JPS5841810A - Composite reparative material - Google Patents

Composite reparative material

Info

Publication number
JPS5841810A
JPS5841810A JP56139684A JP13968481A JPS5841810A JP S5841810 A JPS5841810 A JP S5841810A JP 56139684 A JP56139684 A JP 56139684A JP 13968481 A JP13968481 A JP 13968481A JP S5841810 A JPS5841810 A JP S5841810A
Authority
JP
Japan
Prior art keywords
amorphous silica
composite
vinyl monomer
particle size
restorative material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56139684A
Other languages
Japanese (ja)
Other versions
JPH0157082B2 (en
Inventor
Koji Kusumoto
楠本 紘士
Shigeki Yuasa
湯浅 茂樹
Katsumi Suzuki
勝巳 鈴木
Takeshi Nakahara
毅 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP56139684A priority Critical patent/JPS5841810A/en
Publication of JPS5841810A publication Critical patent/JPS5841810A/en
Publication of JPH0157082B2 publication Critical patent/JPH0157082B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:A dental composite reparative material, consisting of amorphous silica in the form of spherical particles having a particle diameter in a suitable range with a uniform particle diameter distribution and a polymerizable vinyl monomer in combination, and having improved abrasion resistance and lubricity. CONSTITUTION:A composite reparative material, particularly suitable for dental use, and consisting of amorphous silica in the form of spherical particles having a particle diameter in the range of 0.1-1.0mu and the standard deviation value of the particle diameter distribution <=1.30 and a polymerizable vinyl monomer, preferably having acryloyl or methacryloyl group, e.g. bisphenol A glycidyl methacrylate. Preferably, the amount of the amorphous silica is 70-90wt% or the amorphous silica has a specific surface area of 4.0-40.0m<2>/g. Alternatively, the surface of the amorphous silica is preferably treated with an organosilicon compound. EFFECT:High surface hardness and easy surface polishing finishing.

Description

【発明の詳細な説明】 本発明は複合修復材特に歯科用として好適な複合修復材
に関する。さらに詳しくは、耐摩耗性、滑沢性に優れな
おかつ表面硬度が高く表面研摩仕上げの容易な複合修復
材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite restorative material, particularly a composite restorative material suitable for dental use. More specifically, the present invention relates to a composite restorative material that has excellent wear resistance and smoothness, has high surface hardness, and is easy to polish.

現在、複合修復材例えば歯科用複合修復材として祉重合
収縮が比較的小さいとされているビスダリシジルメタア
タリレート(ビスフェノールAとグリシジルメタクリレ
7−トの付加生成物、以下Bis−GMムと略す。)を
主成分とするアクリル系七ツマー液に粒径数十μmのガ
ラスピーズあるいは石英の粉砕物を大量に配合し、使用
時にさらに常温分smの重合開始剤を添加して口腔内で
重合硬化させるものが一般的に用いられている。
Currently, bisdalicidyl metatallate (an addition product of bisphenol A and glycidyl methacrylate, hereinafter referred to as Bis-GM) is used as a composite restorative material, such as a dental composite restorative material, and is said to have relatively low polymerization shrinkage. A large amount of glass beads or crushed quartz with a particle size of several tens of micrometers is blended into an acrylic 7-mer solution whose main component is Those that are cured by polymerization are generally used.

上記の如き゛修復材は一光学的に透明な無機粉体f充填
材として用いているため、アクリル系のポリ÷−と間モ
ノγ′−からゼるレジン系修復材と比較して重合時の収
縮および透明性−に於いて劣ることな(−1−さらに5
ill張係数と機械的強度に優れた性質を有するA1 あり、広く臨床医に愛用されている。しかし、耐摩耗性
1表面の滑沢性、および表面硬度の点で自然歯に比べる
とはるかに劣り、さらに改良すべき点を有している。
Since the above-mentioned restorative material is used as an optically transparent inorganic powder filler, it is faster to polymerize than the resin-based restorative material, which is made of acrylic polyester and mono-γ'-. shrinkage and transparency (-1-5
A1 has excellent properties in terms of tensile modulus and mechanical strength, and is widely used by clinicians. However, they are far inferior to natural teeth in terms of wear resistance, surface lubricity, and surface hardness, and there are still points that need to be improved.

上記の如き欠点を改良する走めに、種々の改良技術が提
案されている。例えば、特開昭50−124491では
、粒径が10〜400m5の範囲で、その内少なくとも
50%以上が10〜40mμの粒径を有する無機粉体を
充填材として用いる事により機械的強度および透明性を
損うことなく、従来の無機充填材の欠点の一つである表
面滑沢性が改良された修復材が提案されている。
Various improvement techniques have been proposed in an effort to improve the above-mentioned drawbacks. For example, in JP-A-50-124491, mechanical strength and transparency are improved by using as a filler an inorganic powder with a particle size in the range of 10 to 400 m5, of which at least 50% has a particle size of 10 to 40 mμ. Restorative materials have been proposed that have improved surface smoothness, which is one of the drawbacks of conventional inorganic fillers, without sacrificing properties.

しかしながら、上記の如き10〜40 mllの超微粒
子を大量に含有する無機粉体を充填材として用いる場合
には、充填材の表面積が著しく大きくなるために、アク
リル系モノマー液に配合した際、粘度が着しく4する。
However, when an inorganic powder containing a large amount of ultrafine particles (10 to 40 ml) as described above is used as a filler, the surface area of the filler becomes significantly large, so when blended with an acrylic monomer liquid, the viscosity It's a comfortable 4.

そのため、無機充−舷↓7)−リール系モノマーf事5
1息複会修復材の特徴を生かすべく無機充填材の配合割
合を増加させると使用時の練和操作あるいは口腔内での
修復操作はほとんど不可能な状態となる。即ち、上記の
如き超微粒子を充填材として用いる場合には操作性の要
請上30〜6. OwtXにおさえざるを得ない状況に
ある。仁の様に操作性を適正にするという使用上の要請
からくる無機充填材の配含量の低下のために、透明性お
よび表面の滑沢性は改良されるものの、熱膨張係数は逆
に大きくなり、又、表面硬度4低くなるという欠点が生
じる。さらにこのような無機充填材の配合割合の低下社
、歯科材料の耐摩耗性の評価方法の一つである歯ブラシ
摩耗試験において、その摩耗量を増大させる結果となり
好壕しく1い。
Therefore, inorganic charge - ↓ 7) - Reel system monomer f thing 5
If the blending ratio of the inorganic filler is increased in order to take advantage of the characteristics of the one-breath composite restorative material, kneading operations during use or restoring operations within the oral cavity become almost impossible. That is, when using the above-mentioned ultrafine particles as a filler, 30 to 6. We are in a situation where we have no choice but to suppress OwtX. Although the transparency and surface smoothness are improved due to the reduction in the amount of inorganic filler due to the demand for appropriate operability, the coefficient of thermal expansion is conversely large. Moreover, there is a drawback that the surface hardness is lowered by 4. Furthermore, such a reduction in the blending ratio of inorganic fillers results in an increase in the amount of wear in the toothbrush wear test, which is one of the methods for evaluating the wear resistance of dental materials, which is unfavorable.

以上の様な諸々の欠点の他に、従来臘の充填材を用いた
もの、および超微粒子の無鱗粉体を充填材として用りた
もののいずれについても修復後の表面研磨仕上げがやり
にくいという実用上の大きな欠点を持ってbる。即ち前
者の場合には充填材が数十μmと大きいために研磨によ
り滑らかな平面を出す事が困難とされ、後者の場合には
、滑らかな面は得られるものの、容易に削れ過ぎて形態
修正がやりにくい欠点を有している。
In addition to the above-mentioned drawbacks, it is difficult to polish the surface after repair for both the conventional filling material using linden and the filling material using ultrafine scaleless powder. It has the major drawbacks mentioned above. That is, in the former case, it is difficult to obtain a smooth surface by polishing because the filler is large, several tens of micrometers, and in the latter case, although a smooth surface can be obtained, it is too easy to scrape and the shape cannot be corrected. It has the disadvantage that it is difficult to do.

そζで、本発明者ら社上述の如き諸々の欠点を改良すべ
く、特に無機充填材について鋭意研究を重ねた。その結
果、無機充填材の粒径が適轟な範囲にあり、しかも粒子
径の分布が均一な球状粒子を用いる事により機械的強度
を損うことなく、耐摩耗性が改善され、表面の滑沢性が
向上する事を見い出した。さらに驚くべきことに、上述
のごとき粒子長のそろう大球状粒子を用いることにより
、公知の充填材例えば超微粒子状の充填材を用い良もの
に比べ高い表面硬度を有し、その上に修復。
Therefore, in order to improve the various drawbacks mentioned above, the inventors of the present invention have conducted extensive research, especially regarding inorganic fillers. As a result, the particle size of the inorganic filler is within a suitable range, and by using spherical particles with a uniform particle size distribution, wear resistance is improved without compromising mechanical strength, and the surface becomes smooth. It was found that the water quality was improved. Furthermore, surprisingly, by using large spherical particles with uniform particle lengths as described above, the surface hardness is higher than that of a good material using a known filler, such as an ultrafine filler, and it can be repaired.

後の表面研磨仕上げが非常にやりやすく、しか亀滑らか
な光沢のある表面を容易に得ることが出来る等の種々の
予想外°の効果が発揮出来るのである。
It is very easy to polish the surface afterwards, and various unexpected effects can be produced, such as being able to easily obtain a smooth, glossy surface.

本発明は重合可能なビニルモノマーと粒子径が0.1〜
1.0声の範囲にある球状粒子で且つ該粒子径の分布の
標準偏差値が1.30以内にある非晶質シリカとよりな
る複合修復iである。
The present invention uses a polymerizable vinyl monomer and a particle size of 0.1 to
This is a composite repair i made of amorphous silica, which is a spherical particle in the range of 1.0 mm and the standard deviation value of the particle size distribution is within 1.30.

゛本発明の複合修復材の1成分は重合可能なビニルモノ
マーである。該ビニルモノマーは特に限定的ではなく、
一般に歯科用修復材とし゛で使用されそいる公知なもの
が使用出来る。
``One component of the composite restorative material of the present invention is a polymerizable vinyl monomer. The vinyl monomer is not particularly limited,
Known materials that are generally used as dental restorative materials can be used.

皺ビニル嬌ツマ−として最も代表的なもOはアクリル基
及び/又はメタクリル基を有する重合可能なビニルモノ
マーであるすJL−的に上記アタリルー及d/又はメタ
クリル基を有するビニルモノマーについて例示すると例
えばビスフェノールムジグリシジルメ!クリレート、メ
チルメタクリレート、ビスメタクリロエトキシフェニル
プロパン、トリエチレングリコールジメタクリレート、
ジエチレングリコールジメタクリレート、テトラメチロ
ールトリアクリレート、テトラメチロールメタントリメ
タクリレート、トリメチロールエタントリメタクリレー
ト等が好適である。また下記の構造式で示されるウレタ
ン構造を有するビニルモノマーも好適に使用される。
The most representative vinyl monomer is a polymerizable vinyl monomer having an acrylic group and/or a methacrylic group. Examples of vinyl monomers having an atary group and/or a methacrylic group are as follows. Bisphenol mujiglycidylme! acrylate, methyl methacrylate, bismethacryloethoxyphenylpropane, triethylene glycol dimethacrylate,
Diethylene glycol dimethacrylate, tetramethylol triacrylate, tetramethylolmethane trimethacrylate, trimethylolethane trimethacrylate and the like are preferred. Also preferably used is a vinyl monomer having a urethane structure represented by the following structural formula.

C−〇 但し上記式中、R1*R2−RX及びR4は同種又は異
種のH又はCHlで、÷A÷はそca2+、 1これら
のビニルモノマーは歯科用材料としては公知なものであ
るので必要に応じて単独で或いは混合して使用すればよ
い。
C-〇However, in the above formula, R1*R2-RX and R4 are the same or different types of H or CHl, ÷A÷ is ca2+, 1 These vinyl monomers are necessary as they are known as dental materials. Depending on the situation, they may be used alone or in combination.

本発明の複合修復材の他の成分は非晶質シリカである。Another component of the composite restorative material of the present invention is amorphous silica.

本発明で使用する非晶質シリカは粒子径が0.1〜1.
0声の範囲にある球状粒子で且つ該粒子径の分布の標準
偏差値が130以内にある必要がある。上記粒子径1粒
子形状及び粒子径の分布はいずれも非常に重要な要因と
なり、いずれめ条件が欠けても本発明の目的を達成する
こ′メが出来ない。例えば非晶質シリカの粒子婦が0.
1μより小さい場合には重合可能なビ7、ニルモノマー
と練和してペースト状の混會物とする際に粒度の上昇が
著しく、配合−合を増加させて粘度上昇を防ごうとすれ
ば操作性が悪化するので実質的に実用に供する材料とな
り得ない。また該粒子径が1.0声より大きい場合は、
ビニルモノマーを重合硬化後の樹脂が耐摩耗性あるいは
表面の滑沢性が低下し、更に表面硬度も低下する轡の欠
陥があるため好ましくなら。また粒子径の分布の標準偏
差値が1.30より大きくなると複合修復材の操作性が
著しく低下するOで実用に供する修復材と祉なり得ない
。艶にまた非晶質シリカが前記粒子径0.1〜1.0声
の範囲で1粒子径の分布の標準偏差が1.30以内の粒
子であって亀、該粒子の形状が球形状でなければ前記し
たような本発明の効果特に耐摩耗性1表面の滑沢性1表
面硬度等に於いて満足のいくものとはなり得ない。
The amorphous silica used in the present invention has a particle size of 0.1 to 1.
The particles must be spherical particles within the range of 0 tones, and the standard deviation value of the particle size distribution must be within 130. The above-mentioned particle size 1 particle shape and particle size distribution are both very important factors, and even if any of these conditions are missing, the object of the present invention cannot be achieved. For example, the particle size of amorphous silica is 0.
If the particle size is smaller than 1μ, the particle size will increase significantly when mixed with polymerizable Bi7, Nyl monomer to form a paste-like mixture, and if you try to prevent the increase in viscosity by increasing the blending amount, you may have to Since the properties deteriorate, it cannot be used as a material for practical use. In addition, if the particle size is larger than 1.0 tones,
This is preferable because the resin after polymerization and curing of the vinyl monomer has defects such as sagging that deteriorates wear resistance or surface smoothness and further reduces surface hardness. Moreover, if the standard deviation value of the particle size distribution is larger than 1.30, the operability of the composite restorative material will be significantly reduced, and the restorative material cannot be put to practical use. In addition, amorphous silica is a particle with a standard deviation of 1 particle size distribution within 1.30 in the particle size range of 0.1 to 1.0 mm, and the shape of the particle is spherical. Otherwise, the effects of the present invention as described above, particularly in terms of wear resistance, surface smoothness, surface hardness, etc., will not be satisfactory.

本発明で使用する非晶質シリカの製造方法については特
に原電されず前記粒子径、形状及び粒子径の分布の標準
偏差値を有するものであれば、如何なる製法によって得
られたものであって4よい。一般に工業的には珪酸エス
テルの加水分解によって製造する方法(無機材質研究所
報告書第14号第49頁〜第58頁(197741m)
 )が好適に採用される。一般に工業的に得られる非晶
質の球状シリカは表゛面安定性を保持するため表面のシ
ラノール基を減するのが好ましい。そのために球形状の
非晶質シリカを乾燥後頁に500〜1000℃の温変で
焼成する手段がしばしば好適、に採用される。該焼成に
際してはシリカ粒子の一部が焼結し凝集する場合もある
ので、通常は槽潰機、振動メールミル、ジェット粉砕機
等を用いて凝集粒子をときほぐすのが好ましい。
Regarding the manufacturing method of the amorphous silica used in the present invention, any manufacturing method may be used as long as the amorphous silica has the above-mentioned particle size, shape, and standard deviation value of the particle size distribution without any particular electric current generation. good. Generally, industrially, it is produced by hydrolysis of silicate ester (Inorganic Materials Research Institute Report No. 14, pp. 49-58 (197741m))
) is preferably adopted. Generally, it is preferable to reduce the number of silanol groups on the surface of industrially obtained amorphous spherical silica in order to maintain surface stability. For this purpose, a method is often employed in which spherical amorphous silica is dried and then fired at a temperature varying from 500 to 1000°C. During the firing, some of the silica particles may be sintered and agglomerated, so it is usually preferable to use a tank crusher, vibrating mail mill, jet pulverizer, etc. to loosen the agglomerated particles.

また一般に前記焼成したシシカ粒子は安定性を保持する
ため有機珪素化合物を用いて表面処理を行った後使用す
るのが最も好適である。
In general, it is most suitable to use the fired shishika particles after surface treatment with an organosilicon compound in order to maintain stability.

上記表面処理の方法は特に限定されず公知の方法例えば
シリカ粒子とr−メタクリロキシプロピルトリメトキシ
シラン、ビニルトリエトキシシラン等の公知の有機珪素
化合物とを、アルコール/水の混合溶媒中で一定時間接
触させた螢、該溶媒を除去する方法が採用される。
The surface treatment method described above is not particularly limited and may be carried out by any known method, such as treating silica particles with a known organosilicon compound such as r-methacryloxypropyltrimethoxysilane or vinyltriethoxysilane in a mixed solvent of alcohol/water for a certain period of time. A method is adopted in which the solvent is removed from the contacted fireflies.

本発明で使用する非晶質シリカの形状は顕微鏡1真をと
ることにより、その粒子径、形状を確認することが出来
、粒子径の分布の標準偏差値は顕微鏡写真の単位面積或
いは顕微鏡の単位視野内に存在する粒子の数とそれぞれ
の直径から、後述する算出式によって算出することが出
来る。上記顕微鏡写真は非晶質シリカの粒子形状が観察
出来るものであればどんなものでもよりが、一般には走
査型電子顕微鏡写真、透過型電子顕微鏡4真等が好適で
ある。また非晶質シリカが他の液状物質例えば重合可能
なビニルモノマーと混合されペースト状混合物となって
いる場合はあらかじめ適轟な有機溶媒を用いて液状物質
を抽出除去した後、前記同様な操作で非晶質シリカの性
状を調べるとよい。
The particle size and shape of the amorphous silica used in the present invention can be confirmed by taking a microscope at the 1st angle, and the standard deviation value of the particle size distribution is determined by the unit area of the micrograph or the unit of the microscope. It can be calculated from the number of particles existing within the field of view and their respective diameters using the calculation formula described below. The above-mentioned microscopic photograph may be of any type as long as the particle shape of the amorphous silica can be observed, but in general, scanning electron micrographs, transmission electron micrographs, etc. are suitable. In addition, if amorphous silica is mixed with another liquid substance such as a polymerizable vinyl monomer to form a paste mixture, first extract and remove the liquid substance using an appropriate organic solvent, and then perform the same operation as above. It is a good idea to investigate the properties of amorphous silica.

本発明で使用する前記非晶質シリカは前記し友ように球
状粒子が使用されるが皺球状であるかどうかは上記顕微
鏡の他に非晶質シリカの比表面積を測定することによっ
て確認することが出来る。例えば粒子径0.1〜1.0
μmの範囲にある非晶質シリカはその比表面積が4.0
〜40.ON//f@度であれば完全な球型と仮定して
計算される比表面積とはり一致する。従って本発明で使
用する非晶質シリカはその比表面積が4.0〜40.0
d/fの範囲のものを使用するのが好適である。
As mentioned above, the amorphous silica used in the present invention is a spherical particle, but whether or not it is wrinkled spherical can be confirmed by measuring the specific surface area of the amorphous silica in addition to the above-mentioned microscope. I can do it. For example, particle size 0.1-1.0
Amorphous silica in the μm range has a specific surface area of 4.0
~40. ON//f@degrees closely matches the specific surface area calculated assuming a perfect spherical shape. Therefore, the amorphous silica used in the present invention has a specific surface area of 4.0 to 40.0.
It is preferable to use one in the range of d/f.

本発明の複合修復材は前記重合可能なビニルモノマー成
分と前記特定の非晶質シリカとを混合して使用される。
The composite restorative material of the present invention is used by mixing the polymerizable vinyl monomer component and the specific amorphous silica.

例えば歯科用修復材として上配複舎修復材を用いる場合
には操作性が重要な要因となるばかりでなく、得られる
硬化後の複合レジンの機械的強度、耐摩耗性1表面の滑
沢性等を十分に良好に保持しなければならない。そのた
めに一般に非晶質シリカの添加量i70〜90%の範囲
となるように選ぶのが好ましい。
For example, when using a top-of-the-line restorative material as a dental restorative material, operability is not only an important factor, but also the mechanical strength, abrasion resistance, and surface smoothness of the resulting cured composite resin. etc. must be maintained sufficiently well. Therefore, it is generally preferable to select the amount i of amorphous silica to be added in a range of 70 to 90%.

17’h上記歯科用複合修復材として使用する場合には
一般に非晶質シリカと重合可能なビニルモノマーおよび
重合促進剤(例えば館三級ア2ン化合物)からなるペー
スト状混合物と非晶質シリカとビニルモノマーおよび重
合開始剤(例えばベンゾイルパーオキナイドの如き有機
過酸化物)からなるペースト状混合物とをそれぞれあら
かじめ調製してsp@、修復操作の直前に両者を混練し
て硬化させる方法が好適に用いられる。本発明の複合修
復材を硬化させ、た複合レジンは従来のものに比べて圧
縮強度等の機械的強度社劣ることなく゛、しかも耐摩耗
性あるいは表面の滑沢性に優れ、さらに社表面硬度が高
く、表面研磨仕上けが非常に容易であるという多くの優
れた特徴を有している。しかしこのような特徴があられ
れる理由については現在必ずしも明確ではないが、本発
明者等は次の様に考えている。即ち、第1に粒子の形状
が球形型でしかも粒子径の分布の標準偏差値が1.30
以内というような粒子径のそろった非晶質シリカを用い
る事によって、従来の粒子径分布の広いしかも形状の不
揃いな充填材を用いる場合に比べて、硬化して得られる
複合レジン中に非晶質シリカがより均一にしか4密に充
填される事及び第2にさらに粒子径の範囲が0.1〜1
.0μmの範囲内であるものを用いる事により、粒子径
が数十μもある従来の無機充填材を用いる場合に比べて
、硬化後の複合レジンの研磨面は滑らかになり、・逆に
数十mμの微細粒子を主成分とする超微粒子充填材を用
いる場合に比べて充填材の全比表面積が小さく、従って
遣轟な操作性を有等る条件下で充填材の充填量が多くで
きる事などの!ldBが考えられる。
17'h When used as the above dental composite restorative material, a paste-like mixture consisting of amorphous silica, a polymerizable vinyl monomer, and a polymerization accelerator (for example, a tertiary amine compound) and amorphous silica are generally used. A preferred method is to prepare in advance a paste mixture consisting of a vinyl monomer and a polymerization initiator (for example, an organic peroxide such as benzoyl peroxinide), and then knead and harden the two immediately before the repair operation. used for. The composite resin obtained by curing the composite restorative material of the present invention is not inferior in mechanical strength such as compressive strength compared to conventional ones, and has excellent abrasion resistance and surface smoothness, and has a lower surface hardness. It has many excellent features such as being very easy to polish and polish the surface. However, although the reason for such characteristics is not necessarily clear at present, the present inventors believe as follows. That is, first, the shape of the particles is spherical, and the standard deviation value of the particle size distribution is 1.30.
By using amorphous silica with a uniform particle size within the range of 100 to 300 yen, compared to the case of using conventional fillers with a wide particle size distribution and irregular shapes, it is possible to create amorphous particles in the composite resin obtained by curing. The quality silica is packed more uniformly and densely, and secondly, the particle size range is 0.1 to 1.
.. By using particles with particle diameters within the range of 0 μm, the polished surface of the composite resin after curing becomes smoother than when using conventional inorganic fillers with particle diameters of several tens of micrometers. The total specific surface area of the filler is smaller than when using an ultrafine particle filler whose main component is mμ microparticles, and therefore a large amount of filler can be filled under conditions that provide rapid operability. And so on! ldB is considered.

本発明の複合修復材は前記特定の非晶質シリカと重合可
能なビニルモノマーとを配合することにより、上記し良
ように従来予想し得なかった数々のメリットを発揮させ
るものである。本発明の前記複合修復材は重合可能なビ
ニルモノマー成分と特定の非晶質シリカ成分との2成分
の配合で前記メリットを発揮する亀のであるが、これら
の成分の他に一般に歯科用修復材として使用される添加
成分を必要に応じて添加すること4出来る。これらの添
加成分の代表的な亀のは次のようなものがある。例えば
ラジカル重合禁止剤2色合せのための着色顔料、紫外線
吸収剤などがある。
By blending the above-mentioned specific amorphous silica and a polymerizable vinyl monomer, the composite restorative material of the present invention exhibits a number of previously unanticipated advantages as described above. The composite restorative material of the present invention exhibits the above merits by combining two components, a polymerizable vinyl monomer component and a specific amorphous silica component, but in addition to these components, dental restorative materials are generally used. It is possible to add additional components used as 4 as necessary. Typical examples of these additive ingredients are as follows. For example, there are colored pigments for matching two colors of radical polymerization inhibitors, ultraviolet absorbers, and the like.

以下実施例および比較制を挙げ、本発明をさらに具体的
に説明するが、本発明はヒれらの実施例に限定されるも
のではない。崗以下のv71施例、比較例に示した非晶
質シリカを含む無機充填材の緒特性(粒子径1粒子径分
布の**偏差値、比表面積)の測定、および複合修復材
のペーストのll製および硬化方法。
EXAMPLES The present invention will be explained in more detail below with reference to examples and comparative examples, but the present invention is not limited to these examples. Measurement of the properties of the inorganic filler containing amorphous silica (deviation value of particle size 1 particle size distribution, specific surface area) shown in the v71 example and comparative example below, and of the paste of the composite restorative material. 1.Made and curing method.

ならびに硬化後の複合レジンの物性値(圧縮強度2曲げ
強度、歯ブラシ摩耗深さ2表面粗さ、!!!面硬度)の
測定は、以下の方法に従った。
In addition, physical property values (compressive strength 2 bending strength, toothbrush wear depth 2 surface roughness, surface hardness) of the composite resin after curing were measured according to the following method.

(1)  粒子径および粒子径分布の標準偏差値粉体の
走査型電子願黴鏡零真を撮り、その写真の単位視野内に
観察される粒子の数(n)。
(1) Standard deviation value of particle size and particle size distribution The number of particles (n) observed within a unit field of view of a photograph taken with a scanning electronic microscope of a powder.

および粒子径(直径xl)を求め、次式により算出され
る。
and the particle diameter (diameter xl), which is calculated by the following formula.

標準偏差値 −□ ←)比表面積 柴田化学器機工業■迅速表面測定装置Sム−1000を
用いた。測定原理はBIeT法である。
Standard deviation value −□ ←) Specific surface area ■Rapid surface measurement device S-1000 manufactured by Shibata Kagakukiki Kogyo was used. The measurement principle is the BIeT method.

(3)  複合修復材のペーストの調製および硬化方法 先f、r−メタクリロキシプロピル) IJメトキシシ
ランによって表面処理された非晶質シリカとビニルモノ
マーを所定の割合でメノウ乳鉢に入れ均一なペーストと
なるまで十分混線した。次いで該ペーストを二岬分し、
一方のペーストにはさらに重合促進剤を加え十分混合し
た(これをベーストムとする)。また他方のペーストに
は有機過酸化物触媒を加え十分混合した(これをベース
)Bとする)。
(3) Preparation and curing method of paste of composite restorative material Amorphous silica surface-treated with IJ methoxysilane and vinyl monomer were placed in an agate mortar at a predetermined ratio to form a uniform paste. There was enough confusion. Then divide the paste into two portions,
A polymerization accelerator was further added to one of the pastes and thoroughly mixed (this was used as a base tom). In addition, an organic peroxide catalyst was added to the other paste and thoroughly mixed (this will be referred to as base B).

次にペーストム及びベース)B4D$量を約30秒間混
練し、型枠に充填し硬化させ九。
Next, pastem and base) B4D$ amount were kneaded for about 30 seconds, filled into a mold, and hardened.9.

←) 圧縮装置 ペーストム及びベース)Bを混合して、室温で30分間
重合させた後、37C1水中24時間浸漬したものを試
験片とした。その大きさ、形状は直径6■、高さ12■
の円柱状のものである。この試験片を試験機(東洋ボー
ドウィンg U T M −5丁)に装着し、クロスヘ
ッドスピード10■/winで圧縮強度を測定した。
←) Compressor pastem and base) B were mixed and polymerized at room temperature for 30 minutes, and then immersed in 37C1 water for 24 hours to prepare test pieces. Its size and shape are 6 cm in diameter and 12 cm in height.
It is cylindrical. This test piece was mounted on a testing machine (Toyo Boardwin GUTM-5), and the compressive strength was measured at a crosshead speed of 10 cm/win.

(5)  曲げ強度 ベース)A及びベース)Bを混合して室温で30分間重
合させた後、37c、水中24時間浸漬し九ものを試験
片とした。その大きさ、形状は2x2x25−の角柱状
の4のである。曲げ試験は支点間距離20■の曲げ試験
装置を東洋メートウィン製UTM−5丁に装着して行な
い、クロスへッドスビート”0.5■/minとした。
(5) Bending strength Base) A and base) B were mixed and polymerized at room temperature for 30 minutes, and then immersed in 37C water for 24 hours to prepare nine test pieces. Its size and shape are 2 x 2 x 25- square prism-like. The bending test was carried out using a bending test device with a distance between fulcrums of 20 cm mounted on a UTM-5 manufactured by Toyo Matewin, and a crosshead beat of 0.5 cm/min.

(6)*ブラシ摩耗法さ、および表面粗さペーストム及
びベース)Bを混合して室温で30分間重合させた後、
37℃、水中24時間浸漬したものを試験片とした。そ
の大きさ、形状は1.5 X 10 X 10箇の板状
の屯のである。試験片を荷重400t″?−ブラシで1
500購摩耗した後1表面粗さ針(サーフコムム−10
0)で十点平均あらさを求めた。
(6) *Brush abrasion method and surface roughness After mixing pastem and base) B and polymerizing at room temperature for 30 minutes,
A test piece was immersed in water at 37°C for 24 hours. Its size and shape are 1.5 x 10 x 10 plate-shaped tuns. The test piece was loaded with a load of 400t'' - 1 with a brush.
1 Surface roughness needle after 500 purchases (Surf Commu-10
0), the ten-point average roughness was determined.

名摩耗深さは摩耗重量を複合レジンの密度で諭して求め
光。
The wear depth is determined by measuring the wear weight with the density of the composite resin.

〔) 表面硬変 ペーストム及びベース)Bを混合して室温で30分間重
合させた後、37℃、水中24時間浸漬したものを試験
片とした。その太きさ、形状は2.5X1.0−の円板
状のものである。測定はミクロプリネル硬さ試験を用い
た。
[) Surface hardening paste and base) B were mixed and polymerized at room temperature for 30 minutes, and then immersed in water at 37° C. for 24 hours to prepare test pieces. Its thickness and shape are 2.5 x 1.0 - disk-like. The measurement used a micropurinelle hardness test.

また実施例及び比較例で使用した略記は特に記さない限
り次の通番)である。
In addition, the abbreviations used in Examples and Comparative Examples are the following serial numbers unless otherwise specified.

乱。Disturbance.

ダH 0 唇 −0 罷 背 −0 −0 春 −0 実施例 1 エチルシリケート(日本コルコート社製)500f、メ
タノール1.2Lを容量3Lのビーカーに入れ混合した
。(この溶液を以下供給液と言う。)4う一つ別の容量
10Lのガラス容器にメタノール6、OL 、アンモニ
ア水(アンモニア濃度25〜28%)650f仕込んだ
。(この溶液を反応槽液と言う。)反応槽液の液温を2
0Cに保ち、攪拌しながら供給液をsO分間で添加した
。反応終了後、白濁し九反応槽液をエバポレーターで溶
媒を除去し乾燥し1000℃、1時間焼成した。
DaH 0 Lips - 0 Strings - 0 - 0 Spring - 0 Example 1 500 f of ethyl silicate (manufactured by Nippon Colcoat) and 1.2 L of methanol were placed in a 3 L beaker and mixed. (This solution is hereinafter referred to as the feed solution.) 4. Into another glass container with a capacity of 10 L, methanol 6, OL, and 650 f of ammonia water (ammonia concentration 25 to 28%) were charged. (This solution is called the reaction tank liquid.) The temperature of the reaction tank liquid is 2.
The feed solution was added over sO min while maintaining the temperature at 0C and stirring. After the reaction was completed, the cloudy reaction tank liquid was removed with an evaporator to remove the solvent, and then baked at 1000° C. for 1 hour.

焼成後、メノウ乳鉢で焼成物を粉砕しシリカ粒子を得た
。このシリカ粒子は走装置電子顕微鏡の観察から粒子径
は0.18〜0.24μの範囲にあり、形状゛は真球で
、さらに粒子径の分布の標準偏差値杜1.04で比表面
積20.6d/lであつ九。得られたシリカ粒子線さら
にr−メタクリロキシプロピルトリメトキシシランで表
面処理を行なった。処理はシリカ粒子に対してr−メタ
クリロキシプロピルトリメトキシシランを4 wtjg
添加し、水−エタノール溶媒中で80℃、2時間還流し
た後□エバポレーターで溶媒を除去し、さらに真空乾燥
させる方法によった。
After firing, the fired product was crushed in an agate mortar to obtain silica particles. As observed using a scanning electron microscope, the particle diameter of these silica particles is in the range of 0.18 to 0.24μ, the shape is a true sphere, the standard deviation value of the particle size distribution is 1.04, and the specific surface area is 20. .6d/l and nine. The obtained silica particle beam was further subjected to surface treatment with r-methacryloxypropyltrimethoxysilane. The treatment was to apply 4 wtjg of r-methacryloxypropyltrimethoxysilane to the silica particles.
After adding the mixture and refluxing it in a water-ethanol solvent at 80°C for 2 hours, the solvent was removed using an evaporator, and the mixture was further vacuum-dried.

次にビニルモノ7−としてビスフェノール□゛Aジグリ
シジルメタクリレート(以下Bla−GMムと言う。)
とトリエチレングリコールジメタクリレート(以下?K
GD−ムと言う。)□ の混合物(混合割合はBis−
GMム/〒!!:GDMムー3/7モル比である。)に
上船シリカ粒子を配合し充分練和することによりペース
ト状の複合修−材を得に。この際複合修復材のシリカ粒
子の充填量は75.8貰txでペーストの粘度は操作上
適正であった。次にペーストを2等分に一方には重合促
進剤としてN、N−ジメチル−P−トルイジンを、もう
一方に紘重合開始剤として過酸化ベンゾイルを各々ビニ
ルモノマーに対して1wt*tm加しペーストム(前者
)及びペース)B(後者)を調製した。
Next, as vinyl mono-7-bisphenol □゛A diglycidyl methacrylate (hereinafter referred to as Bla-GM).
and triethylene glycol dimethacrylate (hereinafter ?K
It's called GD-mu. ) □ mixture (mixing ratio is Bis-
GM Mu/〒! ! : GDM Mu 3/7 molar ratio. ) and kneaded thoroughly with Kamifune silica particles to obtain a paste-like composite repair material. At this time, the filling amount of silica particles in the composite restorative material was 75.8 gtx, and the viscosity of the paste was appropriate for operation. Next, divide the paste into two equal parts, add 1wt*tm of N,N-dimethyl-P-toluidine as a polymerization accelerator to one side, and add 1wt*tm of benzoyl peroxide as a polymerization initiator to the other side, based on the vinyl monomer. (former) and Pace) B (latter) were prepared.

上記のペーストムとペース)Bを等置数り、30秒間、
室温で練和し硬化させたものについて物性を測定した結
果、圧縮強[3,4204/j、−げ強[7504/j
、表面あらさ0.5μm2表面硬度60.0.歯ブラシ
摩耗深さ7、OAでありえ。又表面研摩仕上げについて
はソフレックス(スルーエム社製)で仕上ケ′たとこる
複合レジンの表面を削り過ぎるとと述く、容易に滑沢性
の良い表面が得られた。
Pastetom and pace) B are equidistantly divided for 30 seconds,
As a result of measuring the physical properties of the product kneaded and hardened at room temperature, the compressive strength [3,4204/j
, surface roughness 0.5 μm2 surface hardness 60.0. Toothbrush wear depth 7, possible OA. As for surface polishing, a smooth surface was easily obtained by polishing the surface of the composite resin using Soflex (manufactured by Thru-M).

実施例2〜4 □実施例1と同様な方法で、供給液組成および反応槽液
組成を変えることにより粒子径及び粒子径分布の異なる
シリカ粒子を調製した。
Examples 2 to 4 □ In the same manner as in Example 1, silica particles having different particle sizes and particle size distributions were prepared by changing the feed liquid composition and the reaction tank liquid composition.

結果はまとめて表1に示したが、これら三種9シリ力粒
子を用いて、実施例1と同様なビニルモノマーを用い、
同様な方法でペーストを調製し、さらに硬化させ複合レ
ジンの物性を測定した。その結果を同じ〈表1にまとめ
て示した。
The results are summarized in Table 1, and using these three types of 9-silicone particles, using the same vinyl monomer as in Example 1,
A paste was prepared in the same manner and further cured to measure the physical properties of the composite resin. The results are summarized in Table 1.

実施例5〜7 実施例3で得たシリカ粒子を用い、ビニルモノマー成分
としてU−411MA、U−4’rMム。
Examples 5 to 7 Using the silica particles obtained in Example 3, U-411MA and U-4'rM were used as vinyl monomer components.

U−4BMA、テトラメチロールメタントリアクリレー
ト(以下〒MM〒と言う゛。)シよびメチルメタクリレ
ート(以下MMムと言う。)を用いた以外は実施例1と
同様な方法でベースト状の被合修復材を調製した。ビニ
ルモノマー成分の混合割合は表2に示した通りである。
A base-like joint repair was performed in the same manner as in Example 1, except that U-4BMA, tetramethylolmethane triacrylate (hereinafter referred to as MM) and methyl methacrylate (hereinafter referred to as MM) were used. The material was prepared. The mixing proportions of the vinyl monomer components are shown in Table 2.

ペースト状の複合レジンをさらに実施例1と同様な操作
で硬化させ物性を測定した。
The paste-like composite resin was further cured in the same manner as in Example 1, and its physical properties were measured.

その結果を同じく表2に示した。The results are also shown in Table 2.

比較例1〜3 無機充填材に石英粉末、非晶質シリカの超微粒子粉末(
日本アエロジル製エロジルR−一 ”972)sPよび
非晶質シリカ以外は、実施例1と同様な方法でペースト
状の複合箒復材を調製し、硬化させ物性を調定した。そ
の結果を同じく表3に示した。比較例3に供した非晶質
シリカは実施例1.2,5.4で用いた非晶質シリカを
各々願に10 wtX 、 20 wtX。
Comparative Examples 1 to 3 Quartz powder and amorphous silica ultrafine particle powder (
A paste-like composite broom material was prepared in the same manner as in Example 1 except for Aerosil R-1 "972)sP manufactured by Nippon Aerosil Co., Ltd. and the amorphous silica, and the material was cured and its physical properties were determined. The results were also It is shown in Table 3. The amorphous silica used in Comparative Example 3 was 10 wtX and 20 wtX of the amorphous silica used in Examples 1.2 and 5.4, respectively.

50wtX、40wt*の割合で混合したものを用すた
A mixture of 50wtX and 40wt* was used.

Claims (1)

【特許請求の範囲】 (助 重合可能なビニルモノマーと等子径が0.1〜1
.0μの範囲にある球状粒子で且つ該粒子径の分布の標
準偏差値が1.30以内にある非晶質シリカとよりなる
ことを特徴とする複合修復材。 仲)非晶質シリカが7.0〜90(重量)X含まれてな
る特許請求の範S(ホ)記載の複合修復材。 (3)非晶質シリカが4.0〜40.0d/fの比表面
積を有するものである特許請求の範8(1)、記載の*
会修復材。 (4)、P、l&質フシリカ有機珪素化合物で表面処理
されて5.いる特許請求の範soJ記載の複合修復材。 φ) 重合可能なビニルモノマーがアクリル基及び/又
はメタクリル基−を有するビニルモノマーである特許請
求の範1t(1)記載の複合修復材。
[Scope of Claims] (Copolymerizable vinyl monomer and
.. 1. A composite restorative material comprising amorphous silica which is a spherical particle in the range of 0μ and whose standard deviation value of the particle size distribution is within 1.30. Middle) The composite restorative material according to claim S(e), which contains 7.0 to 90 (by weight) of amorphous silica. (3) Claim 8(1), wherein the amorphous silica has a specific surface area of 4.0 to 40.0 d/f, *
Association repair materials. (4) surface treated with P, L& quality fusilica organosilicon compound; 5. A composite restorative material according to the claims soJ. φ) The composite restorative material according to claim 1t(1), wherein the polymerizable vinyl monomer is a vinyl monomer having an acrylic group and/or a methacrylic group.
JP56139684A 1981-09-07 1981-09-07 Composite reparative material Granted JPS5841810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56139684A JPS5841810A (en) 1981-09-07 1981-09-07 Composite reparative material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56139684A JPS5841810A (en) 1981-09-07 1981-09-07 Composite reparative material

Publications (2)

Publication Number Publication Date
JPS5841810A true JPS5841810A (en) 1983-03-11
JPH0157082B2 JPH0157082B2 (en) 1989-12-04

Family

ID=15251014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56139684A Granted JPS5841810A (en) 1981-09-07 1981-09-07 Composite reparative material

Country Status (1)

Country Link
JP (1) JPS5841810A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148316A (en) * 1985-12-20 1987-07-02 Agency Of Ind Science & Technol Preparation of microspherical silica
JPH02120221A (en) * 1988-10-31 1990-05-08 Nippon Steel Chem Co Ltd Production of silica particle
JPH02289481A (en) * 1988-09-02 1990-11-29 Hitoyoshi Nama Concrete Kk Method for blasting cryptomeria bark, cypress bark or the like and its blasted material
JPH0741152A (en) * 1993-08-02 1995-02-10 O G K Giken Kk Wheel selector/carrier
US8349399B2 (en) 2004-05-07 2013-01-08 Schott Ag Powder particles that are uniformly coated with functional groups, method for their production and use thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148316A (en) * 1985-12-20 1987-07-02 Agency Of Ind Science & Technol Preparation of microspherical silica
JPH0413293B2 (en) * 1985-12-20 1992-03-09 Kogyo Gijutsuin
JPH02289481A (en) * 1988-09-02 1990-11-29 Hitoyoshi Nama Concrete Kk Method for blasting cryptomeria bark, cypress bark or the like and its blasted material
JPH0459277B2 (en) * 1988-09-02 1992-09-21 Hitoyoshi Nama Konkuriito Jugengaisha
JPH02120221A (en) * 1988-10-31 1990-05-08 Nippon Steel Chem Co Ltd Production of silica particle
JPH052607B2 (en) * 1988-10-31 1993-01-12 Shinnittetsu Kagaku
JPH0741152A (en) * 1993-08-02 1995-02-10 O G K Giken Kk Wheel selector/carrier
US8349399B2 (en) 2004-05-07 2013-01-08 Schott Ag Powder particles that are uniformly coated with functional groups, method for their production and use thereof

Also Published As

Publication number Publication date
JPH0157082B2 (en) 1989-12-04

Similar Documents

Publication Publication Date Title
Manhart et al. Mechanical properties of new composite restorative materials
US4267097A (en) Material for dental purposes
Mitsuhashi et al. Fracture toughness of resin-modified glass ionomer restorative materials: effect of powder/liquid ratio and powder particle size reduction on fracture toughness
Gad et al. Influence of addition of different nanoparticles on the surface properties of poly (methylmethacrylate) denture base material
Rahim et al. Synthesis of nanosilica fillers for experimental dental nanocomposites and their characterisations
Haselden et al. A comparison between the wear resistance of three typesof denture resin to three different dentifrices
JPH0558837A (en) Dental filling material composition
Mansour et al. Effect of mica reinforcement on the flexural strength and microhardness of polymethyl methacrylate denture resin
US6196843B1 (en) Dental composition and artificial tooth with the use of dental composition
Sonal et al. Effect of adding nanosilica particulate filler on the wear behavior of dental composite
EP3555185B1 (en) Solid polymeric highly durable surfacing
Elshereksi et al. Effects of nanobarium titanate on physical and mechanical properties of poly (methyl methacrylate) denture base nanocomposites
JP2002138008A (en) Dental curable composition
JPS5841810A (en) Composite reparative material
Alhareb et al. Effect of nitrile butadiene rubber/Al 2 O 3/YSZ fillers for PMMA denture base on the thermal and mechanical properties
Shakir et al. Mechanical Characteristics of (TiO
JP4798680B2 (en) Dental curable composition
JPS61171404A (en) Complex restorative dental material
Ghazi et al. Investigating some properties of nanocomposites for dental restoration materials
JPS59101409A (en) Composite filler
JPH0310603B2 (en)
JPH0755883B2 (en) Composite restorative material
Aldwimi et al. Effect of HNTs and MWCNTs nanotubes on the impact strength and hardness of PMMA denture base
JPS59104306A (en) Composite composition for polymerization
JP3421072B2 (en) Dental filling composition