is low, and the atmosphere itself has a low heat conductivity, so that the heat exchange efficiency is generally reduced.

【0025】さらに従来の大気温方式の構造では気化コ
イルに大気を一過的に吹き付けるのみなので、大気の気
化コイルに接触する時間が短くなる等、構造的にも熱伝
達率が低くなり、熱交換効率が低下する。
Further, in the structure of the conventional atmospheric temperature system, the atmosphere is only blown to the vaporizing coil transiently, so that the time for contacting the vaporizing coil of the atmosphere is shortened and the heat transfer coefficient is structurally lowered, so that the heat Exchange efficiency decreases.

【0026】熱交換効率低下の補償のための伝熱面積の
増加について、一試算によると、装置のLPG液の気化
能力を100kg/hと仮定した場合、電気温水方式に
おいて伝熱面積が1.1m2とされるのに対し、従来の
大気温方式においては24m2の伝熱面積が要求され、
すなわち電気温水方式の約22倍の伝熱面積が必要とな
る。なお大気温方式の約22倍の伝熱面積増加のうち、
12倍の増加については温度差Δt′の低数値に起因
し、残りの1.8倍の増加については大気と気化コイル
との熱伝達率が低いことに起因すると考えられる。従来
の大気温方式では、気化コイルが大気に暴露されている
ため、前記のように伝熱面積を大きくするには、気化コ
イルの占めるスペースを大きくせざるを得なくなる。さ
らに上記のように、気化コイル表面における霜の付着に
よる、システムダウンも憂慮される。
According to one trial calculation on the increase of the heat transfer area for compensating for the decrease in heat exchange efficiency, when the vaporization capacity of the LPG liquid of the apparatus is assumed to be 100 kg / h, the heat transfer area is 1. while being a 1 m 2, in the conventional atmospheric temperature scheme it is required heat transfer area of 24m 2,
That is, a heat transfer area about 22 times that of the electric hot water system is required. Of the 22 times more heat transfer area than the atmospheric temperature method,
It is considered that the 12-fold increase is due to the low value of the temperature difference Δt ′, and the remaining 1.8-fold increase is due to the low heat transfer coefficient between the atmosphere and the vaporization coil. In the conventional atmospheric temperature method, since the vaporization coil is exposed to the atmosphere, in order to increase the heat transfer area as described above, the space occupied by the vaporization coil must be increased. Furthermore, as described above, the system down due to the adhesion of frost on the surface of the vaporizing coil is also a concern.

【0027】それに対し、本実施例においては、まず、
基本的に大気温方式を採用しているため、電気温水方式
に比べてランニングコストが低減される。また、本実施
例においては、単なる大気温方式ではなく、すなわち気
化コイル21が熱媒水24に浸せきされ、熱媒水24内
へ、大気は複数の大気吹き出し口26から気泡28とし
て導入されるので、熱媒水24は気泡28によって撹拌
され、セル23内を流動する。そのため、熱媒水24全
体の熱伝達率が高くなり、熱交換率も向上する。同時
に、大気が気泡28の形状となっているため、気泡2
8、ひいては大気の表面積の総量が大きくなるので小さ
なスペースであっても、伝熱面積を大きくすることがで
き、装置の小型化も可能になる。さらに、気化コイル2
1は不凍性熱媒水24に浸せきされているため、コイル
表面に霜が付着する余地はなく、霜によるシステムダウ
ンが免れ、装置の連続運転が可能になる。
On the other hand, in this embodiment, first,
Since the atmospheric temperature method is basically adopted, the running cost is reduced compared to the electric hot water method. Further, in the present embodiment, it is not a mere atmospheric temperature method, that is, the vaporization coil 21 is soaked in the heat transfer water 24, and the atmosphere is introduced into the heat transfer water 24 as the bubbles 28 from the plurality of air outlets 26. Therefore, the heat transfer water 24 is agitated by the bubbles 28 and flows in the cell 23. Therefore, the heat transfer coefficient of the entire heat transfer water 24 is increased, and the heat exchange rate is also improved. At the same time, since the atmosphere has the shape of the bubble 28,
8. Consequently, the total amount of the surface area of the atmosphere increases, so that the heat transfer area can be increased even in a small space, and the device can be downsized. Furthermore, the vaporization coil 2
Since No. 1 is immersed in the antifreeze heat transfer water 24, there is no room for frost to adhere to the coil surface, system down due to frost is avoided, and continuous operation of the device becomes possible.

【0028】なお、上記実施例では、LPGガスを蒸発
器を例として説明したが、本発明はそれに限定されるも
のではなく、他の液化ガス蒸発器にも適用できることは
論をまたない。また、上記実施例では、ブロア27の停
止時における熱媒水24のブロア27への逆流防止手段
として、管状体25にわん曲部分25aを形成している
が、本発明はそれに限定されるものではなく、例えばブ
ロア27自体を熱媒水24の水面より上に配置する等、
他の前記逆流防止のための構成としてもよい。
In the above embodiments, the LPG gas is described by taking the evaporator as an example, but the present invention is not limited thereto, and it is needless to say that the present invention can be applied to other liquefied gas evaporators. Further, in the above embodiment, the curved portion 25a is formed in the tubular body 25 as a means for preventing the back flow of the heat transfer water 24 to the blower 27 when the blower 27 is stopped, but the present invention is not limited thereto. Instead of, for example, disposing the blower 27 itself above the water surface of the heat transfer water 24,
Other configurations for preventing backflow may be adopted.

【0029】さらに、上記実施例の構成のほか、例えば
スーパーヒートコイルを付設する等、種々設計変更が可
能であるとともに、本発明を大気の代りに廃熱等を導入
する、廃熱熱源型のベーパライザに転換すること等も容
易に可能である。
Further, in addition to the constitution of the above embodiment, various design changes can be made, for example, by attaching a super heat coil, and the present invention is of a waste heat source type, in which waste heat or the like is introduced instead of the atmosphere. It is also possible to easily switch to a vaporizer.

【0030】[0030]

【発明の効果】以上のように、本発明によれば、熱媒水
を媒介とする大気温式ベーパライザが提供され、もって
ガス気化のためのランニングコストを低減しつつ、同時
にガス気化のための熱交換率を向上できる。また、小さ
なスペースにあっても大きな伝熱面積を確保でき、装置
の小型化が可能となる。さらに気化器に霜が発生せずに
システムダウンが防止されるので、装置の連続運転が可
能になる等の効果が奏される。
As described above, according to the present invention, there is provided an atmospheric temperature vaporizer mediated by heat transfer water, which reduces the running cost for gas vaporization and at the same time realizes gas vaporization. The heat exchange rate can be improved. In addition, a large heat transfer area can be secured even in a small space, and the device can be downsized. Furthermore, since frost does not occur in the vaporizer and system down is prevented, it is possible to achieve continuous operation of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成、系統を示す線図であ
る。
FIG. 1 is a diagram showing the configuration and system of an embodiment of the present invention.

【図2】従来の大気温式ガス蒸発器の一例の構成、系統
を示す線図である。
FIG. 2 is a diagram showing a configuration and system of an example of a conventional atmospheric temperature gas evaporator.

【図3】従来の技術の気化器における、ガス気化前後の
温度差を説明するためのグラフであり、図3(A)は電
気温水方式の場合を示し、図3(B)は大気温方式の場
合を示すグラフである。
3A and 3B are graphs for explaining a temperature difference before and after gas vaporization in a vaporizer of a conventional technique, FIG. 3A shows a case of an electric hot water system, and FIG. 3B is an atmospheric temperature system. It is a graph which shows the case of.

【符号の説明】[Explanation of symbols]

20 気化圧力調整弁 21 気化コイル 22 圧力調整器 23 セル 24 熱媒水 25 管状体 26 大気吹き出し口 27 ブロア 28 気泡 20 vaporization pressure control valve 21 vaporization coil 22 pressure regulator 23 cell 24 heat transfer water 25 tubular body 26 atmosphere outlet 27 blower 28 bubbles

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガス液が通過する気化器の気化コイルを
熱媒水内に浸せきさせてなり、前記熱媒水を熱源により
加熱させ、前記ガス液と前記熱媒水とを熱交換させて前
記ガス液を気化するベーパライザにおいて、前記熱媒水
内に大気を吹き出させるブロアを備えたことを特徴とす
るベーパライザ。
1. A vaporizer coil of a vaporizer through which a gas liquid passes is immersed in a heat transfer water, the heat transfer water is heated by a heat source, and the gas liquid and the heat transfer water are heat-exchanged. A vaporizer for vaporizing the gas liquid, comprising a blower for blowing air into the heat transfer water.
【請求項2】 セル内に充填された熱媒水内に、ガス液
が通過する気化器の気化コイルを浸せきするとともに、
セル内における気化コイルの下方に管状体を配置させ、
該管状体に熱媒水内へ大気を吹き出すブロアを接続する
とともに前記管状体に複数の大気吹き出し口を開口して
なり、前記気化コイルの上流側に、前記ガス液の状態変
化のための気化圧力調整弁を介在するとともに、前記気
化コイルの下流側に、気化されたガスの圧力制御用の圧
力調整器を介在させてなることを特徴とする大気温式ベ
ーパライザ。
2. The vaporization coil of the vaporizer through which the gas liquid passes is immersed in the heat transfer water filled in the cell, and
Place the tubular body below the vaporization coil in the cell,
The tubular body is connected to a blower for blowing air into the heat transfer water, and a plurality of atmospheric air outlets are opened in the tubular body, and vaporization for changing the state of the gas liquid is provided on the upstream side of the vaporization coil. An atmospheric temperature vaporizer, characterized in that a pressure regulator for controlling the pressure of the vaporized gas is interposed downstream of the vaporization coil while interposing a pressure regulating valve.
JP11259292A 1992-05-01 1992-05-01 Vaporizer Pending JPH05306890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11259292A JPH05306890A (en) 1992-05-01 1992-05-01 Vaporizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11259292A JPH05306890A (en) 1992-05-01 1992-05-01 Vaporizer

Publications (1)

Publication Number Publication Date
JPH05306890A true JPH05306890A (en) 1993-11-19

Family

ID=14590599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11259292A Pending JPH05306890A (en) 1992-05-01 1992-05-01 Vaporizer

Country Status (1)

Country Link
JP (1) JPH05306890A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001254895A (en) * 2000-03-14 2001-09-21 Sumitomo Precision Prod Co Ltd Liquefied gas vaporization device
WO2005088186A1 (en) * 2004-03-10 2005-09-22 Mitsubishi Heavy Industries, Ltd. Device and method for vaporizing lng
JP2014173689A (en) * 2013-03-12 2014-09-22 Sumitomo Precision Prod Co Ltd Submerged combustion vaporizer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001254895A (en) * 2000-03-14 2001-09-21 Sumitomo Precision Prod Co Ltd Liquefied gas vaporization device
WO2005088186A1 (en) * 2004-03-10 2005-09-22 Mitsubishi Heavy Industries, Ltd. Device and method for vaporizing lng
JP2005256908A (en) * 2004-03-10 2005-09-22 Mitsubishi Heavy Ind Ltd Apparatus and method for vaporizing liquefied natural gas (lng)
US7451604B2 (en) 2004-03-10 2008-11-18 Mitsubishi Heavy Industries, Ltd. Device and method for vaporizing LNG
JP4634056B2 (en) * 2004-03-10 2011-02-16 三菱重工業株式会社 LNG vaporization apparatus and method
JP2014173689A (en) * 2013-03-12 2014-09-22 Sumitomo Precision Prod Co Ltd Submerged combustion vaporizer

Similar Documents

Publication Publication Date Title
JP2567099Y2 (en) Gas supply device
US20150192249A1 (en) Equipment and method for filling pressurized gas cylinders from a liquefied gas tank
JP5330030B2 (en) Low temperature liquefied gas vaporizer and low temperature liquefied gas vaporization method
US20100000709A1 (en) Heating and heat recovery unit for an air conditioning system
US5373701A (en) Cryogenic station
JP2002340296A (en) Liquefied gas vaporizing and heating device
JP4567849B2 (en) Liquefied gas vaporization system using waste heat and waste heat supply method
JPH05306890A (en) Vaporizer
JP3720160B2 (en) Low temperature liquefied gas vaporization method and equipment
KR102303797B1 (en) Liquid hydrogen reservoir apparatus for controlling liquid hydrogen boil-off rate
JP2001182894A (en) Forced circulation type air-temperature liquefied gas vaporizer and method of vaporazing liquefied gas
JPH08291899A (en) Vaporizer for liquefied natural gas and cooling and stand-by holding method thereof
JP4035566B2 (en) Forced circulation air temperature type liquefied gas vaporizer
KR102481568B1 (en) Liquid hydrogen vaporizer
JP2001081484A (en) Liquefied-gas evaporation apparatus with cold-heat generation function
JP2002089791A (en) Liquefied gas vaporizer
JP2001263592A (en) Method and device for vaporizing lng
JP4621379B2 (en) Evaporator
JPH0633854B2 (en) Evaporation prevention device
JPH08128596A (en) Gas evaporator and gas supplying method
US3552135A (en) Fluid cooling arrangement employing liquified gas
JP2843307B2 (en) Ozone concentration apparatus and ozone concentration method
JPH0419423B2 (en)
JP2003214597A (en) Hydrogen supply device using lng
JPH0694270A (en) Air-stream grain transport apparatus and air conditioner