JPH0650197B2 - Refrigerator control device - Google Patents

Refrigerator control device

Info

Publication number
JPH0650197B2
JPH0650197B2 JP62313863A JP31386387A JPH0650197B2 JP H0650197 B2 JPH0650197 B2 JP H0650197B2 JP 62313863 A JP62313863 A JP 62313863A JP 31386387 A JP31386387 A JP 31386387A JP H0650197 B2 JPH0650197 B2 JP H0650197B2
Authority
JP
Japan
Prior art keywords
high pressure
control
compressor
expansion valve
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62313863A
Other languages
Japanese (ja)
Other versions
JPH01155146A (en
Inventor
修 田中
隆 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP62313863A priority Critical patent/JPH0650197B2/en
Publication of JPH01155146A publication Critical patent/JPH01155146A/en
Publication of JPH0650197B2 publication Critical patent/JPH0650197B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は冷凍装置の制御装置に係り、特に、蒸発器の容
量過剰時における高圧カットによる運転停止の防止対策
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a refrigeration system, and more particularly to a measure for preventing an operation stop due to a high pressure cut when an evaporator has an excessive capacity.

(従来の技術) 従来より、冷凍装置の制御装置として、蒸発器における
冷媒の過熱度を検出して該過熱度を一定値に保持するよ
うに電動膨張弁の開度制御をしようとするものは知られ
ている。
(Prior Art) Conventionally, as a control device for a refrigeration system, a device that detects the degree of superheat of a refrigerant in an evaporator and controls the opening degree of an electric expansion valve so as to maintain the degree of superheat at a constant value is known. Are known.

その場合、電動膨張弁の開度制御をしても、凝縮器の空
調負荷が極めて小さくて蒸発器の能力の低減に限界があ
る場合、両者の容量バランスが崩れて高圧が上昇して高
圧カットのために連続運転できなくなる虞れがある。
In that case, even if the opening degree of the electric expansion valve is controlled, if the air conditioning load on the condenser is extremely small and there is a limit to the reduction in the capacity of the evaporator, the capacity balance between both will be upset and the high pressure will rise, resulting in a high pressure cut. Therefore, continuous operation may not be possible.

上記問題点に対処するために、例えば実開昭53−11
753号公報に開示される如く、蒸発器の出口側に外部
均圧形自動膨張弁の感温筒を配置し、自動膨張弁の外部
均圧管を蒸発器の低圧側と液管側とに切換え可能に接続
して、上記感温筒で検出される冷媒の過熱度に応じて自
動膨張弁の絞りを制御するように構成しておき、通常運
転時には、上記自動膨張弁の均圧管を蒸発器の低圧側に
接続する一方、凝縮器の空調負荷が低下して蒸発器が容
量過剰になったときには、自動膨張弁の均圧管を液管側
に接続することにより、自動膨張弁を絞り側に補正して
高圧を低下させて、装置の連続運転範囲を拡大しようと
するものがある。
In order to deal with the above-mentioned problems, for example, the actual exploitation Sho 53-11
As disclosed in Japanese Patent No. 753, a temperature-sensing cylinder of an external pressure equalizing type automatic expansion valve is arranged on the outlet side of the evaporator, and the external pressure equalizing pipe of the automatic expansion valve is switched between the low pressure side and the liquid pipe side of the evaporator. The automatic expansion valve is configured so as to control the throttle of the automatic expansion valve in accordance with the degree of superheat of the refrigerant detected by the temperature-sensing cylinder. On the other hand, when the air conditioning load of the condenser decreases and the capacity of the evaporator becomes excessive while connecting to the low pressure side of the condenser, the automatic expansion valve is connected to the throttle side by connecting the pressure equalizing pipe of the automatic expansion valve to the liquid pipe side. There is an attempt to increase the continuous operating range of the device by making a correction to reduce the high pressure.

(発明が解決しようとする問題点) しかしながら、上記公報のものでは、高圧の上昇を抑制
できる効果があるものの、過熱度制御を行っているため
に高圧の上昇防止には限度がある。また、特に一台の室
外ユニットに複数台の室内ユニットを並列に接続したい
わゆるマルチ形空気調和装置の場合には、容量のアンバ
ランスが生じ易く、蒸発器の過剰容量状態を解消するに
は、別途補助熱交換回路を設けて、補助熱交換器や高圧
制御弁などを配置する必要がある。そのために、装置が
複雑になるに加えて、補助熱交換器側で過剰容量が無駄
に消費されてしまうことになり、電力消費量も大きい。
(Problems to be Solved by the Invention) However, although the above publication has the effect of suppressing the increase in high pressure, there is a limit to the prevention of the increase in high pressure because the superheat control is performed. Further, particularly in the case of a so-called multi-type air conditioner in which a plurality of indoor units are connected in parallel to one outdoor unit, capacity imbalance easily occurs, and in order to eliminate the excessive capacity state of the evaporator, It is necessary to separately provide an auxiliary heat exchange circuit and arrange an auxiliary heat exchanger and a high-pressure control valve. Therefore, in addition to making the apparatus complicated, excess capacity is wastedly consumed on the auxiliary heat exchanger side, and power consumption is large.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、蒸発器が容量過剰状態に陥った場合には、電動膨
張弁の開度制御を過熱度一定制御から変更して高圧を適
正値に保持する制御に変更することにより、装置の高圧
カットによる運転停止を防止して連続運転の範囲の拡大
化を図ることにある。
The present invention has been made in view of such a point, and its object is to change the opening control of the electric expansion valve from the constant superheat degree control to increase the high pressure when the evaporator falls into an excessive capacity state. By changing the control so that the value is maintained at an appropriate value, the operation stop due to the high pressure cut of the device is prevented, and the range of continuous operation is expanded.

(問題点を解決するための手段) 上記目的を達成するため、本発明の解決手段は、第1図
に示すように、圧縮機(1)、凝縮器(12又は6)、
冷媒の絞り作用を行う電動膨張弁(8又は13)および
蒸発器(6又は12)を順次接続してなる冷凍回路を備
えた冷凍装置を前提とする。
(Means for Solving Problems) In order to achieve the above-mentioned object, a solution means of the present invention is, as shown in FIG. 1, a compressor (1), a condenser (12 or 6),
It is premised on a refrigerating apparatus provided with a refrigerating circuit in which an electric expansion valve (8 or 13) for restricting the refrigerant and an evaporator (6 or 12) are sequentially connected.

そして、冷凍装置の制御装置として、冷媒の過熱度を検
出する過熱度検出手段(51)と、該過熱度検出手段
(51)で検出される冷媒の過熱度が一定値になるよう
に上記電動膨張弁(8又は13)の開度を制御する第1
制御手段(52)とを設けるものとする。
Then, as a control device for the refrigeration system, a superheat degree detecting means (51) for detecting a superheat degree of the refrigerant, and the electric motor so that the superheat degree of the refrigerant detected by the superheat degree detecting means (51) becomes a constant value. First to control the opening of the expansion valve (8 or 13)
A control means (52) is provided.

さらに、圧縮機(1)の高圧を検出する高圧検出手段
(P1)と、該高圧検出手段(P1)で検出される高圧
の値が一定になるように上記電動膨張弁(8又は13)
の開度を制御する第2制御手段(54)と、上記高圧の
値が所定値以上か否かを判別する判別手段(53)と、
該判別手段(53)の出力を受け、高圧が所定値以上の
ときには上記第1制御手段(52)による電動膨張弁
(8又は13)の開度制御を停止して、上記第2制御手
段(54)による高圧を一定に保持する開度制御に切換
える制御切換手段(55)とを設ける構成としたもので
ある。
Further, the high pressure detecting means (P1) for detecting the high pressure of the compressor (1) and the electric expansion valve (8 or 13) so that the high pressure value detected by the high pressure detecting means (P1) becomes constant.
Second control means (54) for controlling the opening degree of, and determination means (53) for determining whether or not the value of the high pressure is a predetermined value or more,
In response to the output of the discrimination means (53), when the high pressure is equal to or higher than a predetermined value, the opening control of the electric expansion valve (8 or 13) by the first control means (52) is stopped and the second control means ( The control switch means (55) for switching the opening control for keeping the high pressure by 54) constant is provided.

(作用) 以上の構成により、本発明では、冷凍装置の運転時、第
1制御手段(52)により、冷媒の過熱度が一定値にな
るように電動膨張弁(8又は13)の開度制御が行われ
る。
(Operation) With the above configuration, in the present invention, the opening control of the electric expansion valve (8 or 13) is controlled by the first control means (52) so that the superheat degree of the refrigerant becomes a constant value during the operation of the refrigeration system. Is done.

そして、凝縮器(12又は6)における熱交換負荷が小
さくなって、蒸発器(6又は12)が容量過剰状態に陥
ったときには、高圧が上昇して装置が高圧カットによる
運転停止を生ずる危険性があるが、高圧検出手段(P
1)で検出される高圧の値が所定値を越えると、制御切
換手段(55)により、電動膨張弁(8又は13)の開
度制御が過熱度一定制御から第2制御手段(54)によ
る高圧一定制御に切換えられ、高圧の上昇が有効に阻止
されるので、連続運転範囲の拡大化を図ることができ
る。
Then, when the heat exchange load in the condenser (12 or 6) becomes small and the evaporator (6 or 12) falls into an excessive capacity state, the high pressure rises, and there is a risk that the device will stop due to a high pressure cut. There is a high-voltage detection means (P
When the value of the high pressure detected in 1) exceeds a predetermined value, the control switching means (55) controls the opening degree of the electric expansion valve (8 or 13) from the constant superheat control to the second control means (54). Since the control is switched to the constant high pressure control and the rise of the high pressure is effectively prevented, the continuous operation range can be expanded.

また、マルチ形空気調和装置の場合にも、空調負荷調節
のための補助熱交換器およびそのための高圧制御弁等が
不要となるので、装置の簡素化とコストダウンとを図る
ことができる。
Further, also in the case of the multi-type air conditioner, the auxiliary heat exchanger for adjusting the air conditioning load, the high pressure control valve for the auxiliary heat exchanger, etc. are not required, so that the apparatus can be simplified and the cost can be reduced.

(実施例) 以下、本発明の実施例を第2図以下の図面に基づき説明
する。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings starting from FIG.

第2図は本発明を適用したマルチ型空気調和装置の冷媒
配管系統を示し、(A)は室外ユニット、(B)〜
(F)は該室外ユニット(A)に並列に接続された室内
ユニットである。上記室外ユニット(A)の内部には、
出力周波数を30〜70Hzの範囲で10Hz毎に可変に切
換えられるインバータ(2a)により容量が調整される
第1圧縮機(1a)と、パイロット圧の高低で差動する
アンローダ(2b)により容量がフルロード(100
%)およびアンロード(50%)状態の2段階に調整さ
れる第2圧縮機(1b)とを逆止弁(1e)を介して並
列に接続して構成される圧縮機(1)と、該圧縮機
(1)から吐出されるガス中の油を分離する油分離器
(4)と、暖房運転時には図中実線の如く切換わり冷房
運転時には図中破線の如く切換わる四路切換弁(5)
と、冷房運転時に凝縮器、暖房運転時に蒸発器となる室
外熱交換器(6)およびそのファン(6a)と、過冷却
度コイル(7)と、冷房運転時には冷媒流量を調節し、
暖房運転時には冷媒の絞り作用を行う室外電動膨張弁
(8)と、液化した冷媒を貯蔵するレシーバ(9)と、
アキュムレータ(10)とが主要機器として内蔵されて
いて、該各機器(1)〜(10)は各々冷媒の連絡配管
(11)で冷媒の流通可能に接続されている。また上記
室内ユニット(B)〜(F)は同一構成であり、各々、
冷房運転時には蒸発器、暖房運転時には凝縮器となる室
内熱交換器(12)…およびそのファン(12a)…を
備え、かつ該室内熱交換器(12)…の液冷媒分岐管
(11a)…には、暖房運転時に冷媒流量を調節し、冷
房運転時に冷媒の絞り作用を行う室内電動膨張弁(1
3)…がそれぞれ介設され、合流後手動閉鎖弁(17)
を介し連絡配管(11b)によって室外ユニット(A)
との間を接続されている。また、(TH1)…は各室内
温度を検出する室温サーモスタット、(TH2)…およ
び(TH3)…は各々室内熱交換器(12)…の液側お
よびガス側配管における冷媒の温度を検出する温度セン
サ、(TH4)は圧縮機(1)の吐出管における冷媒の
温度を検出する温度センサ、(TH5)は暖房運転時に
室外熱交換器(6)(蒸発器)における蒸発温度を検出
する温度センサ、(TH6)は圧縮機(1)に吸入され
る吸入ガスの温度を検出する温度センサであって、該2
つの温度センサ(TH5)および(TH6)により、暖
房運転時に室外熱交換器(蒸発器)(6)における冷媒
の過熱度を検出する過熱度検出手段(51)が構成され
ている。また、(P1)は暖房運転時に圧縮機(1)の
高圧を検出する高圧検出手段としての圧力センサであ
る。
FIG. 2 shows a refrigerant piping system of a multi-type air conditioner to which the present invention is applied, in which (A) is an outdoor unit and (B)-
(F) is an indoor unit connected in parallel to the outdoor unit (A). Inside the outdoor unit (A),
The capacity is adjusted by the first compressor (1a) whose capacity is adjusted by the inverter (2a) that can variably switch the output frequency in the range of 30 to 70 Hz every 10 Hz, and the capacity by the unloader (2b) that is differential depending on the pilot pressure. Full load (100
%) And an unloading (50%) state, the second compressor (1b) adjusted in two stages is connected in parallel via a check valve (1e), and a compressor (1), An oil separator (4) for separating oil in the gas discharged from the compressor (1) and a four-way switching valve (switched as shown by the solid line in the figure during heating operation and switched as shown by the broken line in the figure during cooling operation ( 5)
An outdoor heat exchanger (6) and its fan (6a) which serve as a condenser during cooling operation and an evaporator during heating operation, a supercooling degree coil (7), and a refrigerant flow rate during cooling operation,
An outdoor electric expansion valve (8) that performs a throttle action of the refrigerant during heating operation, a receiver (9) that stores the liquefied refrigerant,
An accumulator (10) is built in as a main device, and each of the devices (1) to (10) is connected to a refrigerant communication pipe (11) so that the refrigerant can flow. The indoor units (B) to (F) have the same configuration, and
An indoor heat exchanger (12), which serves as an evaporator during cooling operation and a condenser during heating operation, and its fan (12a) are provided, and the liquid refrigerant branch pipes (11a) of the indoor heat exchanger (12). Includes an indoor electric expansion valve (1) that adjusts the refrigerant flow rate during heating operation and throttles the refrigerant during cooling operation.
3) ... are respectively interposed, and after closing, a manual shutoff valve (17)
Outdoor unit (A) by connecting pipe (11b) via
Is connected between and. Further, (TH1) ... is a room temperature thermostat for detecting each room temperature, and (TH2) ... and (TH3) ... are temperatures for detecting the temperature of the refrigerant in the liquid side and gas side pipes of the indoor heat exchangers (12). A sensor, (TH4) is a temperature sensor that detects the temperature of the refrigerant in the discharge pipe of the compressor (1), and (TH5) is a temperature sensor that detects the evaporation temperature in the outdoor heat exchanger (6) (evaporator) during heating operation. , (TH6) are temperature sensors for detecting the temperature of the suction gas sucked into the compressor (1).
The two temperature sensors (TH5) and (TH6) constitute superheat degree detecting means (51) for detecting the superheat degree of the refrigerant in the outdoor heat exchanger (evaporator) (6) during the heating operation. Further, (P1) is a pressure sensor as a high pressure detecting means for detecting the high pressure of the compressor (1) during the heating operation.

なお、第2図において上記各主要機器以外に補助用の諸
機器が設けられている。(1e)は逆止弁、(1f)は
第2圧縮機(1b)のバイパス回路(11c)に介設さ
れ、第2圧縮機(1b)の停止時およびアンロード状態
時には「開」となり、フルロード状態で「閉」となるア
ンローダ用電磁弁、(1g)はキャピラリーチューブ、
(21)は吐出管と吸入管とを接続する均圧ホットガス
バイパス回路(11d)に介設され、冷房運転時室内熱
交換器(12)(蒸発器)が低負荷状態のときおよびデ
フロスト時等に開作動するホットガス用電磁弁である。
In addition, in FIG. 2, various auxiliary devices are provided in addition to the above main devices. (1e) is a check valve, (1f) is provided in the bypass circuit (11c) of the second compressor (1b), and is "open" when the second compressor (1b) is stopped and in the unload state, Solenoid valve for unloader that becomes "closed" in full load state, (1g) is a capillary tube,
(21) is interposed in a pressure equalizing hot gas bypass circuit (11d) that connects the discharge pipe and the suction pipe, and when the indoor heat exchanger (12) (evaporator) is in a low load state during cooling operation and during defrosting. It is a solenoid valve for hot gas that operates to open.

さらに、(11g)は液管とガス管との間を接続し、冷
房運転時に吸入ガスの過熱度を調節するためのリキッド
インジェクションバイパス回路であって、該リキッドイ
ンジェクションバイパス回路(11g)には圧縮機
(1)のオン・オフと連動して開閉するインジェクショ
ン用電磁弁(29)と、感温筒(TP1)により検出さ
れる吸入ガスの過熱度に応じて開度を調節される自動膨
張弁(30)とが介設されている。
Further, (11g) is a liquid injection bypass circuit for connecting the liquid pipe and the gas pipe and for adjusting the degree of superheat of the intake gas during the cooling operation, and the liquid injection bypass circuit (11g) is compressed. A solenoid valve for injection (29) that opens and closes in conjunction with turning on and off of the machine (1), and an automatic expansion valve whose opening is adjusted according to the degree of superheat of the suction gas detected by the temperature sensing tube (TP1). And (30) are provided.

なお、(HPS1),(HPS2)は圧縮機保護用の高
圧圧力開閉器、(SP)はサービスポートである。
In addition, (HPS1) and (HPS2) are high-pressure pressure switches for protecting the compressor, and (SP) is a service port.

そして、上記各電磁弁およびセンサ類は各主要機器と共
に空気調和装置の室外ユニット(A)の制御用室外制御
ユニット(15)に信号線で接続されている。
The solenoid valves and the sensors are connected to the main control equipment of the outdoor unit (A) of the air conditioner together with the main equipment by signal lines.

第3図は上記室外ユニット(A)側に配置される室外制
御ユニット(15)の内部および接続される各機器の配
線関係を示す電気回路図である。図中、(MC1)はイ
ンバータ(2a)の周波数変換回路(INV)に接続さ
れた第1圧縮機(1a)のモータ、(MC2)は第2圧
縮機(1b)のモータ、(MF)は室外ファン(6a)
のモータ、(52F),(52C1)および(52C
2)は各々ファンモータ(MF)、周波数変換回路(I
NV)およびモータ(MC2)を作動させる電磁接触器
で、上記各機器はヒューズボックス(FS)、漏電ブレ
ーカ(BR1)を介して三相交流電源に接続されるとと
もに、室外制御ユニット(15)とは単相交流電源で接
続されている。次に、室外制御ユニット(15)の内部
にあっては、電磁リレーの常開接点(RY1)〜(RY
7)が単相交流電流に対して並列に接続され、これらは
順に、四路切換弁(5)の電磁リレー(20S)、周波
数変換回路(INV)の電磁接触器(52C1)、第2
圧縮機(1b)の電磁接触器(52C2)、室外ファン
用電磁接触器(52F)、アンローダ用電磁弁(1f)
の電磁リレー(SVL)、ホットガス用電磁弁(21)
の電磁リレー(SVL)およびインジェクション用電磁
弁(29)の電磁リレー(SVT)のコイルに直列に接
続され、室外制御ユニット(15)に入力される室温サ
ーモスタット(TH1)および温度センサ(TH2)〜
(TH6)の信号に応じて開閉されて、上記各電磁接触
器あるいは電磁リレーの接点を開閉させるものである。
また、端子(CN)には、室外電動膨張弁(8)の開度
を調節するパルスモータ(EV)のコイルが接続されて
いる。なお、第3図右側の回路において、(CH1),
(CH2)はそれぞれ第1圧縮機(1a)、第2圧縮機
(1b)のオイルフォーミング防止用ヒータで、それぞ
れ電磁接触器(52C1),(52C2)と直列に接続
され上記各圧縮機(1a),(1b)が停止時に電流が
流れるようになされている。さらに、(51C2)はモ
ータ(MC2)の過電流リレー、(49C1),(49
C2)はそれぞれ第1圧縮機(1a)、第2圧縮機(1
b)の温度上昇保護用スイッチ、(63H1),(63
H2)はそれぞれ第1圧縮機(1a)、第2圧縮機(1
b)の圧力上昇保護用スイッチ、(51F)はファンモ
ータ(MF)の過電流リレーであって、これらは直列に
接続されて起動時には電磁リレー(30Fx)をオン状
態にし、故障時にはオフ状態にさせる保護回路を構成し
ている。
FIG. 3 is an electric circuit diagram showing the wiring relationship between the inside of the outdoor control unit (15) arranged on the side of the outdoor unit (A) and each connected device. In the figure, (MC1) is the motor of the first compressor (1a) connected to the frequency conversion circuit (INV) of the inverter (2a), (MC2) is the motor of the second compressor (1b), and (MF) is Outdoor fan (6a)
Motors, (52F), (52C1) and (52C
2) are a fan motor (MF) and a frequency conversion circuit (I)
NV) and a motor (MC2) actuating electromagnetic contactor, each of the above devices is connected to a three-phase AC power source via a fuse box (FS) and an earth leakage breaker (BR1), and at the same time as an outdoor control unit (15). Are connected by a single-phase AC power supply. Next, in the inside of the outdoor control unit (15), normally open contacts (RY1) to (RY) of the electromagnetic relay are provided.
7) are connected in parallel to the single-phase alternating current, and these are, in order, the electromagnetic relay (20S) of the four-way switching valve (5), the electromagnetic contactor (52C1) of the frequency conversion circuit (INV), and the second.
Electromagnetic contactor (52C2) of compressor (1b), outdoor fan electromagnetic contactor (52F), unloader electromagnetic valve (1f)
Solenoid relay (SVL), solenoid valve for hot gas (21)
Room temperature thermostat (TH1) and temperature sensor (TH2), which are connected in series to the coils of the electromagnetic relay (SVL) and the electromagnetic relay (SVT) of the injection solenoid valve (29) and are input to the outdoor control unit (15).
It is opened / closed in response to a signal of (TH6) to open / close the contacts of each of the electromagnetic contactors or electromagnetic relays.
A coil of a pulse motor (EV) that adjusts the opening of the outdoor electric expansion valve (8) is connected to the terminal (CN). In the circuit on the right side of FIG. 3, (CH1),
(CH2) are heaters for preventing oil forming of the first compressor (1a) and the second compressor (1b), respectively, which are connected in series with the electromagnetic contactors (52C1) and (52C2), respectively. ), (1b), a current flows when stopped. Further, (51C2) is an overcurrent relay of the motor (MC2), (49C1), (49
C2) are the first compressor (1a) and the second compressor (1), respectively.
b) temperature rise protection switch, (63H1), (63
H2) are the first compressor (1a) and the second compressor (1), respectively.
b) Pressure rise protection switch, (51F) is a fan motor (MF) overcurrent relay, which are connected in series to turn on the electromagnetic relay (30Fx) at startup, and turn it off at failure. It constitutes a protection circuit.

第2図において、空気調和装置の暖房運転時、冷媒はガ
ス状態で圧縮機(1)により圧縮され、四路切換弁
(5)を経て各室内ユニット(B)〜(F)に分岐して
送られる。各室内ユニット(B)〜(F)では、各室内
熱交換器(12)…で熱交換を受けて凝縮された後合流
し、室外ユニット(A)で、レシーバ(9)に液貯蔵さ
れ、液状態で室外電動膨張弁(8)によって絞り作用を
受けて室外熱交換器(6)で蒸発し、ガス状態となって
圧縮機(1)に戻る。
In FIG. 2, during the heating operation of the air conditioner, the refrigerant is compressed in the gas state by the compressor (1) and is branched to each indoor unit (B) to (F) via the four-way switching valve (5). Sent. In each of the indoor units (B) to (F), heat is exchanged in each of the indoor heat exchangers (12) ... After being condensed and then combined, the outdoor unit (A) stores the liquid in the receiver (9). In the liquid state, it is subjected to a throttling action by the outdoor electric expansion valve (8) and evaporated in the outdoor heat exchanger (6) to be in a gas state and returned to the compressor (1).

その場合、室内ユニット(B)〜(F)ではその室内の
空調負荷に応じて各室内電動膨張弁(13)…の開度が
制御され、全体の冷媒流量の各室内ユニット(B)〜
(F)への分配流量が下記手順により決定される。
In that case, in the indoor units (B) to (F), the opening degree of each indoor electric expansion valve (13) ... Is controlled according to the air conditioning load in the room, and each indoor unit (B) to the entire refrigerant flow rate is controlled.
The distribution flow rate to (F) is determined by the following procedure.

第4図は、室温サーモスタット(TH1)の設定値(T
s)と吸込空気温度(Ta)との偏差(Ts−Ta)と
室内電動膨張弁(13)の目標開度との関係を示すグラ
フであって、ここに(Amax)は最大開度、(Amin)は
閉じる場合の最小制御開度、(Ao)は全閉を示す。
Fig. 4 shows the set value (T1) of the room temperature thermostat (TH1).
is a graph showing the relationship between the deviation (Ts-Ta) between the intake air temperature (Ta) and the target opening degree of the indoor electric expansion valve (13), where (Amax) is the maximum opening degree, and (Amin) indicates the minimum control opening for closing, and (Ao) indicates full closing.

そして、室内制御ユニット(図示せず)では室温サーモ
スタット(TH1)の信号を受けて、所定のサンプリン
グ時間ごとに目標開度ARが演算されて現在の開度Aと比
較され、室内電動膨張弁(13)の開度をAR<Aのと
きには所定パルスずつ閉じAR>Aのときには所定パル
スずつ開く開度変更信号が出力されて、室内電動膨張弁
(16)の開度Aが変更され冷媒流量が分配調整され
る。
Then, the indoor control unit (not shown) receives the signal from the room temperature thermostat (TH1), calculates the target opening AR at every predetermined sampling time and compares it with the current opening A, and the indoor electric expansion valve ( When the opening degree of 13) is AR <A, a predetermined pulse is closed when AR> A, and a predetermined pulse is opened when AR> A. An opening degree change signal is output to change the opening degree A of the indoor electric expansion valve (16) to change the refrigerant flow rate. Distribution adjusted.

次に、室内ユニット(A)では、各室内熱交換器(凝縮
器)(12)…における冷媒の凝縮温度の平均値Tcを
一定値Tcsに保持するために圧縮機(1)の容量制御が
行われる。ここで、第2圧縮機(1b)の運転容量は、
周波数換算の容量でいえば電源周波数が60Hzのとき、
フルロード時で60Hz、アンロード時で30Hzとなるの
で、第1圧縮機(1a)のインバータ(2a)の10Hz
きざみの容量変化と組み合わせることにより、周波数換
算の容量でいえば合計30〜130Hzの範囲で10Hzき
ざみに調節され得るものである。
Next, in the indoor unit (A), the capacity control of the compressor (1) is performed in order to keep the average value Tc of the condensation temperatures of the refrigerant in each indoor heat exchanger (condenser) (12) ... At a constant value Tcs. Done. Here, the operating capacity of the second compressor (1b) is
In terms of frequency converted capacity, when the power supply frequency is 60Hz,
60Hz at full load and 30Hz at unload, so 10Hz of the inverter (2a) of the first compressor (1a)
By combining with the capacity change of the step, the frequency converted capacity can be adjusted to the step of 10 Hz in the total range of 30 to 130 Hz.

また、圧縮機(1)の運転容量が定められると、それに
応じて室外電動膨張弁(8)の開度が変更されるように
なされている。
Further, when the operating capacity of the compressor (1) is set, the opening degree of the outdoor electric expansion valve (8) is changed accordingly.

さらに、暖房運転時、暖房負荷の変動等により凝縮温度
Tcが変化して、それに応じ圧縮機(1)の運転容量が
変化すると、その変化に応じて室外制御ユニット(1
5)により室外熱交換器(6)(蒸発器)における冷媒
の過熱度SH又は高圧Pc(凝縮温度Tc)を適正範囲
に保持するように室外電動膨張弁(8)の開度制御が行
われる。以下、第5図のフローチャートに基づきその手
順を説明する。
Furthermore, when the condensing temperature Tc changes due to the fluctuation of the heating load during the heating operation and the operating capacity of the compressor (1) changes accordingly, the outdoor control unit (1
By 5), the opening degree of the outdoor electric expansion valve (8) is controlled so as to maintain the superheat degree SH or the high pressure Pc (condensing temperature Tc) of the refrigerant in the outdoor heat exchanger (6) (evaporator) within an appropriate range. . The procedure will be described below with reference to the flowchart of FIG.

第5図のフローチャートにおいて、ステップS1で圧縮
機(1)が起動から停止に変ったか否かを判定し、以前
から停止したままあるいは稼働中のNOであればステッ
プS2に移行して圧縮機(1)が停止から起動したか否
かを判定する。ステップS2での判定の結果、停止中あ
るいは稼働中のNOであればステップS3,S4で高圧
一定制御を行うべき高圧制御フラグが「1」か否か、圧
縮機(1)の運転容量が最小容量であるか否かを順に判
別し、いずれもNOであるときにはそのままステップS
5に進み、圧縮機(1)の運転状態をサンプリングし
て、圧縮機(1)の容量が変化したか否かを判定する。
ステップS5での判定の結果、圧縮機(1)の容量が変
化したYESであればステップS6に進み、現在開度の
パルス値Pと共に、変化前の圧縮機(1)の容量に対応
する開度のパルス値Poおよび変化後の圧縮機(1)の
容量に対応する開度のパルス値P1をそれぞれ記憶装置
(図示せず)から読取る。そして、ステップS7で開度
を変化するためのパルス値の変化量ΔPを、関係式ΔP
=P×(P1/Po)−Pにより求める。
In the flowchart of FIG. 5, it is determined in step S1 whether the compressor (1) has changed from startup to stop. If the compressor is still stopped or is in operation for a while, the process proceeds to step S2 and the compressor ( It is determined whether 1) is started from stop. If the result of determination in step S2 is NO during stop or operation, whether or not the high pressure control flag for performing high pressure constant control in step S3, S4 is "1", and the operating capacity of the compressor (1) is minimum. Whether or not it is the capacity is determined in order, and if both are NO, the step S
5, the operating state of the compressor (1) is sampled to determine whether the capacity of the compressor (1) has changed.
If the result of determination in step S5 is YES that the capacity of the compressor (1) has changed, the process proceeds to step S6, in which the pulse value P of the current opening and the capacity of the compressor (1) before change are opened. Degree pulse value Po and the opening degree pulse value P1 corresponding to the changed capacity of the compressor (1) are read from a storage device (not shown). Then, in step S7, the change amount ΔP of the pulse value for changing the opening is calculated by the relational expression ΔP.
= P * (P1 / Po) -P.

また、ステップS5における判別の結果、圧縮機(1)
が停止中あるいは稼働中でも容量が変化していないNO
のときには、ステップS8で所定のサンプリング時間が
経過するのを待ってステップS9に進み、過熱度を一定
とするPI制御のための開度の増減分演算を下記手順で
行う。
In addition, as a result of the determination in step S5, the compressor (1)
The capacity does not change even when is stopped or operating NO
In the case of, after waiting for a predetermined sampling time to elapse in step S8, the process proceeds to step S9, and an increase / decrease calculation of the opening degree for PI control for keeping the superheat degree constant is performed in the following procedure.

まず、室外熱交換器(6)(蒸発器)の入口および出口
側にそれぞれ配置された温度センサ(TH5)および
(TH6)の温度差に基づいて過熱度SHを求める。次
に下式によりパルスの変化量ΔPを求める。
First, the superheat degree SH is obtained based on the temperature difference between the temperature sensors (TH5) and (TH6) arranged at the inlet and outlet sides of the outdoor heat exchanger (6) (evaporator). Next, the pulse change amount ΔP is obtained by the following equation.

ΔP=KE[{E(t)−E(t−Δt)} +Δt/2Ti){E(t) +E(t−Δt)}] …(1) ここで、E(t)は時刻tにおける実測過熱度SHと目
標過熱度SHsとの偏差値、E(t−Δt)は同様にサ
ンプリング開始時の偏差値、KEはゲイン、Δtはサン
プリング時間、Tiは積分時間である。
ΔP = KE [{E (t) -E (t-Δt)} + Δt / 2Ti) {E (t) + E (t-Δt)}] (1) where E (t) is an actual measurement at time t Similarly, a deviation value between the superheat degree SH and the target superheat degree SHs, E (t-Δt) is a deviation value at the start of sampling, KE is a gain, Δt is a sampling time, and Ti is an integration time.

一方、ステップS4における判別が圧縮機(1)の運転
容量が最小であるYESのときには、ステップS10に移
行して、上記高圧Pcの値に相当する凝縮温度Tcが所
定値Pcoに対応する凝縮温度値Tcoよりも高いか否かを
判別し、判別がNOのときには上記ステップS5に進ん
で上記ステップS5〜S9を実行する。また、ステップ
S10における判別が凝縮温度Tcが所定値Tcoより上で
あるYESのときには、各室内ユニット(B)〜(F)
の総空調負荷が小さくて室外熱交換器(6)が容量過剰
状態になっていると判断して、ステップS11で高圧Pc
を一定に保持する高圧一定制御を行うべく、高圧制御フ
ラグを「1」にしてステップS1に戻る。
On the other hand, if the determination in step S4 is YES, that is, the operating capacity of the compressor (1) is the minimum, the process proceeds to step S10, and the condensation temperature Tc corresponding to the value of the high pressure Pc corresponds to the predetermined value Pco. It is determined whether the value is higher than the value Tco. If the determination is NO, the process proceeds to step S5 and steps S5 to S9 are executed. When the determination in step S10 is YES, that is, when the condensation temperature Tc is higher than the predetermined value Tco, each indoor unit (B) to (F).
It is judged that the outdoor heat exchanger (6) is in an excessive capacity due to the small total air conditioning load of the high pressure Pc in step S11.
In order to carry out the high pressure constant control for keeping constant, the high pressure control flag is set to "1" and the process returns to step S1.

そして、その場合には、上記ステップS3における判別
が高圧制御フラグが「1」であるYESになって、ステ
ップS12以下の高圧一定制御に進む。まず、ステップS
12で、過熱度SHが上記目標加熱度SHsよりもやや低
い一定の値SHs′よりも小さいか否かを判別し、判別
がNOのときには、ステップS14で所定のサンプリング
時間が経過するのを待って、ステップS15に進み、高圧
一定制御を行うための開度の増減分演算を下記式に基づ
き行う。
Then, in that case, the determination in step S3 is YES with the high pressure control flag being "1", and the high pressure constant control of step S12 and subsequent steps is performed. First, step S
In step 12, it is judged whether or not the superheat degree SH is smaller than a constant value SHs' which is slightly lower than the target heating degree SHs. If the judgment is NO, wait in step S14 for the predetermined sampling time to elapse. Then, the process proceeds to step S15, and an increase / decrease calculation of the opening for performing the constant high pressure control is performed based on the following equation.

ΔP=Kc[{C(t)−C(t−Δt)} +Δt/2Ti){C(t) +C(t−Δt)}] …(2) ここで、Kcはゲイン、C(t)は時刻tにおける実測
凝縮温度Tcと制御目標値Tcoとの偏差値(つまりTc
(t)−Tco(t))、C(t−Δt)は同様にサンプ
リング開始前の偏差値である。
ΔP = Kc [{C (t) −C (t−Δt)} + Δt / 2Ti) {C (t) + C (t−Δt)}] (2) where Kc is the gain and C (t) is The deviation value (that is, Tc) between the measured condensing temperature Tc and the control target value Tco at time t
Similarly, (t) -Tco (t)) and C (t-Δt) are deviation values before the start of sampling.

なお、上記高圧一定制御を行った後、過熱度SHが十分
低下して、ステップS12における判別が過熱度SHが一
定値SHs′よりも小さいYESに変わると、室外熱交
換器(6)の容量過剰状態が解消したと判断して、ステ
ップS13で高圧制御フラグを「0」に再設定してステッ
プS1に戻り、以下、過熱度一定制御を行う。
After the high pressure constant control is performed, if the degree of superheat SH is sufficiently reduced and the determination in step S12 changes to YES where the degree of superheat SH is smaller than the constant value SHs', the capacity of the outdoor heat exchanger (6) is changed. When it is determined that the excess state has been resolved, the high pressure control flag is reset to "0" in step S13, the process returns to step S1, and the constant superheat degree control is performed.

また、ステップS1での判定で、圧縮機(1)が稼働中
から停止したYESのときにはステップS18に進みパル
ス変化量ΔP=0−Pとして室外電動膨張弁(8)を全
閉にする。また、ステップS2における判定で圧縮機
(1)が停止中から稼働したYESのときには、ステッ
プS16で、ステップS6におけるものと同様の演算によ
り、変化したときの圧縮機(1)の容量に応じた開度P
1を演算し、ステップS17においてΔP=P1としてパ
ルス変化量ΔPを求める。
If YES in step S1, the compressor (1) has stopped operating and the process proceeds to step S18 in which the outdoor electric expansion valve (8) is fully closed with a pulse change amount ΔP = 0-P. If YES in step S2, that is, if the compressor (1) is operating from the stopped state, in step S16, the same calculation as that in step S6 is performed to determine the capacity of the compressor (1) when changed. Opening P
1 is calculated, and the pulse change amount ΔP is obtained by setting ΔP = P1 in step S17.

最後に、ステップS19で、上記各ステップS7,S9,
S15,S17およびS18で求められたパルス変化量ΔPに
応じて、室外電動膨張弁(8)の開度を変更する。
Finally, in step S19, the above steps S7, S9,
The opening degree of the outdoor electric expansion valve (8) is changed according to the pulse change amount ΔP obtained in S15, S17 and S18.

上記フローにおいて、ステップS9により、過熱度検出
手段(51)で検出される冷媒の過熱度SHが一定値S
Hsになるように上記電動膨張弁の開度を制御する第1
制御手段(52)が構成され、ステップS15によって、
圧力センサ(高圧検出手段)(P1)で検出される高圧
Pcの値が一定になるように上記電動膨張弁(8)の開
度を制御する第2制御手段(54)が構成されている。
そして、ステップS10により、高圧Pcの値が所定値P
co以上か否かを判別する判別手段(53)が構成され、
ステップS11およびS3によって、該判別手段(53)
の出力を受け、高圧Pcが所定値Pco以上のときには上
記第1制御手段(52)による上記電動膨張弁(8)の
開度制御を停止して、上記第2制御手段(54)による
高圧一定制御に切換える制御切換手段(55)が構成さ
れている。
In the above flow, in step S9, the superheat degree SH of the refrigerant detected by the superheat degree detecting means (51) is the constant value S.
First for controlling the opening degree of the electric expansion valve so as to be Hs
The control means (52) is configured, and by step S15,
The second control means (54) is configured to control the opening degree of the electric expansion valve (8) so that the value of the high pressure Pc detected by the pressure sensor (high pressure detection means) (P1) becomes constant.
Then, in step S10, the value of the high pressure Pc is the predetermined value P.
A discriminating means (53) for discriminating whether or not co or more is constituted,
According to steps S11 and S3, the discrimination means (53)
When the high pressure Pc is equal to or higher than the predetermined value Pco, the opening control of the electric expansion valve (8) by the first control means (52) is stopped and the high pressure is kept constant by the second control means (54). Control switching means (55) for switching to control is configured.

したがって、上記実施例では、空気調和装置の運転時、
室内ユニット(B)〜(F)の総空調負荷が小さくなっ
て室外熱交換器(6)が容量過剰状態に陥ったときに
は、第2制御手段(54)により高圧Pcを一定にする
ような高圧一定制御を行って、高圧Pcの上昇を防止す
るので、連続運転を確保することができる。
Therefore, in the above embodiment, when the air conditioner is operating,
When the total air conditioning load of the indoor units (B) to (F) becomes small and the outdoor heat exchanger (6) falls into an excessive capacity state, the second control means (54) keeps the high pressure Pc constant. Since constant control is performed to prevent the high pressure Pc from rising, continuous operation can be ensured.

その場合、マルチ形空気調和装置においても、従来のも
ののように、室外ユニット(A)における空調負荷調節
のための補助熱交換器およびそのための高圧制御弁等が
不要となるので、装置の軽量化とコストダウンとを図る
ことができる。加えて、補助熱交換器で余分な能力を無
駄に消費することがない。また、容量過剰状態になった
場合にも、従来のように補助熱交換器で高圧だけを下げ
るのではなく、高圧一定制御を行うことにより低圧も低
く保持されるので、入力そのものも小さくて済み、各室
内ユニット(B)〜(F)における成績係数が可及的に
向上する。よって、トータルコストの低減化を図ること
ができる。
In that case, even in the multi-type air conditioner, unlike the conventional one, an auxiliary heat exchanger for adjusting the air conditioning load in the outdoor unit (A) and a high-pressure control valve therefor are not required, so the weight of the apparatus is reduced. It is possible to reduce the cost. In addition, the auxiliary heat exchanger does not waste unnecessary capacity. In addition, even if the capacity becomes excessive, the low pressure is kept low by performing high pressure constant control instead of lowering the high pressure only with the auxiliary heat exchanger as in the past, so the input itself can be small. , The coefficient of performance in each of the indoor units (B) to (F) is improved as much as possible. Therefore, it is possible to reduce the total cost.

なお、上記高圧一定制御を行っている間、室外熱交換器
(6)における過熱度SHが大きくなるが、上記実施例
のごとく、リキッドインジェクションバイパス回路(1
1g)を付加することにより、圧縮機(1)への吸入ガ
スの過熱度の上昇を防止することができる。このリキッ
ドインジェクションバイパス回路(11g)は、冷房運
転時に室内ユニット(B)〜(F)側における能力制御
により生ずる吸入ガスの過熱度の上昇を抑制するために
必要であり、そのために装置に余分の負担が掛かるもの
ではない。
While the high pressure constant control is being performed, the superheat degree SH in the outdoor heat exchanger (6) increases, but as in the above-described embodiment, the liquid injection bypass circuit (1
By adding 1 g), it is possible to prevent the superheat degree of the intake gas to the compressor (1) from increasing. This liquid injection bypass circuit (11g) is necessary to suppress an increase in the superheat degree of the intake gas caused by the capacity control on the indoor units (B) to (F) side during the cooling operation, and therefore an extra device is provided. It is not a burden.

また、上記実施例では、暖房運転についてのみ説明した
が、本発明は暖房運転だけではなく、冷房運転にも適用
することができる。すなわち、室内ユニット(B)〜
(F)の各室内熱交換器(蒸発器)(12)…の能力制
御時、各室内熱交換器(12)…の能力の総和が室外熱
交換器(凝縮器)(6)の能力を越えるような場合には
高圧が上昇し、高圧カットが生ずる危険性があるが、室
内ユニット(B)〜(F)の室内電動膨張弁(13)…
の開度制御を過熱度一定制御から高圧一定制御に切換え
ることにより、上記実施例と同様の効果を得ることがで
きる。
Further, in the above embodiment, only the heating operation has been described, but the present invention can be applied not only to the heating operation but also to the cooling operation. That is, the indoor unit (B)
At the time of controlling the capacity of each indoor heat exchanger (evaporator) (12) in (F), the sum of the capacities of each indoor heat exchanger (12) ... is calculated as the capacity of the outdoor heat exchanger (condenser) (6). If it exceeds, there is a risk that the high pressure rises and a high pressure cut occurs, but the indoor electric expansion valves (13) of the indoor units (B) to (F) ...
By switching the opening degree control from constant superheat control to constant high pressure control, the same effect as in the above embodiment can be obtained.

さらに、本発明は上記実施例のようなマルチ形空気調和
装置に限定されるものではなく、蒸発器と凝縮器とが一
台ずつ備えられた冷凍装置についても、両者の容量バラ
ンスが大きく崩れた場合に電動膨張弁の開度制御切換に
より、同様の効果を発揮することができるのはいうまで
もない。
Further, the present invention is not limited to the multi-type air conditioner as in the above embodiment, and even in the refrigerating apparatus provided with one evaporator and one condenser, the capacity balance between both is greatly disturbed. In this case, it goes without saying that the same effect can be exhibited by switching the opening control of the electric expansion valve.

(発明の効果) 以上説明したように、本発明の冷凍装置の制御装置によ
れば、凝縮器の熱交換負荷の減少により蒸発器が過剰容
量状態に陥って高圧が過上昇したとき、電動膨張弁の開
度制御を過熱度一定制御から高圧一定制御に切換えるよ
うにしたので、高圧の上昇を有効に防止して装置の連続
運転範囲の拡大化を図ることができる。特に、マルチ形
空気調和装置においても、補助熱交換器の不要による構
成の簡素化と、過剰容量の無駄な消費の回避による転効
率の向上とを図ることができ、よってトータルコストの
低減化を図ることができる。
(Effects of the Invention) As described above, according to the control device for a refrigeration system of the present invention, when the evaporator falls into an excessive capacity state due to a decrease in the heat exchange load of the condenser and the high pressure rises excessively, electric expansion is performed. Since the valve opening control is switched from the constant superheat control to the constant high pressure control, it is possible to effectively prevent the high pressure from rising and to expand the continuous operation range of the device. In particular, even in a multi-type air conditioner, it is possible to simplify the configuration by eliminating the need for an auxiliary heat exchanger and improve the conversion efficiency by avoiding unnecessary consumption of excess capacity, thus reducing the total cost. Can be planned.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の構成を示す図である。第2図〜第5図
は本発明の実施例を示し、第2図はその冷媒系統図、第
3図は室外制御ユニットの電気回路図、第4図は室温サ
ーモスタットの設定値と吸込空気温度との偏差と室内電
動膨張弁の開度との関係を示すグラフ、第5図は室外電
動膨張弁の開度制御手順を示すフローチャート図であ
る。 (1)……圧縮機、(6)……室外熱交換器、(8)……室外電
動膨張弁、(12)……室内熱交換器、(13)……室内電動膨
張弁、(51)……過熱度検出手段、(52)……第1制御手
段、(53)……判別手段、(54)……第2制御手段、(55)…
…制御切換手段、(A)……室外ユニット、(B)〜(F)……
室内ユニット、(P1)……圧力センサ(高圧検出手段)。
FIG. 1 is a diagram showing the configuration of the present invention. 2 to 5 show an embodiment of the present invention, FIG. 2 is a refrigerant system diagram thereof, FIG. 3 is an electric circuit diagram of an outdoor control unit, and FIG. 4 is a set value of a room temperature thermostat and an intake air temperature. Is a graph showing the relationship between the deviation of the electric expansion valve and the opening degree of the indoor electric expansion valve, and FIG. 5 is a flowchart showing the opening control procedure of the outdoor electric expansion valve. (1) …… compressor, (6) …… outdoor heat exchanger, (8) …… outdoor electric expansion valve, (12) …… indoor heat exchanger, (13) …… indoor electric expansion valve, (51 ) ... Superheat detection means, (52) ... first control means, (53) ... discrimination means, (54) ... second control means, (55) ...
… Control switching means, (A) …… Outdoor unit, (B) to (F) ……
Indoor unit, (P1) ... Pressure sensor (high pressure detection means).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機(1)、凝縮器(12又は6)、冷
媒の絞り作用を行う電動膨張弁(8又は13)および蒸
発器(6又は12)を順次接続してなる冷凍回路を備え
た冷凍装置において、冷媒の過熱度を検出する過熱度検
出手段(51)と、該過熱度検出手段(51)で検出さ
れる冷媒の過熱度が一定値になるように上記電動膨張弁
(8又は13)の開度を制御する第1制御手段(52)
とを備えるとともに、圧縮機(1)の高圧を検出する高
圧検出手段(P1)と、該高圧検出手段(P1)で検出
される高圧の値が一定になるように上記電動膨張弁(8
又は13)の開度を制御する第2制御手段(54)と、
上記高圧の値が所定値以上か否かを判別する判別手段
(53)と、該判別手段(53)の出力を受け、高圧が
所定値以上のときには上記第1制御手段(52)による
電動膨張弁(8又は13)の開度制御を停止して、上記
第2制御手段(54)による高圧を一定に保持する開度
制御に切換える制御切換手段(55)とを備えたことを
特徴とする冷凍装置の制御装置。
1. A refrigeration circuit comprising a compressor (1), a condenser (12 or 6), an electric expansion valve (8 or 13) for restricting refrigerant, and an evaporator (6 or 12) which are sequentially connected. In a provided refrigeration system, a superheat degree detecting means (51) for detecting a superheat degree of the refrigerant, and the electrically driven expansion valve () so that the superheat degree of the refrigerant detected by the superheat degree detecting means (51) becomes a constant value. 8 or 13) first control means (52) for controlling the opening degree
And a high pressure detecting means (P1) for detecting the high pressure of the compressor (1), and the electric expansion valve (8) so that the high pressure value detected by the high pressure detecting means (P1) is constant.
Or a second control means (54) for controlling the opening degree of 13),
A determination means (53) for determining whether or not the value of the high pressure is a predetermined value or more, and an output of the determination means (53). When the high voltage is a predetermined value or more, the first control means (52) electrically expands. And a control switching means (55) for stopping the opening control of the valve (8 or 13) and switching to the opening control for keeping the high pressure constant by the second control means (54). Control device for refrigeration equipment.
JP62313863A 1987-12-11 1987-12-11 Refrigerator control device Expired - Lifetime JPH0650197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62313863A JPH0650197B2 (en) 1987-12-11 1987-12-11 Refrigerator control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62313863A JPH0650197B2 (en) 1987-12-11 1987-12-11 Refrigerator control device

Publications (2)

Publication Number Publication Date
JPH01155146A JPH01155146A (en) 1989-06-19
JPH0650197B2 true JPH0650197B2 (en) 1994-06-29

Family

ID=18046411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62313863A Expired - Lifetime JPH0650197B2 (en) 1987-12-11 1987-12-11 Refrigerator control device

Country Status (1)

Country Link
JP (1) JPH0650197B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5375904B2 (en) * 2011-09-05 2013-12-25 パナソニック株式会社 Air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62258969A (en) * 1986-05-02 1987-11-11 株式会社日立製作所 Heat pump type air conditioner

Also Published As

Publication number Publication date
JPH01155146A (en) 1989-06-19

Similar Documents

Publication Publication Date Title
JPH0769087B2 (en) Operation control device for air conditioner
JPH07117327B2 (en) Air conditioner
JPH052902B2 (en)
JPS6373052A (en) Oil recovery operation controller for refrigerator
JPH02230056A (en) Operation control device for freezer
JPH0650197B2 (en) Refrigerator control device
JPH0221165A (en) Operation controller for air conditioner
JPH0217358A (en) Degree of overheat control device for freezing device
JPH0784956B2 (en) Operation control device for air conditioner
JPH0816556B2 (en) Operation control device for air conditioner
JPH07101130B2 (en) Operation control device for air conditioner
JPH052901B2 (en)
JPH01155147A (en) Controller for refrigerator
JPH0820140B2 (en) Oil recovery operation control device for air conditioner
JPH03122460A (en) Operating controller for refrigerating machine
JPS63187070A (en) Air conditioner
JPH05766Y2 (en)
JPH0381061B2 (en)
JPS63176949A (en) Air conditioner
JPH0550665B2 (en)
JPH02230063A (en) Capacity control device for air conditioner
JPH0733931B2 (en) Electric expansion valve controller for air conditioner
JPH02272249A (en) Operation control device for air conditioner
JPH02208452A (en) Pressure equalizing control device for refrigerator
JPH07117328B2 (en) Operation control device for air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080629

Year of fee payment: 14