JPH0525367B2 - - Google Patents

Info

Publication number
JPH0525367B2
JPH0525367B2 JP61162090A JP16209086A JPH0525367B2 JP H0525367 B2 JPH0525367 B2 JP H0525367B2 JP 61162090 A JP61162090 A JP 61162090A JP 16209086 A JP16209086 A JP 16209086A JP H0525367 B2 JPH0525367 B2 JP H0525367B2
Authority
JP
Japan
Prior art keywords
weight
magnetic
support
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61162090A
Other languages
Japanese (ja)
Other versions
JPS6318607A (en
Inventor
Susumu Sawada
Osamu Kanano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUKO KYOSEKI KK
Original Assignee
NITSUKO KYOSEKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUKO KYOSEKI KK filed Critical NITSUKO KYOSEKI KK
Priority to JP16209086A priority Critical patent/JPS6318607A/en
Publication of JPS6318607A publication Critical patent/JPS6318607A/en
Publication of JPH0525367B2 publication Critical patent/JPH0525367B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、一般には磁気記録媒体に関するもの
であり、特に真空蒸着法、イオンプレーテイング
法等の蒸着法により、蒸着源用材料を蒸発させ支
持体上に磁性蒸着膜を形成せしめた磁気記録媒体
及びその製造法に関するものである。 従来の技術及び問題点 近年、例えばビデオテープ及び他の種々の分野
では記録情報量の増大が望まれ、これに応えるべ
く高密度の磁気記録媒体が種々提案されている。 斯る高密度磁気記録媒体としては、現在真空蒸
着法、イオンプレーテイング法等の蒸着法によ
り、蒸着源用材料を蒸発させ支持体上に磁性蒸着
膜を形成せしめた磁気記録媒体が特に有効である
と認識されており、例えば特開昭57−198614号に
はテープ基材上にCo−Ni−B系金属に酸素を含
めた組成を有する磁性蒸着膜を形成した磁気記録
用テープが、又特開昭59−74606号にはCo−Cr系
金属或いはCo−Ni−Cr系金属に酸素及びMo,
Ta,Wの内の少なくとも1種の元素を含めた組
成を有する磁性蒸着膜を形成した磁気記録テープ
が提案されている。 このような磁気記録用テープは、特にCo−Ni
−B系金属組成を有する磁性蒸着膜を形成した磁
気記録用テープは磁性膜の磁気特性、耐蝕性及び
耐摩耗性の点において優れており極めて好ましい
ものである。しかしながら、最近のビデオテープ
レコーダの進歩と共にテープの使用頻度が著しく
増大し、更にはその使用態様も複雑化し、特にス
チル(静止画像)モードでの使用が多用され、テ
ープは同一箇所を磁気ヘツドにて多数回摺擦され
ることがあり、より耐摩耗性の向上が望まれてい
る。 本発明者等は、磁性蒸着膜を形成せしめた磁気
記録媒体を改善するべく、多くの研究実験を行な
つた結果、基本的にはCo−Ni−B系金属から成
る組成を有し、更にTi,Zr,Hf,V,Nb,Ta,
Cr,Mo,Wの中の1種以上の元素を更に好まし
くは酸素(O)及び/又は窒素(N)を含有せし
めることにより磁性蒸着膜の耐摩耗性が飛躍的に
向上することを見出した。 本発明は斯る新規な知見に基ずくものである。 発明の目的 従つて、本発明の目的は、基本的にCo−Ni−
B系金属から成る組成を有した磁性蒸着膜の耐蝕
性及び耐摩耗性を改良し、より耐蝕性及び耐摩耗
性の良好な磁性蒸着膜を有した磁気記録媒体を提
供することである。 問題点を解決するための手段 上記目的は本発明に係る磁気記録媒体によつて
達成される。要約すれば本発明は、支持体上に
Ni(10〜30重量%)、B(0.02〜1.5重量%)、Ti,
Zr,Hf,V,Nb,Ta,Cr,Mo,Wの中の1種
以上の元素(0.02〜5.0重量%)、Co(残部)から
成る組成を有する磁性蒸着膜を形成したことを特
徴とする磁気記録媒体である。本発明の好ましい
実施態様によると、Niは15〜20重量%、Bは0.4
〜1.5重量%、Ti,Zr,Hf,V,Nb,Ta,Cr,
Mo,Wの中の1種以上の元素は1.0〜4.0重量%、
残部がCoとされ、支持体は耐熱性プラスチツク
フイルムとされる。 更に好ましくは、上記磁性蒸着膜にはO及び/
又はNが添加される。更に詳しく説明すると、支
持体上にNi(10〜30重量%)、B(0.02〜1.5重量
%)、O(0.2〜3.0重量%)、Ti,Zr,Hf,V,
Nb,Ta,Cr,Mo,Wの中の1種以上の元素
(0.02〜5.0重量%)、Co(残部)から成る組成を有
する磁性蒸着膜を形成することができ、この場
合、より好ましくはNiは15〜20重量%、Bは0.4
〜1.5重量%、Oは2.0〜2.5重量%、Ti,Zr,Hf,
V,Nb,Ta,Cr,Mo,Wの中の1種以上の元
素は1.0〜4.0重量%、残部がCoとされる。又、本
発明の他の態様によれば、支持体上にNi(10〜30
重量%)、B(0.02〜1.5重量%)、N(0.02〜2.0重
量%)、Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,
Wの中の1種以上の元素(0.02〜5.0重量%)、Co
(残部)から成る組成を有する磁性蒸着膜を形成
することができ、この場合、より好ましくはNi
は15〜20重量%、Bは0.4〜1.5重量%、Nは0.2〜
1.7重量%、Ti,Zr,Hf,V,Nb,Ta,Cr,
Mo,Wの中の1種以上の元素は1.0〜4.0重量%、
残部がCoとされる。又、更に本発明の他の態様
によれば、支持体上にNi(10〜30重量%)、B
(0.02〜1.5重量%)、O(0.2〜3.0重量%)、N(0.0
2
〜2.0重量%)、Ti,Zr,Hf,V,Nb,Ta,Cr,
Mo,Wの中の1種以上の元素(0.02〜5.0重量
%)、Co(残部)から成る組成を有する磁性蒸着
膜を形成した磁気記録媒体が得られる。この時、
より好ましくはNiは15〜20重量%、Bは0.4〜1.5
重量%、Oは2.0〜2.5重量%、Nは0.2〜1.7重量
%、Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,Wの
中の1種以上の元素は1.0〜4.0重量%、残部がCo
とされる。 以下に、本発明を図面及び実施例により更に詳
しく説明する。 第1図を参照すると、本発明に係る磁気記録媒
体を製造する真空蒸着装置の一実施例が例示され
る。本装置において、真空(減圧)槽1内には円
筒状の冷却キヤン2が矢印方向に回転自在に担持
される。真空槽1は排気孔11に接続された真空
排気装置(図示せず)にて所定の真空となるま
で、通常10-4〜10-6Torrにまで真空引きされる。
又、磁気記録媒体の基材、即ち、支持体Sは、本
実施例ではテープ状のプラスチツクフイルムとさ
れ、供給ロール4から前記冷却キヤン2の概略下
方部分の外周囲を巻回され、巻取りロール6に巻
取られる。支持体Sの移動速度は通常約100cm/
secとされるであろう。プラスチツクフイルムと
しては適度の可撓性と抗張力、更には蒸着時の高
温度に耐えるだけの耐熱性を有した任意のフイル
ムを使用し得るが、通常磁気テープの基材として
使用されているポリエステル樹脂、アセテート樹
脂、ポリカーボネイト樹脂等のフイルムが好適で
ある。 冷却キヤン2の、好ましくは斜め下方位置に蒸
発源8が配置され、斜方蒸着が行なわれるように
構成される。従つて、斜方蒸着を効果ならしめる
ために冷却キヤン2の真下外周部分に巻回された
支持体Sは所定範囲にわたつてマスク10にて遮
蔽される。蒸発源8には、蒸発材料である本発明
に係る上記Co−Ni−B−(Ti,Zr,Hf,V,
Nb,Ta,Cr,Mo,W)系合金が準備され、抵
抗加熱手段、高周波誘導加熱手段又は電子線加熱
手段等の任意の加熱装置にて加熱され、例えば
50nm/secの蒸着速度となるように蒸発せしめら
れる。蒸発したCo−Ni−B−(Ti,Zr,Hf,V,
Nb,Ta,Cr,Mo,W)系合金は上方に配置さ
れた冷却キヤン2の方向へと上昇し、冷却キヤン
2の外周囲に巻回されて移動する支持体S上へと
付着する。 本装置には、Co−Ni−B−(Ti,Zr,Hf,V,
Nb,Ta,Cr,Mo,W)系合金蒸気が支持体S
に付着する部分に酸素若しくは窒素、又は酸素及
び窒素の混合ガスを選択的に供給するためにノズ
ル12が配設される。該酸素及び窒素はそれぞれ
酸素及び窒素供給源(図示せず)から供給するこ
ともできるが、酸素及び窒素を同時に供給する場
合には水分を除去した乾燥空気を供給することも
可能である。酸素及び窒素は、圧力1Kg/cm2、流
量0.1/secにて供給され、又混合ガスの場合の
酸素と窒素の割合は標準状態にて1対4とされ、
圧力1Kg/cm2、流量0.1/secにて供給される。
又、乾燥空気を供給する場合には圧力1Kg/cm2
流量0.1/secにて支持体Sの蒸着部分に供給さ
れる。 上記構成により、支持体Sは冷却キヤン2によ
り移送される過程にてCo−Ni−B−(Ti,Zr,
Hf,V,Nb,Ta,Cr,Mo,W)系合金蒸気並
びに選択的に酸素若しくは窒素又は酸素及び窒素
が供給付着される。 つまり、本発明に従えば、上記製造方法にて支
持体上にNi(10〜30重量%)、B(0.02〜1.5重量
%)、Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W
の中の1種以上の元素(0.02〜5.0重量%)、Co
(残部)から成る組成を有する磁性蒸着膜を形成
した磁気記録媒体;支持体上にNi(10〜30重量
%)、B(0.02〜1.5重量%)、O(0.2〜3.0重量%)

Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,Wの中の
1種以上の元素(0.02〜5.0重量%)、Co(残部)
から成る組成を有する磁性蒸着膜を形成した磁気
記録媒体;支持体上にNi(10〜30重量%)、B
(0.02〜1.5重量%)、N(0.02〜2.0重量%)、Ti,
Zr,Hf,V,Nb,Ta,Cr,Mo,Wの中の1種
以上の元素(0.02〜5.0重量%)、Co(残部)から
成る組成を有する磁性蒸着膜を形成した磁気記録
媒体;又は支持体上にNi(10〜30重量%)、B
(0.02〜1.5重量%)、O(0.2〜3.0重量%)、N(0.0
2
〜2.0重量%)、Ti,Zr,Hf,V,Nb,Ta,Cr,
Mo,Wの中の1種以上の元素(0.02〜5.0重量
%)、Co(残部)から成る組成を有する磁性蒸着
膜を形成した磁気記録媒体が得られる。 更に説明すれば、本発明において、Niは10〜
30重量%までの割合にて含有され、Co主体の磁
性蒸着膜の耐摩耗性を向上せしめる作用をなす。
10%より少ないか30重量%を超えた場合には磁気
特性が悪化することが分かつた。従つて、好まし
くは、Niは15〜20重量%とされるであろう。 本発明に従えば、特に、B及びTi,Zr,Hf,
V,Nb,Ta,Cr,Mo,Wの中の1種以上の元
素が互いに反応してTi,Zr,Hf,V,Nb,Ta,
Cr,Mo,Wのホウ化物を形成し、該ホウ化物が
磁性蒸着膜内に分散されることによりCo−Ni系
金属の磁性蒸着膜の耐蝕性、耐摩耗性を向上せし
める働きがあることが分かつた。又、Bが0.02重
量%より少ない場合はその効果が顕著ではなく、
1.5重量%を超えた場合には磁気特性が悪化する
ことが分かつた。特に好ましくは、Bは0.4〜1.5
重量%とされる。このとき、Ti,Zr,Hf,V,
Nb,Ta,Cr,Mo,Wは0.02〜5.0重量%である
ことが重要であり、斯る範囲外では磁性蒸着膜の
耐蝕性、耐摩耗性の向上は顕著ではなく、又磁気
特性が悪くなる傾向がある。 本発明に従い選択的に添加される酸素(O)及
び窒素(N)は、上記4元合金、Co−Ni−B−
(Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W)系
金属が支持体上に蒸着される際に金属と化合して
酸化物及び窒化物を生成して含有されるものと考
えられる。酸素(O)は酸化コバルト(CoO)と
して存在し、窒素(N)は窒化ホウ素(BN)と
して膜内に入つていると考えられる。本発明者等
の研究によれば、磁性膜中に酸素及び/又は窒素
が含有された場合には磁性蒸着膜の耐摩耗性が更
に向上されることが分かつた。 このとき、酸素(O)の含有量が0.2重量パー
セントよりも少ない場合は、磁性薄膜の耐摩耗性
向上効果が見られず、3.0重量パーセントを超え
た場合には前記効果は飽和し、耐食性及び磁気特
性が悪くなる。窒素(N)の含有量が0.02〜2.0
重量パーセントを外れた場合もOと全く同じ影響
が表れ、Nが0.02重量パーセント未満では、磁性
薄膜の耐摩耗性向上効果が見られず、2.0重量パ
ーセントを超えた場合には、前記効果は飽和し、
耐食性及び磁気特性が悪くなることが分つた。 本発明にて該磁性蒸着膜の膜厚は用途に応じて
任意に設計し得るが、好ましくは0.1〜0.2μmとさ
れる。本発明者等の研究によると、0.1μm未満で
は十分な記録が得られないと同時に十分な耐摩耗
性が得られず、又0.2μmを超えると耐摩耗性は得
られるが支持体Sの可撓性が低下し、記録密度も
低下する傾向にあることが分かつた。従つて、磁
性蒸着膜の膜厚は、特に好ましくは0.15μmとさ
れるであろう。 上記磁性蒸着膜の組成及び膜厚は、蒸発源の4
元合金の組成、及び供給される酸素、窒素ガスの
流量、供給圧力、支持体Sの移動速度、真空槽1
の減圧状態等によつて種々に調整されるであろ
う。 次に、実施例について本発明を説明する。 実施例 1〜14 電子ビーム照射加熱式真空溶解炉にて、表1に
示される組成を有した4元合金を調製し、蒸発源
材料とした。 真空蒸着装置は第1図に図示するような製造装
置を使用し、真空槽1は2.3×10-6Torrに真空引
きされた。支持体Sとしては、28μm厚のポリエ
ステルフイルムを使用し、直径50cmの冷却キヤン
の回りに巻回し、100cm/secの速度にて移動せし
めた。 蒸発源材料は、電子線を照射し溶融して蒸発せ
しめ、支持体S上に50nm/secの速度にて蒸着
し、該支持体S上に厚さ0.1μmの磁性蒸着膜を形
成した。 このようにして作製された磁性蒸着膜の組成、
磁気特性及び表面硬度は表1、表6に示す通りで
あつた。表面硬度は、微小硬度計(10g荷重)を
用いて測定したビツカース硬度(Hv)である。 実施例 15〜28 電子ビーム照射加熱式真空溶解炉にて、表2に
示される組成を有した4元合金を調製し、蒸発源
材料とした。 真空蒸着装置は第1図に図示するような製造装
置を使用し、真空槽1は2.3×10-6Torrに真空引
きされた。支持体Sとしては、28μm厚のポリエ
ステルフイルムを使用し、直径50cmの冷却キヤン
の回りに巻回し、100cm/secの速度にて移動せし
めた。 蒸発源材料は、電子線を照射し溶融して蒸発せ
しめ、支持体S上に50nm/secの速度にて蒸着
し、該支持体S上に厚さ0.1μmの磁性蒸着膜を形
成した。尚、支持体Sの蒸着面にはノズル12か
ら酸素を0.1/sec、圧力1Kg/cm2にて吹付け
た。これにより、真空槽1内の真空は1.4×10-2
Torrとなり、該真空状態が維持された。 このようにして作製された磁性蒸着膜の組成、
磁気特性及び表面硬度は表2、表6に示す通りで
あつた。表面硬度は、微小硬度計(10g荷重)を
用いて測定したビツカース硬度(Hv)である。 実施例 29〜42 ノズル12から支持体Sの蒸着面に酸素の代り
に窒素を吹付けた以外は実施例15〜28と同様の蒸
着条件にて支持体Sに磁性蒸着膜を作製した。蒸
発源の4元合金の組成は表3に示される通りであ
る。 このようにして作製された磁性蒸着膜の組成、
磁気特性及び表面硬度は表3、表6に示す通りで
あつた。表面硬度は、微小硬度計(10g荷重)を
用いて測定したビツカース硬度(Hv)である。 実施例 43〜56 ノズル12から支持体Sの蒸着面に酸素の代り
に乾燥空気(酸素:窒素=1:4)を吹付けた以
外は実施例15〜28と同様の蒸着条件にて支持体S
に磁性蒸着膜を作製した。蒸発源の4元合金の組
成は表4に示される通りである。 このようにして作製された磁性蒸着膜の組成、
磁気特性及び表面硬度は表4、表6に示す通りで
あつた。表面硬度は、微小硬度計(10g荷重)を
用いて測定したビツカース硬度(Hv)である。 比較例 1〜4 表5に示される組成の蒸発源材料を作製し、実
施例1〜14と同様にして支持体Sに磁性蒸着膜を
作製した。 このようにして作製された磁性蒸着膜の組成、
磁気特性及び表面硬度は表5、表7に示す通りで
あつた。表面硬度は、微小硬度計(10g荷重)を
用いて測定したビツカース硬度(Hv)である。 比較例 5〜8 表5に示される組成の蒸発源材料を作製し、実
施例15〜28と同様にして支持体Sに磁性蒸着膜を
作製した。 このようにして作製された磁性蒸着膜の組成、
磁気特性及び表面硬度は表5、表7に示す通りで
あつた。表面硬度は、微小硬度計(10g荷重)を
用いて測定したビツカース硬度(Hv)である。 比較例 9〜12 表5に示される組成の蒸発源材料を作製し、実
施例29〜42と同様にして支持体Sに磁性蒸着膜を
作製した。 このようにして作製された磁性蒸着膜の組成、
磁気特性及び表面硬度は表5、表7に示す通りで
あつた。表面硬度は、微小硬度計(10g荷重)を
用いて測定したビツカース硬度(Hv)である。 比較例 13〜16 表5に示される組成の蒸発源材料を作製し、実
施例43〜56と同様にして支持体Sに磁性蒸着膜を
作製した。 このようにして作製された磁性蒸着膜の組成、
磁気特性及び表面硬度は表5、表7に示す通りで
あつた。表面硬度は、微小硬度計(10g荷重)を
用いて測定したビツカース硬度(Hv)である。
INDUSTRIAL APPLICATION FIELD The present invention generally relates to magnetic recording media, and in particular to forming a magnetic deposited film on a support by evaporating a deposition source material by a deposition method such as a vacuum deposition method or an ion plating method. The present invention relates to a magnetic recording medium and a manufacturing method thereof. BACKGROUND ART AND PROBLEMS In recent years, it has been desired to increase the amount of recorded information in, for example, video tapes and other various fields, and in order to meet this demand, various high-density magnetic recording media have been proposed. Currently, as such high-density magnetic recording media, magnetic recording media in which a deposition source material is evaporated to form a magnetic deposited film on a support using a deposition method such as a vacuum deposition method or an ion plating method are particularly effective. For example, JP-A-57-198614 describes a magnetic recording tape in which a magnetic vapor deposited film having a composition of Co-Ni-B metal containing oxygen is formed on a tape base material. In JP-A-59-74606, oxygen and Mo are added to Co-Cr metal or Co-Ni-Cr metal.
A magnetic recording tape has been proposed in which a magnetic deposited film having a composition containing at least one element selected from Ta and W is formed. This kind of magnetic recording tape is especially made of Co-Ni.
A magnetic recording tape on which a magnetic vapor deposited film having a -B metal composition is formed is extremely preferable because the magnetic film has excellent magnetic properties, corrosion resistance, and abrasion resistance. However, with recent advances in video tape recorders, the frequency of use of tape has increased significantly, and the manner in which it is used has also become more complex, especially in still (still image) mode. Since the material may be rubbed and rubbed many times, it is desired to further improve the wear resistance. The present inventors conducted many research experiments in order to improve the magnetic recording medium on which a magnetic vapor deposited film was formed, and found that it had a composition basically consisting of Co-Ni-B metal, and Ti, Zr, Hf, V, Nb, Ta,
It has been found that the wear resistance of the magnetic deposited film can be dramatically improved by incorporating one or more elements among Cr, Mo, and W, preferably oxygen (O) and/or nitrogen (N). . The present invention is based on this new knowledge. OBJECT OF THE INVENTION Therefore, the object of the present invention is basically Co-Ni-
An object of the present invention is to improve the corrosion resistance and wear resistance of a magnetic vapor deposited film having a composition consisting of a B-based metal, and to provide a magnetic recording medium having a magnetic vapor deposited film with better corrosion resistance and wear resistance. Means for Solving the Problems The above object is achieved by a magnetic recording medium according to the present invention. In summary, the present invention provides
Ni (10-30% by weight), B (0.02-1.5% by weight), Ti,
A magnetic vapor deposited film having a composition consisting of one or more elements (0.02 to 5.0% by weight) of Zr, Hf, V, Nb, Ta, Cr, Mo, and W and Co (the balance) is formed. It is a magnetic recording medium. According to a preferred embodiment of the invention, Ni is 15-20% by weight and B is 0.4% by weight.
~1.5% by weight, Ti, Zr, Hf, V, Nb, Ta, Cr,
One or more elements among Mo and W are 1.0 to 4.0% by weight,
The remainder is Co, and the support is a heat-resistant plastic film. More preferably, the magnetic deposited film contains O and/or
Or N is added. To explain in more detail, Ni (10 to 30% by weight), B (0.02 to 1.5% by weight), O (0.2 to 3.0% by weight), Ti, Zr, Hf, V,
It is possible to form a magnetic deposited film having a composition consisting of one or more elements among Nb, Ta, Cr, Mo, and W (0.02 to 5.0% by weight) and Co (the balance); in this case, more preferably Ni is 15-20% by weight, B is 0.4
~1.5% by weight, O is 2.0-2.5% by weight, Ti, Zr, Hf,
The content of one or more elements among V, Nb, Ta, Cr, Mo, and W is 1.0 to 4.0% by weight, and the balance is Co. Further, according to another embodiment of the present invention, Ni (10 to 30
(wt%), B (0.02-1.5 wt%), N (0.02-2.0 wt%), Ti, Zr, Hf, V, Nb, Ta, Cr, Mo,
One or more elements in W (0.02-5.0% by weight), Co
In this case, it is more preferable to form a magnetic deposited film having a composition consisting of (the remainder) Ni.
is 15-20% by weight, B is 0.4-1.5% by weight, N is 0.2-20% by weight
1.7% by weight, Ti, Zr, Hf, V, Nb, Ta, Cr,
One or more elements among Mo and W are 1.0 to 4.0% by weight,
The remainder is assumed to be Co. Furthermore, according to another embodiment of the present invention, Ni (10 to 30% by weight), B
(0.02-1.5% by weight), O (0.2-3.0% by weight), N (0.0% by weight)
2
~2.0% by weight), Ti, Zr, Hf, V, Nb, Ta, Cr,
A magnetic recording medium is obtained in which a magnetic deposited film having a composition consisting of one or more elements among Mo and W (0.02 to 5.0% by weight) and Co (the balance) is formed. At this time,
More preferably Ni is 15 to 20% by weight and B is 0.4 to 1.5% by weight.
Weight%, O is 2.0 to 2.5% by weight, N is 0.2 to 1.7% by weight, and one or more elements among Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W is 1.0 to 4.0% by weight. , the remainder is Co
It is said that Hereinafter, the present invention will be explained in more detail with reference to drawings and examples. Referring to FIG. 1, one embodiment of a vacuum deposition apparatus for manufacturing a magnetic recording medium according to the present invention is illustrated. In this apparatus, a cylindrical cooling can 2 is supported in a vacuum (reduced pressure) tank 1 so as to be rotatable in the direction of the arrow. The vacuum chamber 1 is evacuated to a predetermined vacuum by a vacuum evacuation device (not shown) connected to the exhaust hole 11, usually to 10 -4 to 10 -6 Torr.
In this embodiment, the base material of the magnetic recording medium, that is, the support S, is a tape-shaped plastic film, which is wound from the supply roll 4 around the outer periphery of the generally lower portion of the cooling can 2. It is wound onto a roll 6. The moving speed of the support S is usually about 100cm/
sec. As the plastic film, any film can be used that has appropriate flexibility and tensile strength, as well as heat resistance sufficient to withstand the high temperatures during vapor deposition, but polyester resin, which is usually used as a base material for magnetic tape, can be used. , acetate resin, polycarbonate resin, and the like are suitable. An evaporation source 8 is disposed, preferably at a position diagonally below the cooling can 2, and is configured to perform oblique evaporation. Therefore, in order to make the oblique evaporation effective, the support S wound around the outer periphery directly below the cooling can 2 is covered by the mask 10 over a predetermined range. The evaporation source 8 contains the above Co-Ni-B-(Ti, Zr, Hf, V,
Nb, Ta, Cr, Mo, W) based alloy is prepared and heated with any heating device such as resistance heating means, high frequency induction heating means or electron beam heating means, for example.
It is evaporated at a deposition rate of 50 nm/sec. Evaporated Co-Ni-B-(Ti, Zr, Hf, V,
The Nb, Ta, Cr, Mo, W) based alloy rises in the direction of the cooling can 2 disposed above, is wound around the outer periphery of the cooling can 2, and is deposited on the moving support S. This equipment includes Co-Ni-B-(Ti, Zr, Hf, V,
Nb, Ta, Cr, Mo, W) alloy vapor is the support S.
A nozzle 12 is provided to selectively supply oxygen or nitrogen, or a mixed gas of oxygen and nitrogen, to the portion to which it is attached. The oxygen and nitrogen can be supplied from oxygen and nitrogen supply sources (not shown), respectively, but when oxygen and nitrogen are supplied simultaneously, it is also possible to supply dry air from which moisture has been removed. Oxygen and nitrogen are supplied at a pressure of 1 Kg/cm 2 and a flow rate of 0.1/sec, and in the case of a mixed gas, the ratio of oxygen and nitrogen is 1:4 under standard conditions.
It is supplied at a pressure of 1 Kg/cm 2 and a flow rate of 0.1/sec.
In addition, when supplying dry air, the pressure is 1Kg/cm 2 ,
It is supplied to the vapor deposition portion of the support S at a flow rate of 0.1/sec. With the above configuration, the support S is transferred by the cooling can 2 to Co-Ni-B-(Ti, Zr,
Hf, V, Nb, Ta, Cr, Mo, W) based alloy vapor and selectively oxygen or nitrogen or oxygen and nitrogen are supplied and deposited. In other words, according to the present invention, Ni (10 to 30% by weight), B (0.02 to 1.5% by weight), Ti, Zr, Hf, V, Nb, Ta, Cr, Mo ,W
One or more elements (0.02 to 5.0% by weight), Co
A magnetic recording medium in which a magnetic vapor deposited film having a composition consisting of (the remainder) is formed on a support; Ni (10 to 30% by weight), B (0.02 to 1.5% by weight), and O (0.2 to 3.0% by weight)
,
One or more elements from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W (0.02 to 5.0% by weight), Co (balance)
A magnetic recording medium on which a magnetic deposited film having a composition of Ni (10 to 30% by weight), B
(0.02-1.5% by weight), N (0.02-2.0% by weight), Ti,
A magnetic recording medium formed with a magnetic deposited film having a composition consisting of one or more elements from Zr, Hf, V, Nb, Ta, Cr, Mo, and W (0.02 to 5.0% by weight) and Co (the balance); Or Ni (10-30% by weight), B on the support
(0.02-1.5% by weight), O (0.2-3.0% by weight), N (0.0% by weight)
2
~2.0% by weight), Ti, Zr, Hf, V, Nb, Ta, Cr,
A magnetic recording medium is obtained in which a magnetic deposited film having a composition consisting of one or more elements among Mo and W (0.02 to 5.0% by weight) and Co (the balance) is formed. To explain further, in the present invention, Ni is 10 to
It is contained in a proportion of up to 30% by weight, and has the effect of improving the wear resistance of the Co-based magnetic deposited film.
It has been found that when the amount is less than 10% or more than 30% by weight, the magnetic properties deteriorate. Therefore, preferably Ni will be 15-20% by weight. According to the invention, in particular B and Ti, Zr, Hf,
One or more elements among V, Nb, Ta, Cr, Mo, and W react with each other to form Ti, Zr, Hf, V, Nb, Ta,
By forming borides of Cr, Mo, and W, and dispersing the borides in the magnetic deposited film, it has the effect of improving the corrosion resistance and wear resistance of the magnetic deposited film of Co-Ni metal. I understand. In addition, when B is less than 0.02% by weight, the effect is not significant,
It was found that when the content exceeds 1.5% by weight, the magnetic properties deteriorate. Particularly preferably, B is 0.4 to 1.5
% by weight. At this time, Ti, Zr, Hf, V,
It is important that the content of Nb, Ta, Cr, Mo, and W is 0.02 to 5.0% by weight; outside this range, the corrosion resistance and abrasion resistance of the magnetic deposited film will not improve significantly, and the magnetic properties will be poor. There is a tendency to Oxygen (O) and nitrogen (N) selectively added according to the present invention can be added to the above quaternary alloy, Co-Ni-B-
When (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) metals are vapor deposited on a support, they combine with metals to form oxides and nitrides. Conceivable. It is thought that oxygen (O) exists as cobalt oxide (CoO), and nitrogen (N) is contained in the film as boron nitride (BN). According to the research conducted by the present inventors, it has been found that the wear resistance of the magnetic deposited film is further improved when oxygen and/or nitrogen is contained in the magnetic film. At this time, if the content of oxygen (O) is less than 0.2% by weight, the effect of improving the wear resistance of the magnetic thin film is not observed, and if it exceeds 3.0% by weight, the effect is saturated and the corrosion resistance and Magnetic properties deteriorate. Nitrogen (N) content is 0.02 to 2.0
Exactly the same effect as O appears when the weight percentage is outside the range, and when N is less than 0.02 weight percent, no effect of improving the wear resistance of the magnetic thin film is observed, and when it exceeds 2.0 weight percent, the above effect is saturated. death,
It was found that corrosion resistance and magnetic properties deteriorated. In the present invention, the thickness of the magnetic deposited film can be arbitrarily designed depending on the application, but is preferably 0.1 to 0.2 μm. According to research by the present inventors, if the diameter is less than 0.1 μm, sufficient recording cannot be obtained and at the same time sufficient wear resistance cannot be obtained, and if the diameter exceeds 0.2 μm, wear resistance can be obtained but the support S It was found that flexibility tends to decrease and recording density also tends to decrease. Therefore, the thickness of the magnetic deposited film will be particularly preferably 0.15 μm. The composition and film thickness of the magnetic evaporation film are as follows:
Composition of the original alloy, flow rate of oxygen and nitrogen gas supplied, supply pressure, moving speed of support S, vacuum chamber 1
It will be adjusted in various ways depending on the reduced pressure state, etc. Next, the present invention will be explained with reference to examples. Examples 1 to 14 Quaternary alloys having the compositions shown in Table 1 were prepared in an electron beam irradiation heated vacuum melting furnace and used as evaporation source materials. A vacuum evaporation apparatus as shown in FIG. 1 was used, and the vacuum chamber 1 was evacuated to 2.3×10 -6 Torr. As the support S, a 28 μm thick polyester film was used, which was wound around a cooling can with a diameter of 50 cm and moved at a speed of 100 cm/sec. The evaporation source material was melted and evaporated by irradiation with an electron beam, and was deposited on the support S at a rate of 50 nm/sec to form a 0.1 μm thick magnetic deposited film on the support S. The composition of the magnetic deposited film produced in this way,
The magnetic properties and surface hardness were as shown in Tables 1 and 6. The surface hardness is the Vickers hardness (Hv) measured using a microhardness meter (10g load). Examples 15 to 28 Quaternary alloys having the compositions shown in Table 2 were prepared in an electron beam irradiation heated vacuum melting furnace and used as evaporation source materials. A vacuum evaporation apparatus as shown in FIG. 1 was used, and the vacuum chamber 1 was evacuated to 2.3×10 -6 Torr. As the support S, a 28 μm thick polyester film was used, which was wound around a cooling can with a diameter of 50 cm and moved at a speed of 100 cm/sec. The evaporation source material was melted and evaporated by irradiation with an electron beam, and was deposited on the support S at a rate of 50 nm/sec to form a 0.1 μm thick magnetic deposited film on the support S. Incidentally, oxygen was sprayed onto the vapor deposition surface of the support S from the nozzle 12 at a rate of 0.1/sec and a pressure of 1 kg/cm 2 . As a result, the vacuum inside vacuum chamber 1 is 1.4×10 -2
Torr, and the vacuum state was maintained. The composition of the magnetic deposited film produced in this way,
The magnetic properties and surface hardness were as shown in Tables 2 and 6. The surface hardness is the Vickers hardness (Hv) measured using a microhardness meter (10g load). Examples 29 to 42 Magnetic vapor deposited films were produced on the support S under the same vapor deposition conditions as in Examples 15 to 28, except that nitrogen was sprayed onto the vapor deposition surface of the support S from the nozzle 12 instead of oxygen. The composition of the quaternary alloy of the evaporation source is as shown in Table 3. The composition of the magnetic deposited film produced in this way,
The magnetic properties and surface hardness were as shown in Tables 3 and 6. The surface hardness is the Vickers hardness (Hv) measured using a microhardness meter (10g load). Examples 43 to 56 Supports were deposited under the same evaporation conditions as in Examples 15 to 28, except that dry air (oxygen:nitrogen=1:4) was blown onto the evaporation surface of the support S from the nozzle 12 instead of oxygen. S
A magnetic vapor-deposited film was fabricated. The composition of the quaternary alloy of the evaporation source is as shown in Table 4. The composition of the magnetic deposited film produced in this way,
The magnetic properties and surface hardness were as shown in Tables 4 and 6. The surface hardness is the Vickers hardness (Hv) measured using a microhardness meter (10g load). Comparative Examples 1 to 4 Evaporation source materials having the compositions shown in Table 5 were prepared, and magnetic vapor deposited films were formed on the support S in the same manner as in Examples 1 to 14. The composition of the magnetic deposited film produced in this way,
The magnetic properties and surface hardness were as shown in Tables 5 and 7. The surface hardness is the Vickers hardness (Hv) measured using a microhardness meter (10g load). Comparative Examples 5 to 8 Evaporation source materials having the compositions shown in Table 5 were prepared, and magnetic vapor deposited films were formed on the support S in the same manner as in Examples 15 to 28. The composition of the magnetic deposited film produced in this way,
The magnetic properties and surface hardness were as shown in Tables 5 and 7. The surface hardness is the Vickers hardness (Hv) measured using a microhardness meter (10g load). Comparative Examples 9 to 12 Evaporation source materials having the compositions shown in Table 5 were prepared, and magnetic vapor deposited films were formed on the support S in the same manner as in Examples 29 to 42. The composition of the magnetic deposited film produced in this way,
The magnetic properties and surface hardness were as shown in Tables 5 and 7. The surface hardness is the Vickers hardness (Hv) measured using a microhardness meter (10g load). Comparative Examples 13-16 Evaporation source materials having the compositions shown in Table 5 were prepared, and magnetic vapor deposited films were formed on the support S in the same manner as in Examples 43-56. The composition of the magnetic deposited film produced in this way,
The magnetic properties and surface hardness were as shown in Tables 5 and 7. The surface hardness is the Vickers hardness (Hv) measured using a microhardness meter (10g load).

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 発明の効果 表6、表7から理解されるように、本発明に係
る磁気記録媒体は、磁性蒸着膜が基本的にはCo
−Ni−B−(Ti,Zr,Hf,V,Nb,Ta,Cr,
Mo,W)系金属から成り、更に酸素及び/又は
窒素を含有することができ、それによつて磁気特
性を損なうことなく磁性蒸着膜の耐蝕性及び耐摩
耗性が著しく改善されるという特長を有する。
[Table] Effects of the Invention As understood from Tables 6 and 7, in the magnetic recording medium according to the present invention, the magnetic deposited film is basically made of Co.
-Ni-B-(Ti, Zr, Hf, V, Nb, Ta, Cr,
(Mo, W) based metals, and can further contain oxygen and/or nitrogen, which has the feature that the corrosion resistance and abrasion resistance of the magnetic deposited film are significantly improved without impairing the magnetic properties. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る磁気記録媒体を好適に
製造し得る製造装置の一実施例である。 1……真空槽、2……冷却キヤン、4……支持
体供給ロール、6……支持体巻取りロール、8…
…蒸発源、12……ノズル。
FIG. 1 shows an embodiment of a manufacturing apparatus that can suitably manufacture the magnetic recording medium according to the present invention. DESCRIPTION OF SYMBOLS 1... Vacuum chamber, 2... Cooling can, 4... Support supply roll, 6... Support winding roll, 8...
...Evaporation source, 12...Nozzle.

Claims (1)

【特許請求の範囲】 1 支持体上にNi(10〜30重量%)、B(0.02〜1.5
重量%)、Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,
Wの中の1種以上の元素(0.02〜5.0重量%)、Co
(残部から成る組成を有する磁性蒸着膜を形成し
たことを特徴とする磁気記録媒体。 2 Niは15〜20重量%、Bは0.4〜1.5重量%、
Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,Wの中の
1種以上の元素は1.0〜4.0重量%、残部がCoであ
る特許請求の範囲第1項記載の磁気記録媒体。 3 支持体は耐熱性プラスチツクフイルムである
特許請求の範囲第1項又は第2項記載の磁気記録
媒体。 4 支持体はテープ状とされる特許請求の範囲第
3項記載の磁気記録媒体。 5 支持体上にNi(10〜30重量%)、B(0.02〜1.5
重量%)、O(0.2〜3.0重量%)、Ti,Zr,Hf,V,
Nb,Ta,Cr,Mo,Wの中の1種以上の元素
(0.02〜5.0重量%)、Co(残部)から成る組成を有
する磁性蒸着膜を形成したことを特徴とする磁気
記録媒体。 6 Niは15〜20重量%、Bは0.4〜1.5重量%、O
は2.0〜2.5重量%、Ti,Zr,Hf,V,Nb,Ta,
Cr,Mo,Wの中の1種以上の元素は1.0〜4.0重
量%、残部がCoである特許請求の範囲第5項記
載の磁気記録媒体。 7 支持体は耐熱性プラスチツクフイルムである
特許請求の範囲第5項又は第6項記載の磁気記録
媒体。 8 支持体はテープ状とされる特許請求の範囲第
7項記載の磁気記録媒体。 9 支持体上にNi(10〜30重量%)、B(0.02〜1.5
重量%)、N(0.02〜2.0重量%)、Ti,Zr,Hf,
V,Nb,Ta,Cr,Mo,Wの中の1種以上の元
素(0.02〜5.0重量%)、Co(残部)から成る組成
を有する磁性蒸着膜を形成したことを特徴とする
磁気記録媒体。 10 Niは15〜20重量%、Bは0.4〜1.5重量%、
Nは0.2〜1.7重量%、Ti,Zr,Hf,V,Nb,
Ta,Cr,Mo,Wの中の1種以上の元素は1.0〜
4.0重量%、残部がCoである特許請求の範囲第9
項記載の磁気記録媒体。 11 支持体は耐熱性プラスチツクフイルムであ
る特許請求の範囲第9項又は第10項記載の磁気
記録媒体。 12 支持体はテープ状とされる特許請求の範囲
第11項記載の磁気記録媒体。 13 支持体上にNi(10〜30重量%)、B(0.02〜
1.5重量%)、O(0.2〜3.0重量%)、N(0.02〜2.0重
量%)、Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,
Wの中の1種以上の元素(0.02〜5.0重量%)、Co
(残部)から成る組成を有する磁性蒸着膜を形成
したことを特徴とする磁気記録媒体。 14 Niは15〜20重量%、Bは0.4〜1.5重量%、
Oは2.0〜2.5重量%、Nは0.2〜1.7重量%、Ti,
Zr,Hf,V,Nb,Ta,Cr,Mo,Wの中の1種
以上の元素は1.0〜4.0重量%、残部がCoである特
許請求の範囲第13項記載の磁気記録媒体。 15 支持体は耐熱性プラスチツクフイルムであ
る特許請求の範囲第13項又は第14項記載の磁
気記録媒体。 16 支持体はテープ状とされる特許請求の範囲
第15項記載の磁気記録媒体。
[Claims] 1 Ni (10 to 30% by weight), B (0.02 to 1.5% by weight) on the support
weight%), Ti, Zr, Hf, V, Nb, Ta, Cr, Mo,
One or more elements in W (0.02-5.0% by weight), Co
(A magnetic recording medium characterized by forming a magnetic deposited film having a composition consisting of the remainder. 2 Ni 15 to 20% by weight, B 0.4 to 1.5% by weight,
2. The magnetic recording medium according to claim 1, wherein at least one element among Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W is contained in an amount of 1.0 to 4.0% by weight, with the balance being Co. 3. The magnetic recording medium according to claim 1 or 2, wherein the support is a heat-resistant plastic film. 4. The magnetic recording medium according to claim 3, wherein the support is tape-shaped. 5 Ni (10-30% by weight), B (0.02-1.5% by weight) on the support
weight%), O (0.2 to 3.0 weight%), Ti, Zr, Hf, V,
A magnetic recording medium comprising a magnetic deposited film having a composition consisting of one or more elements among Nb, Ta, Cr, Mo, and W (0.02 to 5.0% by weight) and Co (the balance). 6 Ni is 15-20% by weight, B is 0.4-1.5% by weight, O
is 2.0 to 2.5% by weight, Ti, Zr, Hf, V, Nb, Ta,
6. The magnetic recording medium according to claim 5, wherein the content of one or more elements among Cr, Mo, and W is 1.0 to 4.0% by weight, and the balance is Co. 7. The magnetic recording medium according to claim 5 or 6, wherein the support is a heat-resistant plastic film. 8. The magnetic recording medium according to claim 7, wherein the support is tape-shaped. 9 Ni (10-30% by weight), B (0.02-1.5% by weight) on the support
(wt%), N (0.02-2.0wt%), Ti, Zr, Hf,
A magnetic recording medium characterized by forming a magnetic deposited film having a composition consisting of one or more elements among V, Nb, Ta, Cr, Mo, and W (0.02 to 5.0% by weight) and Co (balance). . 10 Ni is 15-20% by weight, B is 0.4-1.5% by weight,
N is 0.2 to 1.7% by weight, Ti, Zr, Hf, V, Nb,
One or more elements among Ta, Cr, Mo, and W are 1.0~
Claim 9: 4.0% by weight, the balance being Co
Magnetic recording medium described in Section 1. 11. The magnetic recording medium according to claim 9 or 10, wherein the support is a heat-resistant plastic film. 12. The magnetic recording medium according to claim 11, wherein the support is tape-shaped. 13 Ni (10-30% by weight), B (0.02-30% by weight) on the support
1.5% by weight), O (0.2-3.0% by weight), N (0.02-2.0% by weight), Ti, Zr, Hf, V, Nb, Ta, Cr, Mo,
One or more elements in W (0.02-5.0% by weight), Co
1. A magnetic recording medium comprising a magnetic vapor deposited film having a composition consisting of (the remainder). 14 Ni is 15-20% by weight, B is 0.4-1.5% by weight,
O is 2.0-2.5% by weight, N is 0.2-1.7% by weight, Ti,
14. The magnetic recording medium according to claim 13, wherein at least one element among Zr, Hf, V, Nb, Ta, Cr, Mo, and W is contained in an amount of 1.0 to 4.0% by weight, with the balance being Co. 15. The magnetic recording medium according to claim 13 or 14, wherein the support is a heat-resistant plastic film. 16. The magnetic recording medium according to claim 15, wherein the support is tape-shaped.
JP16209086A 1986-07-11 1986-07-11 Magnetic recording medium Granted JPS6318607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16209086A JPS6318607A (en) 1986-07-11 1986-07-11 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16209086A JPS6318607A (en) 1986-07-11 1986-07-11 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6318607A JPS6318607A (en) 1988-01-26
JPH0525367B2 true JPH0525367B2 (en) 1993-04-12

Family

ID=15747889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16209086A Granted JPS6318607A (en) 1986-07-11 1986-07-11 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6318607A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0500931A4 (en) * 1990-08-13 1994-06-01 Kohjin Co Food packaging bag
JPH05274644A (en) * 1992-01-29 1993-10-22 Mitsubishi Kasei Corp Magnetic recording medium and its production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198614A (en) * 1981-05-30 1982-12-06 Nippon Gakki Seizo Kk Magnetic recording tape
JPS60143425A (en) * 1983-12-28 1985-07-29 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS62150518A (en) * 1985-12-25 1987-07-04 Sumitomo Metal Mining Co Ltd Magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198614A (en) * 1981-05-30 1982-12-06 Nippon Gakki Seizo Kk Magnetic recording tape
JPS60143425A (en) * 1983-12-28 1985-07-29 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS62150518A (en) * 1985-12-25 1987-07-04 Sumitomo Metal Mining Co Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPS6318607A (en) 1988-01-26

Similar Documents

Publication Publication Date Title
JPH05101365A (en) Perpendicular magnetic recording medium and production thereof
JPH0525367B2 (en)
US4639815A (en) Magnetic recording medium with chromiumiron protective layer
JPS62298017A (en) Magnetic recording medium and its production
JPS62209715A (en) Magnetic recording medium and its production
JPH053048B2 (en)
US6251496B1 (en) Magnetic recording medium method and apparatus for producing the same
JPS6313115A (en) Magnetic recording medium and its production
JP3103458B2 (en) Material for evaporation
JPH0311531B2 (en)
JPS61229230A (en) Magnetic recording tape
JPH08129748A (en) Magnetic recording medium
JPH0656650B2 (en) Magnetic recording medium
JPS6154020A (en) Magnetic recording medium
JPH04155618A (en) Perpendicular magnetic recording medium
JPH01319119A (en) Magnetic recording medium
JP3787086B2 (en) Method for manufacturing magnetic recording medium
JPH04328324A (en) Manufacture of magnetic recording medium
JPS598143A (en) Production of magnetic recording medium
JPS6076015A (en) Magnetic recording medium and its production
JPH0522293B2 (en)
JPH09153220A (en) Production of magnetic recording medium and magnetic recording medium produced by the same
JPH0559571B2 (en)
JPH10320771A (en) Device and method for manufacturing magnetic recording medium
JPS62150518A (en) Magnetic recording medium