JPS62207356A - Method of improving slipperiness - Google Patents

Method of improving slipperiness

Info

Publication number
JPS62207356A
JPS62207356A JP61048456A JP4845686A JPS62207356A JP S62207356 A JPS62207356 A JP S62207356A JP 61048456 A JP61048456 A JP 61048456A JP 4845686 A JP4845686 A JP 4845686A JP S62207356 A JPS62207356 A JP S62207356A
Authority
JP
Japan
Prior art keywords
polyester
fine particles
added
particles
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61048456A
Other languages
Japanese (ja)
Other versions
JPH0578585B2 (en
Inventor
Tadahiro Yoneda
忠弘 米田
Saburo Nakahara
中原 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP61048456A priority Critical patent/JPS62207356A/en
Priority to DE3751849T priority patent/DE3751849T2/en
Priority to DE8787103111T priority patent/DE3784357T2/en
Priority to EP87103111A priority patent/EP0236945B1/en
Priority to EP92100741A priority patent/EP0479774B1/en
Priority to KR1019870002058A priority patent/KR910008721B1/en
Publication of JPS62207356A publication Critical patent/JPS62207356A/en
Priority to US07/322,185 priority patent/US5316714A/en
Priority to US07/731,259 priority patent/US5236622A/en
Priority to US07/925,424 priority patent/US5304324A/en
Publication of JPH0578585B2 publication Critical patent/JPH0578585B2/ja
Priority to US08/201,406 priority patent/US5863647A/en
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a polyester having excellent slipperiness and wear resistance, by adding fine spherical particles of a specified inorg. oxide to a polyester. CONSTITUTION:An alcoholic soln. contg. an organometallic compd. as a metal alkoxide having the formula M(OR)4 (wherein M is Si, Ti or Zr; and R is an alkyl) in an amount of not more than 0.7mol/l is stirred at 0-50 deg.C for 30 min-100hr to hydrolyze the compd. After the separation of the solvent, the product is dried and optionally fired at 300-1,000 deg.C to obtain fine spherical particles of an inorg. oxide which have an average particle size of 0.05-2mum and in which the standard deviation of particle diameters is 1-1.5. 0.01-5wt% said fine spherical particles are added to a polyester.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は滑り性改良方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for improving slipperiness.

更に詳しくは、ポリエステルフィルムの滑り性を向上さ
せる為に、特定の製法で得られた粒子径のそろった無機
酸化物球状微粒子をポリエステルに添加する滑り性改頁
方法に関するものである。
More specifically, the present invention relates to a slipping property page breaking method in which inorganic oxide spherical fine particles of uniform particle size obtained by a specific manufacturing method are added to polyester film in order to improve the slipping property of the polyester film.

(従来の技術) ポリエステルは優れた物理的・化学的性能を有しておシ
、それ故そのフィルムであるポリエステルフィルムは磁
気テープ用、光学写真用、蒸着用、コンデンサー用、包
装用等に広く用いられている。
(Prior art) Polyester has excellent physical and chemical properties, and therefore its polyester film is widely used for magnetic tapes, optical photography, vapor deposition, capacitors, packaging, etc. It is used.

しかしながら、その優れた性能にもかかわらず、製造工
程中に種々の好ましくないトラブルが生じる場合がある
。これはポリエステルフィルムの清シ性の悪さに起因す
るものと考えられている。さらに、ポリエステルフィル
ムをその表面に磁性層を塗布して磁気テープとして用い
る場合には、特に滑υ性の良さが要求される。これは、
フィルムの滑り性が悪いとフィルム製造時、磁性層塗布
時あるいはその他フィルム取扱い時にフィルム表面に傷
・しわ等が発生し、その為ドロップ・アウトが起こシ磁
気テープの品質に問題が生じるからである。また、製品
としての磁気テープはテープ走行性の良さが不可欠であ
る為、良好な滑り性が求められる。
However, despite its excellent performance, various undesirable troubles may occur during the manufacturing process. This is thought to be due to the poor cleanliness of the polyester film. Furthermore, when a polyester film is used as a magnetic tape by coating a magnetic layer on its surface, particularly good lubricity is required. this is,
If the slipperiness of the film is poor, scratches and wrinkles will occur on the film surface during film manufacturing, magnetic layer coating, or other film handling, which will cause dropouts and cause problems with the quality of the magnetic tape. . Furthermore, since it is essential for magnetic tapes to have good tape running properties, good slipping properties are required.

従来、ポリエステルフィルムの滑り性を向上させる方法
として、フィルム表面に凹凸を形成して摩擦係数を低下
させることが行われている。その為に大別すると、(1
)ポリエステル合成時に使用する触媒、着色防止剤など
の一部または全部を反応過程で析出せしめ微粒子として
存在させる方法、(2)ポリエステル合成時の任意の段
階で外部より無機微粒子を添加する方法が提案されてい
る。
Conventionally, as a method of improving the slipperiness of a polyester film, forming irregularities on the film surface to lower the coefficient of friction has been carried out. For this reason, it can be roughly divided into (1)
2.) A method in which part or all of the catalyst, color inhibitor, etc. used during polyester synthesis is precipitated during the reaction process and exists as fine particles, and (2) A method in which inorganic fine particles are added externally at any stage during polyester synthesis. has been done.

しかし、(1)の方法はポリエステルの合成反応中に触
媒金属化合物に起因する粒子を生成させる方法である為
、粒子量や粒子径のコントロールが内患 難であり、麿大粒子の生成が避は難いなどの問題点があ
った。
However, since method (1) generates particles caused by the catalytic metal compound during the polyester synthesis reaction, it is difficult to control the particle amount and particle size, and the generation of large particles is unavoidable. There were some problems, such as difficulty.

一方、(2)の方法で添加する無機微粒子として、シリ
カ、酸化チタン、硫酸バリウム、酸化ケイ素−酸化マグ
ネシウム化合物、シリカ−アルミナ化合物、アルミナ化
合物、ガラス粉末、炭酸カルシウム、クレイ、雲母、タ
ルク、リン酸カルシウム、リン酸マグネシウムなどが知
られておυ、その平均粒径が0.001〜10μmのも
のがポリエステルフィルムの用途に応じて使い分けられ
ている(特公昭59−8216号、特開昭52−364
5号など)。
On the other hand, as inorganic fine particles added in method (2), silica, titanium oxide, barium sulfate, silicon oxide-magnesium oxide compound, silica-alumina compound, alumina compound, glass powder, calcium carbonate, clay, mica, talc, calcium phosphate , magnesium phosphate, etc. are known, and those with an average particle size of 0.001 to 10 μm are used depending on the purpose of the polyester film (Japanese Patent Publication No. 59-8216, JP-A No. 52-364).
No. 5, etc.).

しかし、従来から用いられているこれらの無機微粒子は
、それらの製法に由来するのであるが、粒径分布が広く
、殆んどの粒子形状が不定形である。シリカ微粒子を例
にとると、ノ・ロゲン化ケイ素の熱分解法による平均−
次粒子径0.02〜0.1μm九シリカなどで、いずれ
も電子顕微鏡観察によると、粒子形状が不定形であった
り、仮に球形に近いものでも粒径分布が非常に広いもの
であった。
However, these conventionally used inorganic fine particles have a wide particle size distribution and most of the particle shapes are amorphous due to their manufacturing method. Taking silica fine particles as an example, the average -
9 silica having a particle size of 0.02 to 0.1 μm, and according to electron microscopic observation, the particle shape was irregular, and even if it was close to spherical, the particle size distribution was very wide.

さらに、近年ポリエステルフィルムの薄膜化が進み、特
に磁気記録の高密度化で一段と促進されるにつけ、ポリ
エステルフィルムの滑り性および耐摩耗性の改良が今ま
でより以上に強く要望されてきている。その為にポリエ
ステル中に不活性微粒子を添加する方法については、多
くの提案がなされてきてはいるが、上述したように添加
微粒子の物性面による制限から、電磁変換特性として必
要な均質微細で高密度な表面凹凸を与えるものではなく
、フィルムの製造工程、磁気テープ製造工程および磁気
テープ使用時の滑υ性や耐摩耗性を充分に満足しうるK
は至っていない。
Furthermore, as polyester films have become thinner in recent years, and this has been further accelerated by the increasing density of magnetic recording, there has been a stronger demand than ever for improvements in the slipperiness and abrasion resistance of polyester films. For this reason, many proposals have been made regarding the method of adding inert fine particles to polyester, but as mentioned above, due to limitations due to the physical properties of the added fine particles, it is difficult to achieve the homogeneous, fine, and high quality required for electromagnetic conversion characteristics. K does not give dense surface irregularities, but satisfies lubricity and abrasion resistance during film manufacturing processes, magnetic tape manufacturing processes, and magnetic tape use.
has not yet been reached.

(発明が解決しようとする問題点) 本発明者らは、ポリエステルフィルム表面が平滑である
が滑υ性も満足するという一見あい入れない特性の要求
に対して、従来技術での問題点が添加微粒子の性状に基
くものと考え、鋭意検討した結果本発明に至ったもので
ある。
(Problems to be Solved by the Invention) The present inventors have discovered that the problems with the prior art have been added to meet the seemingly contradictory requirements of having a polyester film surface that is smooth and also satisfies lubricity. We believe that this is based on the properties of the fine particles, and as a result of intensive study, we have arrived at the present invention.

(問題点を解決するための手段および作用)本発明は、
有機金属化合物をアルコール性溶液中で加水分解して製
造された平均粒子径が0.05〜2μmの範囲でかつ粒
子径の標準偏差値が1〜1.5の範囲にある無機酸化物
球状微粒子を、ポリエステルに対して0.01〜5重量
%添加することを特徴とするポリエステルフィルムの滑
り性改良方法に関するものである。
(Means and effects for solving the problems) The present invention has the following features:
Inorganic oxide spherical fine particles with an average particle diameter in the range of 0.05 to 2 μm and a standard deviation value of the particle diameter in the range of 1 to 1.5, produced by hydrolyzing an organometallic compound in an alcoholic solution. The present invention relates to a method for improving the slipperiness of a polyester film, which comprises adding 0.01 to 5% by weight of the following to polyester.

本発明に用いられる無機酸化物球状微粒子(以下、これ
を球状微粒子囚という。)の原料である有機金属化合物
は、加水分解性有機基を含有するシリコン、チタン、ジ
ルコン等の金属化合物で、加水分解して無機酸化物を形
成しうるものであれば良く、工業的に入手しやすく安価
であるものとして金属アルコキシドが好適に用いられる
。それらは一般式M(OR)4 (但し、MはSi、 
TiまたはZrであり、Rはアルキル基を表わす。)で
示されるが、好ましくは上記アルキル基は炭素数8まで
の低級アルキル基が用いられる。具体的にはテトラメト
キシシラン、テトラエトキシシラン、テトライソプロポ
キシチタン、テトラブトキシシラン、テトラメトキシチ
タン、テトラエトキシチタン、テトライソプロポキシチ
タン、テトラブトキシチタン、テトラメトキシジルコン
、テトラエトキシジルコン、テトライソプロポキシジル
コン、テトラブトキシジルコン、テトラ(2−エチルヘ
キシル)チタネートなどが掲げられるが、ジメトキシジ
ェトキシシラン、ジェトキシジブトキシチタンなどの如
く複数のアルキル基の化合物であっても良い。
The organometallic compound that is the raw material for the inorganic oxide spherical fine particles (hereinafter referred to as spherical fine particles) used in the present invention is a metal compound such as silicon, titanium, or zircon that contains a hydrolyzable organic group. Any material may be used as long as it can be decomposed to form an inorganic oxide, and metal alkoxides are preferably used because they are industrially easily available and inexpensive. They have the general formula M(OR)4 (where M is Si,
Ti or Zr, and R represents an alkyl group. ), but preferably the alkyl group is a lower alkyl group having up to 8 carbon atoms. Specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxytitanium, tetrabutoxysilane, tetramethoxytitanium, tetraethoxytitanium, tetraisopropoxytitanium, tetrabutoxytitanium, tetramethoxyzircone, tetraethoxyzircone, tetraisopropoxyzircone. , tetrabutoxyzircon, tetra(2-ethylhexyl)titanate, etc., but compounds having a plurality of alkyl groups such as dimethoxyjethoxysilane, jetoxydibutoxytitanium, etc. may also be used.

また、他の好ましい有機金属化合物として金属アルコキ
シドの誘導体がある。−例として、前記一般式M (O
R) 4のうち3つまでのフルコキシド基(OR)がカ
ルボキシル基あるいはβ−ジカルボニル基で置換された
化合物、あるいは金属アルコキシドまたは上記アルコキ
シド置換化合物を部分的に加水分解して得られる低縮合
物などである。
Other preferred organometallic compounds include metal alkoxide derivatives. - As an example, the general formula M (O
R) Compounds in which up to three of the flukoxide groups (OR) of 4 are substituted with carboxyl groups or β-dicarbonyl groups, or low condensates obtained by partially hydrolyzing metal alkoxides or the above alkoxide-substituted compounds. etc.

その他の有機金属化合物としては、例えばジルコニウム
アセテート、ジルコニウムオキサレート、ジルコニウム
ラクテート、チタンラクテートなどのチタンまたはジル
コンの7シレート化合物;チタンアセチルアセトナート
、ジルコンアセチルアセトナート、チタンオクチレング
リコラート、ジルコンアセチルアセトナート、チタント
リエタノールアミネートなどのチタンまたはジルコンの
グリコール、β−ジケトン、ヒドロキシカルボン酸、ケ
トエステル、ケトアルコール、アミノアルコール、キノ
リンなどのキレート化合物などが挙げられる。
Other organometallic compounds include, for example, titanium or zircon heptacylate compounds such as zirconium acetate, zirconium oxalate, zirconium lactate, titanium lactate; titanium acetylacetonate, zircon acetylacetonate, titanium octylene glycolate, zircon acetylacetonate; Examples include glycols of titanium or zircon such as titanium triethanolaminate, and chelate compounds such as β-diketones, hydroxycarboxylic acids, ketoesters, ketoalcohols, aminoalcohols, and quinolines.

球状微粒子(5)は、上記したシリコン、チタンおよび
/またはジルコンの有機金属化合物を主原料とするもの
であるが、それ以外にナトリウム、カリウム、ルビジウ
ム、セシウム、マグネシウム、カルシウム、ストロンチ
ウム、バリウム、ホウ素、アルミニウム、ガリウム、イ
ンジウムなどの有機金属化合物または無機塩を共存せし
めて加水分解することにより、シリコン、チタンおよび
/またはジルコンの酸化物と上記金属の酸化物の複合体
微粒子とすることもできる。その際、球状微粒子回申の
シリコン、チタンおよび/−1!たはジルコンの酸化物
の割合を原子比で70%以上とするのが好ましい。
The spherical fine particles (5) are mainly made from the organometallic compound of silicon, titanium, and/or zircon, but also contain sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, and boron. By hydrolysis in the coexistence of organometallic compounds or inorganic salts such as aluminum, gallium, and indium, fine particles of a composite of silicon, titanium, and/or zircon oxides and oxides of the above metals can be obtained. At that time, silicon, titanium and /-1! It is preferable that the proportion of oxide of zircon or zircon be 70% or more in terms of atomic ratio.

上記した有機金属化合物はアルコール性溶液中に添加混
合して加水分解されるが、その添加方法は一括、分割な
ど任意の方法がとシうる。その際有機金属化合物の溶液
の最終濃度は0.7 mo I / 1以下にするのが
好ましい。
The above-mentioned organometallic compound is added and mixed into an alcoholic solution and hydrolyzed, and the addition method can be any method such as all at once or divided. In this case, the final concentration of the solution of the organometallic compound is preferably 0.7 mo I/1 or less.

この濃度が0.7mol/lを超えると、本発明に有効
な前記した粒子径範囲の球状微粒子(2)が、安定に得
られなくなることがある。
If this concentration exceeds 0.7 mol/l, it may become impossible to stably obtain spherical fine particles (2) having the particle size range described above, which are effective in the present invention.

アルコール性溶液中のアルコールは、メタノール、エタ
ノール、イングロバノール、ブタノール、イソアミルア
ルコール、エチレングリコール、フロピレンゲリコール
などが単一でまたは混合物で用いられる。該溶液中にジ
オキサン、ジエチルエーテル、酢酸エチル、ベンゼン、
トルエン、ヘキサンなどの有機溶媒を一部混合すること
もできる。
As the alcohol in the alcoholic solution, methanol, ethanol, inglobanol, butanol, isoamyl alcohol, ethylene glycol, phlopylene gellicol, etc. are used singly or in a mixture. Dioxane, diethyl ether, ethyl acetate, benzene,
It is also possible to partially mix organic solvents such as toluene and hexane.

アルコール性溶液中には加水分解に必要な水を! 共存せしめる。この水含量は、粒子の形状1粒子径に影
響を及ぼすので、好ましい量に制御する必要があるが、
有機金属化合物の金属の種類および化合物の種類によっ
て変化する。また、この水ははそのアルコール溶液を上
記アルコール性溶液中に添加し、0〜50℃の範囲、好
ましくは室温下30分〜100時間撹拌することによっ
て行われる。
Water necessary for hydrolysis is included in the alcoholic solution! Let them coexist. This water content affects the shape and diameter of the particles, so it needs to be controlled to a preferable amount.
It varies depending on the type of metal in the organometallic compound and the type of compound. Further, this water and alcohol solution is added to the above-mentioned alcoholic solution, and the mixture is stirred at a temperature of 0 to 50°C, preferably at room temperature, for 30 minutes to 100 hours.

その際、加水分解速度をフントロールする目的で、NH
4、Na  などのカチオンや804’  、 H2P
O4−などのアニオンの触媒成分を添加することができ
るされる。
At that time, for the purpose of controlling the hydrolysis rate, NH
4. Cations such as Na, 804', H2P
Anionic catalyst components such as O4- can be added.

このようにして有機金属化合物をアルコール性溶液中で
適切な条件の元で加水分解すれば、球状微粒千人は、球
形でしかも粒径分布中の非常に小さい無機酸化物微粒子
として溶液中に析出する。
In this way, if an organometallic compound is hydrolyzed in an alcoholic solution under appropriate conditions, spherical microparticles will be precipitated in the solution as spherical and very small inorganic oxide microparticles with a particle size distribution. do.

この析出粒子には原料に由来する有機基が一部残存して
結合していることもある。該析出粒子を溶液中より濾過
、遠心分離、溶媒蒸発など従来公知の方法で分離した後
、乾燥または場合によ9300〜1000℃で焼成して
、目的とする球状微粒千人とすることができる。また、
球状微粒千人のポリエステル中での分散性を高めるため
に、粒子間の凝集を極力防ぎ単分散させることが重要で
ある。
Some of the organic groups derived from the raw materials may remain and bond to these precipitated particles. The precipitated particles can be separated from the solution by conventionally known methods such as filtration, centrifugation, and solvent evaporation, and then dried or optionally calcined at 9300 to 1000°C to obtain the desired spherical fine particles. . Also,
In order to improve the dispersibility of the spherical fine particles in the polyester, it is important to prevent agglomeration between the particles as much as possible and to achieve monodispersion.

そのために、ポリエステルへの添加に先立って捕潰機、
ボールミル、ジェット粉砕機等通常の方法で凝集粒子を
ときほぐすことは有効である。
For this purpose, a crusher,
It is effective to loosen agglomerated particles using a conventional method such as a ball mill or a jet pulverizer.

こうして得られた球状微粒子図は、平均粒径が0.05
〜2μmの範囲でかつ粒子径の標準偏差値が1〜1.5
、より好ましくは1〜1.3の範囲にある粒径分布が非
常にシャープなものである。粒径が0.05μmより小
さければ添加による滑り性改良の効果が少なく、また、
2.0μmより大きければ薄膜フィルムには表面の凹凸
が大き過ぎて問題となる。
The spherical particle diagram obtained in this way has an average particle size of 0.05
~2μm range and standard deviation value of particle size is 1~1.5
, more preferably one with a very sharp particle size distribution in the range of 1 to 1.3. If the particle size is smaller than 0.05 μm, the effect of improving slipperiness by addition is small;
If it is larger than 2.0 μm, the surface unevenness will be too large for a thin film, causing a problem.

本発明におけるポリエステルとは、テレフタル酸または
そのエステル形成性誘導体を主たるジカルボン酸成分と
し、エチレングリコール、1.4−ブタンジオールなど
のジグリコールまたはそのエステル形成性誘導体を主た
るグリコール成分とするポリエステルであるが、組成、
製法などに限定されるものではなく、弛めポリエステル
を配合したものであってもよい。
The polyester in the present invention is a polyester having terephthalic acid or its ester-forming derivative as the main dicarboxylic acid component and a diglycol such as ethylene glycol or 1,4-butanediol or its ester-forming derivative as the main glycol component. However, the composition
It is not limited to the manufacturing method, and may be one in which loose polyester is blended.

ポリエステル中に球状微粒子図を添加する時期は、ポリ
エステル重合前、重合中あるいは重合終卜 7後ベレット化する時でも良く、更にクー説伏に溶融押
出しする際に添加しても良い。
The spherical particles may be added to the polyester before or during the polyester polymerization, or during pelletization after the end of the polymerization, or even during melt extrusion.

球状微粒子図は通常粉末状で添加されるが、ポリエステ
ルへの添加時期がポリエステル重合前または重合中とす
る場合には、エチレングリコールなど重合仕込時に液状
であるポリエステル原料の一部あるいは全量中にあらか
じめ上記微粒子を混合、高分散せしめて、スラリー状ま
たはゾル状で添加することはポリエステル中にも高分散
され、結果としてフィルム中に均一に分散し均一な凹凸
を形成せしめることができるので好ましい。液状ポリエ
ステル原料中に上記微粒子を高分散させるには、湿式ボ
ールミル、超音波など従来公知の方法が用いられる。
Spherical microparticles are usually added in powder form, but if they are added to polyester before or during polyester polymerization, they can be added in advance to some or all of the polyester raw materials that are liquid at the time of polymerization, such as ethylene glycol. It is preferable to mix and highly disperse the above-mentioned fine particles and add them in the form of a slurry or sol, since this will also result in a high degree of dispersion in the polyester, resulting in uniform dispersion and formation of uniform irregularities in the film. In order to highly disperse the fine particles in the liquid polyester raw material, conventionally known methods such as wet ball milling and ultrasonic waves are used.

また、ポリエステルへの添加に際し、シランカップリン
グ剤、チタンカップリング剤、界面活性剤などを用いて
、分散性を高めてもよい。
Further, when added to polyester, a silane coupling agent, a titanium coupling agent, a surfactant, etc. may be used to improve dispersibility.

球状微粒子図の添加量は、ポリエステルに対して0.0
1〜5重fiksの範囲とする。添加量が0.01重t
%よりも少なければ滑り性に対する効果が不充分であり
、また、5重量%よりも多い場合はフィルムの破断強度
などの物性の低下があり好ましくない。
The amount of spherical particles added is 0.0 to polyester.
The range is 1 to 5 fiks. Added amount is 0.01 weight t
If the amount is less than 5% by weight, the effect on slip properties is insufficient, and if it is more than 5% by weight, the physical properties such as the breaking strength of the film may deteriorate, which is not preferable.

なお、本発明でいう平均粒子径および標準偏差値は下記
の方法により求めた。
Note that the average particle diameter and standard deviation value as used in the present invention were determined by the following method.

10万倍の電子顕微鏡撮影像の任意の粒子100個の粒
子径を実測して求め、平均粒子径、標準偏差値を下記の
式により求めた。
The particle size of 100 arbitrary particles in an image taken with an electron microscope at a magnification of 100,000 times was determined by actual measurement, and the average particle size and standard deviation value were determined using the following formula.

(但し、Xiはb個目の粒子径を示し、ルは100であ
る。) (発明の効果) 特定された製法によυ得られた、粒子が球状で粒子径分
布が非常にシャープな無機酸化物球状微粒子をポリエス
テルに添加することを特徴とする本発明の方法によれば
、ポリエステルフィルム表面に均質微細な凹凸を確実か
つ容易に形成することができ、表面が実質上平滑でしか
も滑υ性に優れたポリエステルフィルムを得ることがで
きる。
(However, Xi indicates the b-th particle diameter, and Le is 100.) (Effect of the invention) Inorganic particles with spherical particles and a very sharp particle size distribution obtained by the specified manufacturing method According to the method of the present invention, which is characterized in that oxide spherical fine particles are added to polyester, homogeneous fine irregularities can be reliably and easily formed on the surface of a polyester film, and the surface is substantially smooth and slippery. A polyester film with excellent properties can be obtained.

したがって、本発明の方法で得られたポリエステルフィ
ルムは、耐摩耗性や磁気テープとする時の磁性層の塗布
性にもすぐれておシ、特に電磁変換特性にすぐれた磁気
テープ製造に好適なものである。
Therefore, the polyester film obtained by the method of the present invention has excellent abrasion resistance and coatability of the magnetic layer when it is made into a magnetic tape, and is particularly suitable for manufacturing magnetic tapes with excellent electromagnetic conversion characteristics. It is.

(実施例) 以下、実施例によシ本発明を詳述するが、この実施例に
より本発明の範囲が何ら制限されるものではない。
(Examples) Hereinafter, the present invention will be explained in detail with reference to Examples, but the scope of the present invention is not limited by these Examples in any way.

参考例1 撹拌機、滴下口、温度計を備えた301のガラス製反応
器にエタノール161と28%アンモニア水溶液2.7
 i<9を添加して混合した。該混合液を20℃±0.
5℃に調整し撹拌しながら、テトラエトキシシラン1.
0ユをエタノール21に希釈した溶液を滴下口より1時
間かけて滴下し、滴下後も2時間撹拌を続け、加水分解
を行い懸濁液を得た。
Reference Example 1 161 parts of ethanol and 2.7 parts of a 28% ammonia aqueous solution were placed in a 301 glass reactor equipped with a stirrer, a dropping port, and a thermometer.
i<9 was added and mixed. The mixture was heated to 20°C±0.
While adjusting the temperature to 5°C and stirring, add tetraethoxysilane 1.
A solution prepared by diluting 0 U of ethanol with 21 L of ethanol was added dropwise from the dropping port over a period of 1 hour, and stirring was continued for 2 hours after the addition to effect hydrolysis and obtain a suspension.

この時の最終溶液全量に対する各原料の濃度はテトラエ
トキシシラン0.22モル/l、−yンモニア2.02
モル/ll氷水、91モル/lであった。次いで、上記
懸濁液を蒸発缶に移し、缶温度40℃で減圧下にアンモ
ニア、水およびエタノールを溜去して、粉末状のシリカ
微粒子(1a)を得た。このシリカ微粒子(1a)を空
気中500℃で焼成して、シリカ微粒子(1b)を得た
At this time, the concentration of each raw material with respect to the total amount of the final solution was 0.22 mol/l of tetraethoxysilane and 2.02 mol/l of -ymmonia.
Mol/l ice water, 91 mol/l. Next, the suspension was transferred to an evaporator, and ammonia, water and ethanol were distilled off under reduced pressure at a temperature of 40° C. to obtain powdery silica particles (1a). The silica particles (1a) were fired in air at 500°C to obtain silica particles (1b).

得られたシリカ微粒子(1a)および(1b)の平均粒
子径、粒子径由、粒子径の標準偏差値および比表面積を
測定し、その結果を第1表に示した。
The average particle diameter, particle diameter, standard deviation of particle diameter, and specific surface area of the obtained silica fine particles (1a) and (1b) were measured, and the results are shown in Table 1.

また、これらの電子顕微鏡撮影像によれば、球形の微粒
子であった。
Moreover, according to these electron microscope images, they were spherical fine particles.

参考例2〜6 有機金属化合物の種類、アルコールの種類、最終溶液全
量に対する各原料”の濃度および焼成温度を第1表に示
した通りとする以外は参考例1と同様にして、シリカ微
粒子(2)〜(3)、チタニア微粒子(4)、ジルコニ
ア微粒子(5)およびチタニア−ジルコニア化合物微粒
子(6)を得た。これらの微粒子の平均粒子径等の物性
測定結果を第1表に示した。
Reference Examples 2 to 6 Silica fine particles ( 2) to (3), titania fine particles (4), zirconia fine particles (5), and titania-zirconia compound fine particles (6) were obtained.The physical property measurement results such as the average particle diameter of these fine particles are shown in Table 1. .

実施例1 参考例1〜6で得られたシリカ微粒子(1a)、(2)
、(3)、チタニア微粒子(4)、ジルコニア微粒子(
5)およびチタニア−ジルコニア化合物微粒子(6)の
それぞれ0.5重量部をエチレングリコール100重量
部に添加し、ボールミルにかけて微粒子のエチレングリ
コール高分散体を得た。次にジメチルテレフタレート1
00重量部および微粒子のエチレングリコール高分散体
801i量部に酢酸亜鉛0.01重量部を加えて、最終
減圧下280℃まで昇温して重縮合を行った後、290
℃に設定された押出機でシート化し、続いて100℃で
縦および横方向に3.5倍延伸し、210℃で10秒間
熱処理を行って、厚さ40μmのポリエステルフィルム
を得た。
Example 1 Silica fine particles (1a) and (2) obtained in Reference Examples 1 to 6
, (3), titania fine particles (4), zirconia fine particles (
0.5 parts by weight of each of 5) and titania-zirconia compound fine particles (6) were added to 100 parts by weight of ethylene glycol, and the mixture was ball milled to obtain a high dispersion of fine particles of ethylene glycol. Next, dimethyl terephthalate 1
0.01 parts by weight of zinc acetate was added to 0.00 parts by weight and 801 parts by weight of fine particle ethylene glycol high dispersion, and the temperature was raised to 280°C under final reduced pressure to perform polycondensation.
It was formed into a sheet using an extruder set at .degree. C., then stretched 3.5 times in the longitudinal and transverse directions at 100.degree. C., and heat-treated at 210.degree. C. for 10 seconds to obtain a polyester film with a thickness of 40 .mu.m.

また、参考例1で得られたシリカ微粒子(1b)につい
ては、エチレングリコールの分散体とする前に、シリカ
微粒子(Ib) 0.5重量部に対して0.05重量部
のr−アミノプロピルトリエトキシシランで処理した他
は、上記の方法と同様にして、無機酸化物球状微粒子を
含むポリエステルフィルムを得た。
Furthermore, regarding the silica fine particles (1b) obtained in Reference Example 1, 0.05 parts by weight of r-aminopropyl was added to 0.5 parts by weight of the silica fine particles (Ib) before making it into an ethylene glycol dispersion. A polyester film containing inorganic oxide spherical fine particles was obtained in the same manner as above except that it was treated with triethoxysilane.

これらのポリエステルフィルムについて、 ASThi
−D −1894B法に従って、静摩擦係数を測定した
ところ、すべて1.0以下であり、優れた滑り性を有し
ていた。
About these polyester films, ASThi
When the static friction coefficient was measured according to the -D-1894B method, all the coefficients of static friction were 1.0 or less, indicating excellent slipperiness.

Claims (1)

【特許請求の範囲】 1、有機金属化合物をアルコール性溶液中で加水分解し
て製造された平均粒子径が0.05〜2μmの範囲でか
つ粒子径の標準偏差値が1〜1.5の範囲にある無機酸
化物球状微粒子を、ポリエステルに対して0.01〜5
重量%添加することを特徴とするポリエステルフィルム
の滑り性改良方法。 2、有機金属化合物が金属アルコキシドまたはその誘導
体である特許請求の範囲第1項記載の滑り性改良方法。 3、有機金属化合物がシリコン、チタンおよび/または
ジルコンの化合物を主成分とし、無機酸化物シリカ、チ
タニア、ジルコニアまたはそれらの複合酸化物を主成分
とする特許請求の範囲第1項記載の滑り性改良方法。
[Claims] 1. A product produced by hydrolyzing an organometallic compound in an alcoholic solution and having an average particle diameter in the range of 0.05 to 2 μm and a standard deviation value of the particle diameter of 1 to 1.5. Inorganic oxide spherical fine particles within the range of 0.01 to 5
A method for improving the slipperiness of a polyester film, characterized by adding % by weight. 2. The method for improving slipperiness according to claim 1, wherein the organometallic compound is a metal alkoxide or a derivative thereof. 3. Slip properties according to claim 1, wherein the organometallic compound is mainly composed of a compound of silicon, titanium and/or zircon, and the main component is an inorganic oxide silica, titania, zirconia or a composite oxide thereof. Improvement method.
JP61048456A 1986-03-07 1986-03-07 Method of improving slipperiness Granted JPS62207356A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP61048456A JPS62207356A (en) 1986-03-07 1986-03-07 Method of improving slipperiness
DE3751849T DE3751849T2 (en) 1986-03-07 1987-03-05 Process for improving the lubricity of polyester film
DE8787103111T DE3784357T2 (en) 1986-03-07 1987-03-05 MONODISPERSE GLYCOL SUSPENSION OF FEI INORGANIC OXIDE PARTICLES WITH EXCELLENT DISPERSION STABILITY AND METHOD FOR IMPROVING THE SLIP RESISTANCE OF POLYESTER FILM USING THE MONODISPERS SUSPENSION.
EP87103111A EP0236945B1 (en) 1986-03-07 1987-03-05 Monodispersed glycol suspension of fine inorganic oxide particles having excellent dispersion stability and method of improving the slipperiness of polyester film using the monodispersed suspension
EP92100741A EP0479774B1 (en) 1986-03-07 1987-03-05 Method of improving the slipperiness of polyester film
KR1019870002058A KR910008721B1 (en) 1986-03-07 1987-03-07 Monodispersed glycol sospension of fine inorganic oxide particles having excellent dispersion stability and method of improving the slipperiness of polyester film using the monodispersed suspension
US07/322,185 US5316714A (en) 1986-03-07 1989-03-13 Method of improving slipperiness of polyester film using a monodispersed glycol suspension of inorganic oxide particles
US07/731,259 US5236622A (en) 1986-03-07 1991-07-17 Process for producing a monodispersed glycol suspension of fine inorganic oxide particles having excellent dispersion stability
US07/925,424 US5304324A (en) 1986-03-07 1992-08-10 Monodispersed glycol suspension of fine inorganic oxide particles having excellent dispersion stability
US08/201,406 US5863647A (en) 1986-03-07 1994-02-24 Monodispersed glycol suspension of fine inorganic oxide particles having excellent dispersion stability and a polyester film containing said particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61048456A JPS62207356A (en) 1986-03-07 1986-03-07 Method of improving slipperiness

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4096476A Division JPH0791400B2 (en) 1992-04-16 1992-04-16 Polyester film for magnetic tape

Publications (2)

Publication Number Publication Date
JPS62207356A true JPS62207356A (en) 1987-09-11
JPH0578585B2 JPH0578585B2 (en) 1993-10-29

Family

ID=12803856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61048456A Granted JPS62207356A (en) 1986-03-07 1986-03-07 Method of improving slipperiness

Country Status (1)

Country Link
JP (1) JPS62207356A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108037A (en) * 1986-08-27 1988-05-12 Teijin Ltd Biaxially oriented polyester film
JPS63128030A (en) * 1986-11-18 1988-05-31 Toyobo Co Ltd Oriented polyester film
JPS63168818A (en) * 1987-01-07 1988-07-12 Teijin Ltd Magnetic recording medium
JPS63220417A (en) * 1987-03-10 1988-09-13 Teijin Ltd Biaxially oriented polyester film for magnetic recording medium
JPS63234038A (en) * 1987-03-23 1988-09-29 Teijin Ltd Biaxially oriented polyester film
JPS63235343A (en) * 1987-03-25 1988-09-30 Teijin Ltd Biaxially oriented polyester film
JPS63286440A (en) * 1987-05-19 1988-11-24 Toyobo Co Ltd Oriented polyester film
JPS63317533A (en) * 1987-06-19 1988-12-26 Diafoil Co Ltd Polyester film
JPS6411135A (en) * 1987-07-03 1989-01-13 Toyo Boseki Thermoplastic film
JPH01161025A (en) * 1987-12-18 1989-06-23 Teijin Ltd Biaxially oriented polyester film
JPH01188553A (en) * 1988-01-22 1989-07-27 Kanegafuchi Chem Ind Co Ltd Improve aromatic polyester film
JPH01266145A (en) * 1988-04-19 1989-10-24 Teijin Ltd Thermoplastic polymer film
JPH02120221A (en) * 1988-10-31 1990-05-08 Nippon Steel Chem Co Ltd Production of silica particle
JPH03115437A (en) * 1989-09-29 1991-05-16 Toray Ind Inc Biaxially oriented polyester film
JPH03192131A (en) * 1989-12-21 1991-08-22 Toray Ind Inc Biaxially oriented thermoplastic resin film
JPH03234739A (en) * 1990-02-09 1991-10-18 Toyobo Co Ltd Biaxially oriented polyester film
JPH03250043A (en) * 1990-02-27 1991-11-07 Toray Ind Inc Production of polyester composition
JPH05156042A (en) * 1992-04-16 1993-06-22 Nippon Shokubai Co Ltd Polyester film
US5316714A (en) * 1986-03-07 1994-05-31 Nippon Shokujai Kagaku Kogyo Co., Ltd. Method of improving slipperiness of polyester film using a monodispersed glycol suspension of inorganic oxide particles
US5429855A (en) * 1992-04-30 1995-07-04 Diafoil Hoescht Company, Limited Biaxially oriented laminated polyester film for magnetic recording media
US5670236A (en) * 1992-09-29 1997-09-23 Diafoil Hoechst Company, Ltd. Biaxially oriented polyester film for magnetic recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133356A (en) * 1976-04-29 1977-11-08 Ici Ltd Polyeser film or sheet
JPS552225A (en) * 1978-06-19 1980-01-09 Konishiroku Photo Ind Co Ltd Cleaning device
JPS59100156A (en) * 1982-11-30 1984-06-09 Teijin Ltd Production of polyester composition
JPS60166203A (en) * 1984-02-09 1985-08-29 Dainippon Ink & Chem Inc Preparation of fine ceramic powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133356A (en) * 1976-04-29 1977-11-08 Ici Ltd Polyeser film or sheet
JPS552225A (en) * 1978-06-19 1980-01-09 Konishiroku Photo Ind Co Ltd Cleaning device
JPS59100156A (en) * 1982-11-30 1984-06-09 Teijin Ltd Production of polyester composition
JPS60166203A (en) * 1984-02-09 1985-08-29 Dainippon Ink & Chem Inc Preparation of fine ceramic powder

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316714A (en) * 1986-03-07 1994-05-31 Nippon Shokujai Kagaku Kogyo Co., Ltd. Method of improving slipperiness of polyester film using a monodispersed glycol suspension of inorganic oxide particles
JPS63108037A (en) * 1986-08-27 1988-05-12 Teijin Ltd Biaxially oriented polyester film
JPS63128030A (en) * 1986-11-18 1988-05-31 Toyobo Co Ltd Oriented polyester film
JPS63168818A (en) * 1987-01-07 1988-07-12 Teijin Ltd Magnetic recording medium
JPS63220417A (en) * 1987-03-10 1988-09-13 Teijin Ltd Biaxially oriented polyester film for magnetic recording medium
JPS63234038A (en) * 1987-03-23 1988-09-29 Teijin Ltd Biaxially oriented polyester film
JPH0513976B2 (en) * 1987-03-23 1993-02-23 Teijin Ltd
JPH054414B2 (en) * 1987-03-25 1993-01-20 Teijin Ltd
JPS63235343A (en) * 1987-03-25 1988-09-30 Teijin Ltd Biaxially oriented polyester film
JPS63286440A (en) * 1987-05-19 1988-11-24 Toyobo Co Ltd Oriented polyester film
JPS63317533A (en) * 1987-06-19 1988-12-26 Diafoil Co Ltd Polyester film
JPS6411135A (en) * 1987-07-03 1989-01-13 Toyo Boseki Thermoplastic film
JPH01161025A (en) * 1987-12-18 1989-06-23 Teijin Ltd Biaxially oriented polyester film
JPH01188553A (en) * 1988-01-22 1989-07-27 Kanegafuchi Chem Ind Co Ltd Improve aromatic polyester film
JPH0747645B2 (en) * 1988-04-19 1995-05-24 帝人株式会社 Thermoplastic polymer film
JPH01266145A (en) * 1988-04-19 1989-10-24 Teijin Ltd Thermoplastic polymer film
JPH052607B2 (en) * 1988-10-31 1993-01-12 Shinnittetsu Kagaku
JPH02120221A (en) * 1988-10-31 1990-05-08 Nippon Steel Chem Co Ltd Production of silica particle
JPH03115437A (en) * 1989-09-29 1991-05-16 Toray Ind Inc Biaxially oriented polyester film
JPH03192131A (en) * 1989-12-21 1991-08-22 Toray Ind Inc Biaxially oriented thermoplastic resin film
JPH03234739A (en) * 1990-02-09 1991-10-18 Toyobo Co Ltd Biaxially oriented polyester film
JPH03250043A (en) * 1990-02-27 1991-11-07 Toray Ind Inc Production of polyester composition
JPH05156042A (en) * 1992-04-16 1993-06-22 Nippon Shokubai Co Ltd Polyester film
JPH0791400B2 (en) * 1992-04-16 1995-10-04 株式会社日本触媒 Polyester film for magnetic tape
US5429855A (en) * 1992-04-30 1995-07-04 Diafoil Hoescht Company, Limited Biaxially oriented laminated polyester film for magnetic recording media
US5670236A (en) * 1992-09-29 1997-09-23 Diafoil Hoechst Company, Ltd. Biaxially oriented polyester film for magnetic recording medium

Also Published As

Publication number Publication date
JPH0578585B2 (en) 1993-10-29

Similar Documents

Publication Publication Date Title
JPS62207356A (en) Method of improving slipperiness
KR910008721B1 (en) Monodispersed glycol sospension of fine inorganic oxide particles having excellent dispersion stability and method of improving the slipperiness of polyester film using the monodispersed suspension
JP4279465B2 (en) Nano-sized metal oxide particles for producing transparent metal oxide colloids and ceramers
EP1633822B1 (en) Antiadhesive high temperature layers
JP2009114008A (en) Zirconium oxide fine powder, method for producing the same, and resin composition comprising the same
US5304324A (en) Monodispersed glycol suspension of fine inorganic oxide particles having excellent dispersion stability
US5236622A (en) Process for producing a monodispersed glycol suspension of fine inorganic oxide particles having excellent dispersion stability
JPH053407B2 (en)
JPH0977503A (en) Production of metal oxide or hydroxide sol
JPH0354126A (en) Production of powder coated with metallic oxide
JP4925706B2 (en) Method for producing silica-based composite oxide particles
JP4988964B2 (en) Method for producing silica-zirconia composite particles coated with a silica layer
TW202033444A (en) Modified zirconium phosphate tungstate, negative thermal expansion filler and polymer composition
JPH0515746B2 (en)
JP3878113B2 (en) Method for producing silica-titania composite oxide
JPH0474379B2 (en)
JPH0657317B2 (en) Glycol monodisperse of inorganic oxide fine particles and method for producing the same
JP2008031010A (en) Method for producing alumina organic solvent dispersed liquid
JPH07173331A (en) Thermoplastic resin composition and its production
JP3387969B2 (en) Composite oxide particles
JPH05156042A (en) Polyester film
JPS6218424A (en) Production of polyester
JPS63162728A (en) Oriented polyester film
JPS63289029A (en) Polyester film
JPH0350105A (en) Production of inorganic oxide grains

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term