JPH052607B2 - - Google Patents

Info

Publication number
JPH052607B2
JPH052607B2 JP63273170A JP27317088A JPH052607B2 JP H052607 B2 JPH052607 B2 JP H052607B2 JP 63273170 A JP63273170 A JP 63273170A JP 27317088 A JP27317088 A JP 27317088A JP H052607 B2 JPH052607 B2 JP H052607B2
Authority
JP
Japan
Prior art keywords
stirring
particle size
silica particles
solution
reynolds number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63273170A
Other languages
Japanese (ja)
Other versions
JPH02120221A (en
Inventor
Tadashi Kurita
Hidetaka Katayama
Kuniharu Nakayoshi
Takeyuki Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP63273170A priority Critical patent/JPH02120221A/en
Publication of JPH02120221A publication Critical patent/JPH02120221A/en
Publication of JPH052607B2 publication Critical patent/JPH052607B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、粒径の揃つた真球状シリカ粒子を製
造する方法に関する。 [従来の技術] アルコキシシランを水、アンモニア及びアルコ
ール溶液中で加水分解することによつて0.05〜1μ
mの比較的粒径の揃つたシリカ球状粒子を得る方
法が知られている(W.Sto¨ber,A.Fink and E.
Bohn;J.Colloid Interface Sci.,26,p62
(1968))。 このとき、生成するシリカ粒子の粒子径は、反
応溶液中のアンモニア濃度、アルコキシシランの
種類や濃度等によつてコントロールできる。 しかしながら、攪拌力が不十分な場合には、生
成粒子の平均粒径及び粒度分布は攪拌条件によつ
ても左右される。特に、粒子成長が進み、粒子径
が1μmに近づくにつれ、粒子間に凝集が進んで
大きな粒子となつたり、ついには、溶液が粘稠に
なつてゲル化を起す場合もある。また、粒子径が
大きくなるにつれ、単分散性も失われていく。 ところで、近年、PETフイルムの滑剤として
のフイラーや液晶パネルのギヤツプ剤等として、
単分散性の高い粒子が要求されることもあり、前
述の方法で製造される粒子では必ずしも満足でき
ない場合がある。 [発明が解決しようとする課題] 本発明者らは、このような問題点を解決するた
め研究を行つた結果、アルコキシシラン類を供給
する際に、単位体積当りの攪拌所要動力が
0.02kw/m3以上であつて、レイノルズ数が5000
以上の条件で反応溶液を攪拌することにより、生
成粒子の単分散性が向上することを見い出し、本
発明を完成した。 従つて、本発明の目的は、真球状であつて、
0.1〜2μm程度の大きさで、粒径の揃つた粒子を
製造することができるシリカ粒子の製造方法を提
供することにある。 [課題を解決するための手段] すなわち、本発明は、アルコキシシラン類を水
とアンモニアあるいはこれらにアルコールを加え
た混合溶液中で加水分解するに際し、単位体積当
りの攪拌所要動力0.02kw/m3以上及びレイノル
ズ数5000以上の攪拌条件で反応混合物を攪拌する
シリカ粒子の製造方法である。 本発明で使用するアルコキシシラン類として
は、例えばテトラメトキシシラン、テトラエトキ
シシラン、テトラプロポキシシラン、テトラブト
キシシラン、テトラフエノキシシラン、テトラベ
ンジルオキシシラン等を挙げることができ、アル
コキシシラン類であればいかなるものでもよい
が、好ましくは、炭素数1〜4のアルコキシ基を
有するものであり、加水分解反応の際の反応速度
の大きいテトラメトキシシランやテトラエトキシ
シランが特に好ましい。 本発明では、アルコキシシラン類の加水分解を
水とアンモニアの溶液あるいはこれらにアルコー
ルを加えた溶液を使用して行うものであり、この
際に使用するアルコールとしては、メチルアルコ
ール、エチルアルコール、プロピルアルコール、
ブチルアルコール、フエノール、ベンジルアルコ
ール等がある。 アルコキシシラン類の加水分解はアンモニア存
在下で水と接触することにより可能である。具体
的には、例えば、上記の混合溶液を十分に攪拌し
ながらテトラアルコキシシラン類を滴下する方法
がある。加水分解時の液温については、必要に応
じて適当な温度を選択することができるが、常温
でも可能である。 この加水分解により、平均粒径が0.05〜2.0μm
の範囲の単分散球状シリカ粒子を含むゾルを得る
ことができる。このシリカ粒子の粒径は、加水分
解に使用する溶液中の水とアンモニアの濃度、ア
ルコキシシランの種類や濃度、アルコキシシラン
の滴下速度、反応温度等を制御することによつて
制御可能であるが、一方で、溶液の攪拌状態によ
つても、その粒径や粒度分布が影響を受ける。 攪拌が不十分な場合には粒径が大きくなり、分
布がブロードになる傾向がある。また、レイノル
ズ数と粒径の関係は、レイノルズ数をReとし、
粒径をRとしたとき、概ねR=K/Re(但し、K
は定数)の関係を有し、このレイノルズ数が5000
未満では生成するシリカ粒子の平均粒径が攪拌条
件に大きく依存する。それ故、反応途中の固形分
濃度、溶液組成、温度等の変化につれて必然的に
溶液の粘度が変化し、この溶液の粘度の変化によ
り攪拌条件が変化すると生成するシリカ粒子の平
均粒径も変化することになる。従つて、レイノル
ズ数については、攪拌条件の変化が平均粒径に及
ぼす影響の少ない領域、すなわち5000以上、好ま
しくは10000以上の領域である必要がある。 また、レイノルズ数が10000以上でも、単位体
積当りの攪拌所要動力が小さいと、単分散性が悪
くなり、粒子間の凝集が起り易くなる。従つて、
単位体積当りの攪拌所要動力は0.02kw/m3以上
にする必要がある。 そして、単位体積当りの攪拌所要動力を大きく
する方法としては、槽型反応器の場合には、例え
ば攪拌翼の形、巾、段数等の翼条件や、回転数の
アツプや、邪魔板の取付等等の手段が有効であ
り、また、チユーブ式反応器では、例えば流速を
速くする方法等の手段が有効である。 [実施例] 以下、実施例及び比較例に基づいて、本発明を
具体的に説明する。 実施例1〜3及び比較例1,2 水180重量部、アンモニア54重量部及びメタノ
ール416重量部を丸底反応槽に仕込み、第1表に
示す攪拌条件で混合しながら、テトラメトキシシ
ラン381重量部を100分間かけて溶液中に滴下し、
さらに滴下終了後60分間攪拌を続けてシリカ粒子
を製造した。得られたシリカ粒子について、その
粒度分布を光透過式粒度分布計により測定した。
結果を第1表に示す。
[Industrial Field of Application] The present invention relates to a method for producing truly spherical silica particles with uniform particle sizes. [Prior art] By hydrolyzing alkoxysilane in water, ammonia and alcohol solution,
A method for obtaining silica spherical particles of relatively uniform particle size of m is known (W. Sto¨ber, A. Fink and E.
Bohn; J. Colloid Interface Sci., 26 , p62
(1968)). At this time, the particle size of the silica particles produced can be controlled by the ammonia concentration, the type and concentration of alkoxysilane, etc. in the reaction solution. However, if the stirring force is insufficient, the average particle size and particle size distribution of the produced particles also depend on the stirring conditions. In particular, as particle growth progresses and the particle diameter approaches 1 μm, aggregation between particles may progress to form larger particles, and the solution may eventually become viscous and cause gelation. Furthermore, as the particle size increases, monodispersity also decreases. By the way, in recent years, fillers have been used as lubricants for PET films, gapping agents for liquid crystal panels, etc.
Particles with high monodispersity may be required, and particles produced by the above-mentioned method may not always be sufficient. [Problems to be Solved by the Invention] As a result of research to solve these problems, the present inventors have found that the power required for stirring per unit volume when supplying alkoxysilanes has been determined.
0.02kw/ m3 or more and Reynolds number 5000
The present invention was completed based on the discovery that stirring the reaction solution under the above conditions improves the monodispersity of the produced particles. Therefore, the object of the present invention is to have a truly spherical shape,
The object of the present invention is to provide a method for producing silica particles that can produce particles with a uniform particle size of about 0.1 to 2 μm. [Means for Solving the Problems] That is, the present invention provides a method for hydrolyzing alkoxysilanes in a mixed solution of water and ammonia or alcohol added thereto, using a stirring power of 0.02 kw/m 3 per unit volume. This is a method for producing silica particles in which a reaction mixture is stirred under the above stirring conditions and a Reynolds number of 5000 or more. Examples of the alkoxysilanes used in the present invention include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetraphenoxysilane, and tetrabenzyloxysilane. Any type of silane may be used, but it is preferably one having an alkoxy group having 1 to 4 carbon atoms, and tetramethoxysilane and tetraethoxysilane, which have a high reaction rate during a hydrolysis reaction, are particularly preferred. In the present invention, the hydrolysis of alkoxysilanes is carried out using a solution of water and ammonia or a solution in which alcohol is added to these, and the alcohol used at this time includes methyl alcohol, ethyl alcohol, and propyl alcohol. ,
Examples include butyl alcohol, phenol, and benzyl alcohol. Hydrolysis of alkoxysilanes is possible by contacting them with water in the presence of ammonia. Specifically, for example, there is a method in which tetraalkoxysilanes are added dropwise to the above-mentioned mixed solution while sufficiently stirring it. Regarding the liquid temperature during hydrolysis, an appropriate temperature can be selected as required, but room temperature is also possible. This hydrolysis results in an average particle size of 0.05 to 2.0 μm.
A sol can be obtained containing monodisperse spherical silica particles in the range of . The particle size of the silica particles can be controlled by controlling the concentrations of water and ammonia in the solution used for hydrolysis, the type and concentration of alkoxysilane, the dropping rate of alkoxysilane, the reaction temperature, etc. On the other hand, the particle size and particle size distribution are also affected by the stirring state of the solution. If stirring is insufficient, the particle size tends to increase and the distribution tends to become broad. In addition, the relationship between Reynolds number and particle size is as follows, where Reynolds number is Re.
When the particle size is R, approximately R=K/Re (however, K
is a constant), and this Reynolds number is 5000
If it is less than this, the average particle size of the silica particles produced will largely depend on the stirring conditions. Therefore, the viscosity of the solution inevitably changes as the solid content concentration, solution composition, temperature, etc. change during the reaction, and when the stirring conditions change due to the change in the viscosity of the solution, the average particle size of the silica particles produced also changes. I will do it. Therefore, the Reynolds number needs to be in a range where changes in stirring conditions have little effect on the average particle size, that is, 5,000 or more, preferably 10,000 or more. Furthermore, even if the Reynolds number is 10,000 or more, if the required stirring power per unit volume is small, monodispersity deteriorates and aggregation between particles is likely to occur. Therefore,
The power required for stirring per unit volume must be 0.02kw/m 3 or more. In the case of a tank-type reactor, methods for increasing the required stirring power per unit volume include, for example, changing the blade conditions such as the shape, width, and number of stages of the stirring blade, increasing the rotation speed, and installing baffles. For example, in a tube reactor, methods such as increasing the flow rate are effective. [Examples] The present invention will be specifically described below based on Examples and Comparative Examples. Examples 1 to 3 and Comparative Examples 1 and 2 180 parts by weight of water, 54 parts by weight of ammonia and 416 parts by weight of methanol were charged into a round bottom reaction tank, and while mixing under the stirring conditions shown in Table 1, 381 parts by weight of tetramethoxysilane was added. dropwise into the solution over 100 minutes,
Furthermore, after the completion of the dropwise addition, stirring was continued for 60 minutes to produce silica particles. The particle size distribution of the obtained silica particles was measured using a light transmission type particle size distribution meter.
The results are shown in Table 1.

【表】 [発明の効果] 本発明方法によれば、真球状であつて、凝集が
少なく単分散性に優れた0.1〜2μm程度の大きさ
で粒径の揃つた球状シリカ粒子を製造することが
できる。
[Table] [Effects of the Invention] According to the method of the present invention, it is possible to produce spherical silica particles that are perfectly spherical, have a uniform particle size of about 0.1 to 2 μm, and have low agglomeration and excellent monodispersity. I can do it.

Claims (1)

【特許請求の範囲】 1 アルコキシシラン類を水とアンモニアあるい
はこれらにアルコールを加えた混合溶液中で加水
分解するに際し、単位体積当りの攪拌所要動力
0.02kw/m3以上及びレイノルズ数5000以上の攪
拌条件で反応混合物を攪拌することを特徴とする
シリカ粒子の製造方法。 2 レイノルズ数が10000以上である請求項1記
載のシリカ粒子の製造方法。
[Scope of Claims] 1. Power required for stirring per unit volume when hydrolyzing alkoxysilanes in a mixed solution of water and ammonia or alcohol added thereto.
A method for producing silica particles, characterized by stirring a reaction mixture under stirring conditions of 0.02 kw/m 3 or more and a Reynolds number of 5000 or more. 2. The method for producing silica particles according to claim 1, wherein the Reynolds number is 10,000 or more.
JP63273170A 1988-10-31 1988-10-31 Production of silica particle Granted JPH02120221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63273170A JPH02120221A (en) 1988-10-31 1988-10-31 Production of silica particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63273170A JPH02120221A (en) 1988-10-31 1988-10-31 Production of silica particle

Publications (2)

Publication Number Publication Date
JPH02120221A JPH02120221A (en) 1990-05-08
JPH052607B2 true JPH052607B2 (en) 1993-01-12

Family

ID=17524074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63273170A Granted JPH02120221A (en) 1988-10-31 1988-10-31 Production of silica particle

Country Status (1)

Country Link
JP (1) JPH02120221A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4895556B2 (en) * 2005-09-07 2012-03-14 株式会社トクヤマ Method for producing silica-based oxide particles
JP5704740B2 (en) * 2009-10-23 2015-04-22 株式会社日本触媒 Method for producing organic-inorganic composite particles
JP5558796B2 (en) * 2009-12-03 2014-07-23 株式会社日本触媒 Method for producing fine particles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841810A (en) * 1981-09-07 1983-03-11 Tokuyama Soda Co Ltd Composite reparative material
JPS6272514A (en) * 1985-09-25 1987-04-03 メルク・パテント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Spherical sio2 particle
JPS62207356A (en) * 1986-03-07 1987-09-11 Nippon Shokubai Kagaku Kogyo Co Ltd Method of improving slipperiness
JPS6374911A (en) * 1986-09-19 1988-04-05 Shin Etsu Chem Co Ltd Production of fine spherical silica

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841810A (en) * 1981-09-07 1983-03-11 Tokuyama Soda Co Ltd Composite reparative material
JPS6272514A (en) * 1985-09-25 1987-04-03 メルク・パテント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Spherical sio2 particle
JPS62207356A (en) * 1986-03-07 1987-09-11 Nippon Shokubai Kagaku Kogyo Co Ltd Method of improving slipperiness
JPS6374911A (en) * 1986-09-19 1988-04-05 Shin Etsu Chem Co Ltd Production of fine spherical silica

Also Published As

Publication number Publication date
JPH02120221A (en) 1990-05-08

Similar Documents

Publication Publication Date Title
JP5008460B2 (en) Dry silica fine particles
TWI395712B (en) Fine dry silica particles
US7824644B2 (en) Particulate silica
KR20010074514A (en) Spherical silicone fine particles and process for producing the same
WO1981003485A1 (en) Method for producing hydrophobic reinforcing silica fillers and fillers obtained thereby
JP2012006789A (en) Silica particles, and method for producing the same
EP1591419A1 (en) Slica fine particles
JPH0159974B2 (en)
JP2014114175A (en) Surface-hydrophobized spherical silica fine particle, method for producing the same, and toner external additive, obtained by using the particle, for developing electrostatic charge image
JPH0544326B2 (en)
JPH052607B2 (en)
JP2007197655A (en) Microparticle-containing composition and method for producing the composition
CN108130043A (en) A kind of preparation method of silica and polyethylene glycol thickening dispersion
JP3330984B2 (en) Method for producing monodisperse spherical silica
CN108341414B (en) Uniform silicon dioxide microsphere and preparation method and application thereof
JP5974986B2 (en) Silica-attached silicon particles and sintered mixed raw material, and method for producing silica-attached silicon particles and hydrophobic spherical silica fine particles
JP4377215B2 (en) Silica fine particles
JP3746301B2 (en) Method for producing spherical silica particles
JPS63310714A (en) Silica particles
JP2018043908A (en) Silica particle, and method for producing the silica particle
JP3354650B2 (en) Method for producing silica particles
CN100418620C (en) Method for preparing inorganic/organic composite microparticle using O/W type emulsion
CN114149617A (en) High-thermal-conductivity composition in high-molecular compound, and preparation method and application thereof
JP2003012320A (en) Organosol of silica base inorganic compound
JPH08337413A (en) Silica particles and their production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees