JPH05224261A - Nonlinear optical material and production thereof - Google Patents

Nonlinear optical material and production thereof

Info

Publication number
JPH05224261A
JPH05224261A JP5647692A JP5647692A JPH05224261A JP H05224261 A JPH05224261 A JP H05224261A JP 5647692 A JP5647692 A JP 5647692A JP 5647692 A JP5647692 A JP 5647692A JP H05224261 A JPH05224261 A JP H05224261A
Authority
JP
Japan
Prior art keywords
silicon
optical material
nucleus
substrate
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5647692A
Other languages
Japanese (ja)
Other versions
JP3029160B2 (en
Inventor
Yumie Yamazaki
由美恵 山崎
Takeshi Eguchi
健 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4056476A priority Critical patent/JP3029160B2/en
Publication of JPH05224261A publication Critical patent/JPH05224261A/en
Application granted granted Critical
Publication of JP3029160B2 publication Critical patent/JP3029160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the nonlinear material having high linearity and high quantum yield by depositing superfine particles formed by providing insulating layers essentially consisting of silicon oxide on the surfaces of silicon nuclei on a substrate. CONSTITUTION:The superfine particle 1 consists of the silicon nucleus 2 of a single crystal and the insulating layer 3 provided around this nucleus. Such superfine particles are deposited on the substrate, by which the nonlinear material is formed. The insulating layers 3 are essentially composed of the silicon oxide which hardly contains hydrogenated silicon and partially have terminal Si-O-bonds. Such superfine particles are formed by cracking gases contg. silicon by microwaves to form the superfine particle nucleus of the silicon. Such superfine particle nuclei are ejected from a nozzle and are deposited on the substrate. The silicon on the surface of the superfine particle nuclei is subjected to an oxidation treatment to form the oxide insulating layers, by which the nonlinear material is formed. The oxidation treatment is executed by treating the superfine particles with a strong alkaline agent of the hydroxide of alkaline metals and alkaline earth metals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光変調、光周波数変換、
光双安定、位相共役光学等の光学素子材料として有用な
非線形光学材料及びその製造方法に関する。
The present invention relates to optical modulation, optical frequency conversion,
The present invention relates to a non-linear optical material useful as an optical element material such as optical bistable and phase conjugate optics, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】非線形感受率の大きい材料は、強い第2
高調波発生(SHG)及び第3高調波発生(THG)を
示す他、光パラメトリック、ラマンレーザー等の新規な
光学機器用材料として注目されている。その例として
は、例えば、光学フィルタとして使用されているCdS
或はCdSx Se1-x の微細結晶をガラス中に分散した
ものや、半導体超格子膜、ポリジアセチレン等の有機高
分子等が挙げられる。その中でも半導体格子或いは半導
体超微粒子分散材は、量子閉じ込め効果により室温で励
起子が安定化される為、大きな非線形効果が期待され
る。
2. Description of the Related Art A material having a high non-linear susceptibility has a strong second
In addition to exhibiting harmonic generation (SHG) and third harmonic generation (THG), it has attracted attention as a material for new optical devices such as optical parametric and Raman lasers. An example thereof is CdS used as an optical filter.
Alternatively, there may be mentioned those obtained by dispersing fine crystals of CdS x Se 1-x in glass, semiconductor superlattice films, organic polymers such as polydiacetylene, and the like. Among them, the semiconductor lattice or the semiconductor ultrafine particle dispersion material is expected to have a large non-linear effect because excitons are stabilized at room temperature due to the quantum confinement effect.

【0003】[0003]

【発明が解決しようとしている課題】しかしながら、ガ
ラス中にCdS等の微細結晶を折出させる方法や多孔質
ガラス中に埋め込む方法では、分散材中の超微粒子の粒
径分散が大きくなるという問題がある。又、充填率を上
げることは難しく、数%以上には上げられないといった
問題もあった。従って、これらの問題点を解決する為に
は、より大きな非線形性を示す超微粒子材料を開発して
いくと共に、超微粒子の充填率を上げることが重要とな
る。そこで本発明の目的は、かかる従来技術の欠点を解
決し、より大きな非線形性を有し、且つ、高い量子収率
が得られる非線形光学材料及びその製造方法を提供する
ことにある。
However, in the method of projecting fine crystals of CdS or the like in glass or the method of embedding it in porous glass, there is a problem that the particle size dispersion of ultrafine particles in the dispersant becomes large. is there. Further, it is difficult to increase the filling rate, and there is a problem that it cannot be increased to several percent or more. Therefore, in order to solve these problems, it is important to develop ultrafine particle materials exhibiting greater non-linearity and increase the filling rate of ultrafine particles. SUMMARY OF THE INVENTION It is therefore an object of the present invention to solve the above-mentioned drawbacks of the prior art, and to provide a non-linear optical material having a larger non-linearity and a high quantum yield, and a manufacturing method thereof.

【0004】[0004]

【課題を解決するための手段】上記の目的は、以下の本
発明により達成される。即ち本発明は、シリコン核の表
面に酸化シリコン主体の絶縁層を有する超微粒子が設け
られていることを特徴とする非線形光学材料及びその製
造方法である。
The above object can be achieved by the present invention described below. That is, the present invention is a nonlinear optical material characterized in that ultrafine particles having an insulating layer mainly composed of silicon oxide are provided on the surface of a silicon nucleus, and a method for producing the same.

【0005】[0005]

【作用】本発明者らは上記の従来技術の問題点を解決す
べく鋭意研究の結果、シリコン核の表面に酸化シリコン
を主体とする絶縁層を有する超微粒子が設けられている
非線形光学材料において、シリコン核が単結晶であり、
且つ、絶縁層を構成する絶縁体が水素化シリコンを殆ど
含有せず、更に、部分的に末端Si−O- 結合を含む酸
化シリコンを主体とする構造を有するものとすれば、よ
り大きな非線形性を有し、且つ、高い量子収率が得られ
る非線形光学材料となることを知見して本発明を完成し
た。又、シリコン主体の超微粒子核を形成し、これをノ
ズルより噴出させて基体上に堆積させる工程と、続いて
該核の表面を酸化絶縁処理する工程とにより非線形光学
材料を製造し、特に後者の処理方法を強アルカリ剤を用
いる酸化処理を行えば、上記の様な構成の非線形光学材
料が得られることを知見した。
The present inventors have conducted extensive studies to solve the above-mentioned problems of the prior art, and as a result, in a nonlinear optical material in which ultrafine particles having an insulating layer mainly composed of silicon oxide are provided on the surface of a silicon nucleus. , The silicon nucleus is a single crystal,
Further, if the insulator forming the insulating layer contains almost no silicon hydride and further has a structure mainly composed of silicon oxide partially containing a terminal Si—O bond, a larger non-linearity is obtained. The present invention has been completed on the finding that it is a non-linear optical material that has a high quantum yield. Further, a nonlinear optical material is manufactured by a step of forming ultrafine particle nuclei mainly composed of silicon, ejecting the nuclei by a nozzle and depositing them on a substrate, and a step of subsequently oxidizing and insulating the surface of the nuclei, particularly the latter. It was found that the non-linear optical material having the above-mentioned constitution can be obtained by subjecting the treatment method of No. 1 to the oxidation treatment using a strong alkali agent.

【0006】[0006]

【好ましい実施態様】以下、好ましい実施態様を挙げて
本発明を更に詳しく説明する。本発明の非線形光学材料
は、シリコン核の表面に酸化シリコンを主体とする絶縁
層を有する超微粒子を含むことを特徴とする。本発明の
非線形光学材料を構成するシリコン核の大きさは、20
0Å以下、好ましくは100Å以下であることが望まし
い。シリコン核の大きさが小さい程、第一に、量子的効
果として励起子の閉じ込めや、静電効果、エレクトロン
によるポテンシャル増大が起こり、第二に、表面(界
面)増大による準位の影響が無視できなくなる為、大き
な非線形性を示す様になると考えられる。但し、本発明
の非線形光学材料の効果が、これらのいずれの効果によ
るものであるかは定かではない。以上の様なシリコン核
の周りを被覆する絶縁層の厚みは、核と核とを隔離する
為に10Å以上は必要である。又、絶縁層の厚みの上限
は特に規定されないが、厚くなる程超微粒子の体積含有
率は低下することになる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below with reference to preferred embodiments. The nonlinear optical material of the present invention is characterized by containing ultrafine particles having an insulating layer mainly containing silicon oxide on the surface of a silicon nucleus. The size of the silicon nucleus that constitutes the nonlinear optical material of the present invention is 20.
It is desirably 0 Å or less, preferably 100 Å or less. The smaller the size of the silicon nucleus, firstly, the confinement of excitons as a quantum effect, the electrostatic effect, and the potential increase due to electrons occur, and secondly, the influence of the level due to the increase in the surface (interface) is ignored. Since it is impossible to do so, it is considered that a large non-linearity will be exhibited. However, it is not clear which of these effects the effect of the nonlinear optical material of the present invention is due to. The thickness of the insulating layer covering the silicon nuclei as described above needs to be 10 Å or more in order to separate the nuclei from each other. The upper limit of the thickness of the insulating layer is not particularly specified, but the thicker the volume content of the ultrafine particles, the lower.

【0007】続いて本発明の非線形光学材料を構成する
超微粒子の構造を図1を用いて説明する。超微粒子1は
図1に示した様に、シリコン核2とその周りに設けられ
た絶縁層3とからなり、この様な超微粒子1が適当な基
体上に堆積して本発明の非線形光学材料が形成される。
該絶縁層3は、水素化シリコンを殆ど含まず、部分的に
末端Si−O- 結合を有する酸化シリコンを主体として
構成されている。この様な本発明の非線形光学材料を構
成する超微粒子は、以下の様にして作成する。先ず、シ
リコン主体の超微粒子核をノズルを介し基体上に膜状堆
積させる。この際の基体上に堆積させるシリコン主体の
超微粒子核の作成方法としては、SiH4 、Si2
6 、SiF4 等のガス材料をプラズマ或いは熱分解する
方法や、Siをスパッタ或いは蒸発させる方法等が挙げ
られるが、本発明の場合には、プラズマによるガス分解
やスパッタリングにより作成するのが好ましい。この様
にして作成されたシリコン主体の超微粒子核は、FT−
IR(フーリエ変換赤外吸収スペクトル)の測定結果か
ら、水素化シリコン(SiH2n とSiH3 とのいわ
ゆるポリシラン結合を有することが示され、水素含有量
として見積もると、数%〜数十atm.%の含有量であ
る。又、TEM(透過型電子顕微鏡)観察によると、該
超微粒子核は、欠陥、歪みの殆ど見られない球状のシリ
コン単結晶を中心に、周囲に数Å程度の薄いアモルファ
ス層をもった2重構造をもっていることがわかった。以
上のことから、シリコン主体の超微粒子核内の水素は、
ポリシラン構造としてシリコン単結晶核の表面にアモル
ファス層として存在していることが示された。
Next, the structure of ultrafine particles constituting the nonlinear optical material of the present invention will be described with reference to FIG. As shown in FIG. 1, the ultrafine particles 1 are composed of silicon nuclei 2 and an insulating layer 3 provided around the silicon nuclei 2. Such ultrafine particles 1 are deposited on an appropriate substrate to form the nonlinear optical material of the present invention. Is formed.
The insulating layer 3 contains almost no hydrogenated silicon and is mainly composed of silicon oxide partially having a terminal Si—O bond. The ultrafine particles constituting the nonlinear optical material of the present invention as described above are prepared as follows. First, silicon-based ultrafine particle nuclei are deposited as a film on a substrate through a nozzle. At this time, as a method for forming silicon-based ultrafine particle nuclei deposited on the substrate, SiH 4 , Si 2 H
6 , a method of plasma or thermal decomposition of a gas material such as SiF 4 , a method of sputtering or vaporizing Si, and the like can be mentioned. In the case of the present invention, it is preferable to prepare by gas decomposition or sputtering by plasma. The ultrafine particle nuclei mainly composed of silicon thus produced are FT-
From the measurement results of IR (Fourier transform infrared absorption spectrum), it is shown that there is a so-called polysilane bond between silicon hydride (SiH 2 ) n and SiH 3, and when estimated as the hydrogen content, several percent to several tens atm. . % Content. Also, according to TEM (transmission electron microscope) observation, the ultrafine particle nuclei consist of a spherical silicon single crystal with almost no defects or distortion, and a double amorphous layer with a thin amorphous layer of several Å around. It turns out that it has a structure. From the above, the hydrogen in the ultrafine particle nuclei mainly composed of silicon is
It was shown that the polysilane structure exists as an amorphous layer on the surface of the silicon single crystal nucleus.

【0008】続いて上記の様な超微粒子核の表面に、酸
化シリコン主体の絶縁層を設ける為に、酸化処理を施
す。酸化反応は、該表面に存在するポリシラン結合から
進行する。従って、含有水素量が極端に少ないと酸化さ
れる層の厚みが薄すぎ、本発明の充分な効果が発揮され
ない。ここで酸化処理に用いられる酸化手段としては、
酸化性ガス中での加熱、水蒸気酸化及び酸化プラズマ処
理等が挙げられる。本発明者らの鋭意研究の結果、この
際に強アルカリ処理による酸化処理方法を用いれば、容
易に、水素化シリコンの残存の殆どない、又、末端Si
−O- 結合を部分的に含む構造となる為、より大きな非
線形性、高い量子収率が達成されることが明らかになっ
た。本発明方法の酸化絶縁工程に使用される強アルカリ
剤としては、アルカリ金属、アルカリ土類金属類の水酸
化物や、水溶液で塩基性を示す、例えば、アルカリ金属
炭酸塩、アンモニア、アミン類等が挙げられる。特に、
室温での蒸気圧が比較的高いものが望ましく、処理法と
しては所望の強アルカリ剤を蒸留水で好ましい濃度に希
釈後、気相−液相平衡雰囲気をつくり、その中に一定時
間放置するという簡便な手段で達成される。
Subsequently, an oxidation treatment is performed on the surface of the ultrafine particle nucleus as described above to form an insulating layer mainly containing silicon oxide. The oxidation reaction proceeds from the polysilane bond existing on the surface. Therefore, when the content of hydrogen is extremely small, the thickness of the layer to be oxidized is too thin, and the sufficient effect of the present invention cannot be exhibited. Here, as the oxidizing means used for the oxidation treatment,
Examples include heating in an oxidizing gas, steam oxidation, and oxidizing plasma treatment. As a result of the earnest studies by the present inventors, if an oxidation treatment method by a strong alkali treatment is used at this time, there is almost no remaining silicon hydride and the terminal Si
It was clarified that a larger nonlinearity and higher quantum yield can be achieved because the structure partially contains -O - bond. Examples of the strong alkaline agent used in the oxidation insulation step of the method of the present invention include alkali metal and alkaline earth metal hydroxides, and basicity in an aqueous solution, for example, alkali metal carbonates, ammonia, amines and the like. Is mentioned. In particular,
It is desirable that the vapor pressure at room temperature is relatively high, and as a treatment method, after diluting a desired strong alkaline agent with distilled water to a preferable concentration, a vapor phase-liquid phase equilibrium atmosphere is created and left for a certain period of time. This is achieved by simple means.

【0009】上記の様な酸化絶縁処理後に得られる超微
粒子は、FT−IR組成分析の結果、シリコン単結晶核
表面のSiH3 、(SiH2n 結合をメインとするポ
リシラン層の存在が観測されず、変わってSi−O−S
iのシロキサン結合とSi−OHのシラノール結合が見
られ、分子状吸着水が増大すると共に、末端にSi−O
- というチャージの偏りをもつ結合が出現した。又、酸
化反応は更に核であるシリコン単結晶自体にも進行し、
結果的に核サイズもある程度減少した。
As a result of FT-IR composition analysis, the ultrafine particles obtained after the above-described oxide insulation treatment were observed to have a polysilane layer mainly containing SiH 3 and (SiH 2 ) n bonds on the surface of the silicon single crystal nucleus. Not changed, changed to Si-OS
The siloxane bond of i and the silanol bond of Si-OH are observed, and the molecular adsorbed water increases, and at the same time, Si-O
A bond with a charge bias of-appeared. Further, the oxidation reaction further proceeds to the silicon single crystal itself, which is the nucleus,
As a result, the nuclear size also decreased to some extent.

【0010】図2にFT−IRスペクトルの具体的な例
を示す。又、比較の為、他の酸化処理方法を用いた場合
の例として、水蒸気酸化を施した場合のスペクトルを合
わせて示す。図中(a)は、本発明方法における強アル
カリ剤(5%希釈アンモニア水溶液)処理による酸化の
場合であり、(b)は水蒸気酸化した場合のスペクトル
である。(b)のスペクトルにおいては、分子状吸着水
(3560〜3450cm-1波数に相当)とSi−O−
Si(1090〜1070cm-1)、Si−OH(88
0〜830cm-1)に加え、水素とシリコンの直接結合
が残存しており、HSiO3 (2250cm-1)、HS
23 (2200cm-1)、そしてSiH3 (214
0cm-1)、(SiH2n (2090〜2100-1
の重なりのピークが見られる。これに対し、(a)に示
した本発明方法の強アルカリによる酸化処理の場合は、
ポリシランを含めた水素−シリコン直接結合(2250
〜2100cm-1)が全く観測されないこと、及び、末
端Si−O- 結合に相当するピーク(880〜830c
-1)が出現していることが大きく異なっている。本発
明の非線形光学材料は、励起エネルギー照射で蛍光を発
する発光部剤としても利用可能であり、非線形性の増大
と、充填率の向上の為、発光強度が実用上望ましい程度
に大きい。
FIG. 2 shows a specific example of the FT-IR spectrum. For comparison, as an example of the case of using another oxidation treatment method, the spectrum of the case of performing steam oxidation is also shown. In the figure, (a) shows the case of oxidation by treatment with a strong alkaline agent (5% diluted aqueous ammonia solution) in the method of the present invention, and (b) shows the spectrum of steam oxidation. In the spectrum of (b), molecularly adsorbed water (corresponding to 3560-3450 cm -1 wave number) and Si-O-
Si (1090 to 1070 cm -1 ), Si-OH (88
0-830 cm −1 ), in addition to which hydrogen and silicon direct bonds remain, HSiO 3 (2250 cm −1 ), HS
i 2 O 3 (2200 cm −1 ), and SiH 3 (214
0 cm -1 ), (SiH 2 ) n (2090-1100 -1 )
A peak of overlap is seen. On the other hand, in the case of the oxidation treatment with the strong alkali of the method of the present invention shown in (a),
Hydrogen-silicon direct bond including polysilane (2250
˜2100 cm −1 ) is not observed at all, and a peak (880-830c) corresponding to the terminal Si—O bond is obtained.
It is very different that m -1 ) appears. INDUSTRIAL APPLICABILITY The nonlinear optical material of the present invention can also be used as a light emitting agent that emits fluorescence upon irradiation with excitation energy, and has a practically desirable high emission intensity because of increased nonlinearity and improved packing rate.

【0011】本発明の非線形光学材料を作成する作成装
置の一例として、マイクロ波プラズマ分解法を用いた超
微粒子核作成装置の概略図を図3に示す。図中、4は縮
小拡大ノズル、5はノズルののど部、6は磁気コイル、
7は下流室、8は空胴共振器、9は基体ホルダー、10
は基体、11はマイクロ波投入窓、12はマイクロ波の
導波管、13はガズ導入口及び14は排気ポンプであ
る。反応ガスを13から導入した時、反応は8の空胴共
振器内で起きる。形成する超微粒子(核)は、一部未反
応の気体状の活性種と共にノズル4から噴出され、基体
10に吹き付けられ固定される。ノズル4より下流側の
下流室7付近は通常10-3Torr以下程度に圧力を下
げて使用する。又、ノズル上流と下流との圧力比は数1
0〜数100程度であることが望ましい。
FIG. 3 shows a schematic view of an ultrafine particle nucleus producing apparatus using a microwave plasma decomposition method as an example of an producing apparatus for producing the nonlinear optical material of the present invention. In the figure, 4 is a reduction / enlargement nozzle, 5 is a nozzle throat, 6 is a magnetic coil,
7 is a downstream chamber, 8 is a cavity resonator, 9 is a substrate holder, 10
Is a substrate, 11 is a microwave input window, 12 is a microwave waveguide, 13 is a gas inlet, and 14 is an exhaust pump. When the reaction gas is introduced from 13, the reaction takes place in the cavity resonator of 8. The ultrafine particles (nuclei) to be formed are ejected from the nozzle 4 together with a part of unreacted gaseous active species, and are sprayed and fixed on the substrate 10. In the vicinity of the downstream chamber 7 on the downstream side of the nozzle 4, the pressure is usually lowered to about 10 −3 Torr or less before use. Also, the pressure ratio between the upstream and downstream of the nozzle is several 1
It is desirable to be about 0 to several hundreds.

【0012】[0012]

【実施例】次ぎに実施例を上げて本発明を更に詳細に説
明する。 実施例1 図3に示した装置で、H2 3%希釈のSiH4 混合ガス
を原料とし、全流量を100SCCMとして、シリコン
主体の超微粒子堆積膜をシリコン基板10上に作成し
た。先ず、シリコン基板10をホルダー9に固定したの
ち、排気系14で下流室7内を2×10-7Torrまで
減圧した。次に、原料ガスをガス導入口13から空胴共
振器8内へ流量100SCCM流した。この為、空胴共
振器8内の圧力は、4×10-1Torrとなり、ガスが
ノズル4から下流室7へ吹き出した。この時の下流室7
の圧力は4.5×10-3Torr程度となった。続いて
不図示のマイクロ波発振器の電源を投入し、マイクロ波
導波管12を介して2.45GHzのマイクロ波を投入
窓11より空胴共振器8へ送り込んだ。マイクロ波投入
パワーを0.45Vとし、放電プラズマを発生させる。
このプラズマ内で微粒子が形成されて、他の一部未反応
の気体状の活性種と共にノズル4から吹き出し、ビーム
状になって下流室7中の基体10に衝突し、固定され
た。この際の基板温度は室温である。以上の様にして基
板10上に微粒子を堆積させた後、マイクロ波電源をお
とし、導入ガスを止め、下流室7内を十分に排気して、
窒素リークし、成膜基体を取り出した。このときの堆積
膜厚は4μm程度であった。得られた超微粒子は、透過
型電子顕微鏡(TEM)観察によれば、平均シリコン結
晶粒径が30Å程度であり、5Å程度のポリシラン層で
コートされた2重構造となっていた。
The present invention will be described in more detail with reference to the following examples. Example 1 With the apparatus shown in FIG. 3, an SiH 4 mixed gas diluted with H 2 3% was used as a raw material and a total flow rate was 100 SCCM to form a silicon-based ultrafine particle deposition film on a silicon substrate 10. First, after fixing the silicon substrate 10 to the holder 9, the pressure inside the downstream chamber 7 was reduced to 2 × 10 −7 Torr by the exhaust system 14. Next, the raw material gas was flowed from the gas inlet 13 into the cavity resonator 8 at a flow rate of 100 SCCM. Therefore, the pressure inside the cavity resonator 8 was 4 × 10 −1 Torr, and the gas was blown from the nozzle 4 to the downstream chamber 7. Downstream chamber 7 at this time
Was about 4.5 × 10 −3 Torr. Subsequently, the microwave oscillator (not shown) was turned on, and a microwave of 2.45 GHz was sent to the cavity resonator 8 through the input window 11 through the microwave waveguide 12. The microwave input power is set to 0.45 V and discharge plasma is generated.
Fine particles were formed in this plasma, and were blown out from the nozzle 4 together with other partially unreacted gaseous active species, formed into a beam, collided with the substrate 10 in the downstream chamber 7, and fixed. The substrate temperature at this time is room temperature. After depositing the fine particles on the substrate 10 as described above, the microwave power source is turned off, the introduction gas is stopped, and the inside of the downstream chamber 7 is sufficiently exhausted,
Nitrogen was leaked and the film-forming substrate was taken out. The deposited film thickness at this time was about 4 μm. According to the transmission electron microscope (TEM) observation, the obtained ultrafine particles had an average silicon crystal grain size of about 30 Å, and had a double structure coated with a polysilane layer of about 5 Å.

【0013】続いてこの様な超微粒子表面に酸化シリコ
ン主体の絶縁層を設ける為に、強アルカリ処理を施し
た。この際に使用した強アルカリ剤としては、5%希釈
のアンモニア(NH3 )水溶液を用い、上記の様にして
作成した試料を液相−気相平衡雰囲気中に50時間放置
した。処理後の超微粒子は、TEM観察の結果、平均シ
リコン結晶粒径が20Å程度であり、15Å程のアモル
ファス層が形成されており、又、このアモルファス層は
FT−IR分析の結果、図2(a)と同様の組織をもつ
ポリシランを含めた水素−シリコン直接結合は全く観測
されず、末端Si−O- 結合を含む酸化シリコン主体の
絶縁層となっていた。又、紫外光(λex250nm)を照
射したところ、600nm付近にピークをもつ蛍光を発し
た。その際の発光効率(量子収率)は、例えば、シリコ
ン単結晶核をコートする酸化シリコン主体の絶縁層の形
成方法として、同様の試料を水蒸気酸化法を用いて形成
した場合に比べて、約10倍に増加した。
Subsequently, a strong alkali treatment was applied to the surface of such ultrafine particles in order to form an insulating layer mainly composed of silicon oxide. As the strong alkaline agent used at this time, a 5% diluted aqueous ammonia (NH 3 ) solution was used, and the sample prepared as described above was left in a liquid-vapor phase equilibrium atmosphere for 50 hours. As a result of TEM observation, the ultrafine particles after the treatment had an average silicon crystal grain size of about 20 Å and an amorphous layer of about 15 Å was formed, and this amorphous layer was analyzed by FT-IR analysis, as shown in FIG. No direct hydrogen-silicon bond including polysilane having a structure similar to that of a) was observed, and the insulating layer was composed mainly of silicon oxide containing a terminal Si—O bond. When it was irradiated with ultraviolet light (λ ex 250 nm), it emitted fluorescence having a peak near 600 nm. The luminous efficiency (quantum yield) at that time is about, for example, as compared with the case where a similar sample is formed by the steam oxidation method as a method for forming an insulating layer mainly composed of silicon oxide for coating silicon single crystal nuclei. It increased 10 times.

【0014】実施例2 原料ガスとしてH2 10%希釈のSiH4 混合ガスと
し、又、投入マイクロ波パワーを0.50Vとした以外
は実施例1に準ずる方法で、基板10上にシリコン主体
の超微粒子堆積膜を作成した。得られた超微粒子は、平
均シリコン結晶粒径が40Å程度であり、約5Åのポリ
シラン層でコートされた2重構造となっていた。続い
て、実施例1と同一の方法で粒子表面に強アルカリ処理
を施した。この結果、平均シリコン結晶粒径が約30Å
であり、図2(a)に示したと同様の組織をもつ、15
Å程度の厚さの酸化シリコン主体の絶縁層に覆われたも
のが得られた。又、紫外光照射による蛍光を調べたとこ
ろ、630nm付近にピークをもつことがわかった。ま
た、発光効率に関しても、実施例1と同様に、水蒸気酸
化による酸化シリコン主体の絶縁層形成の場合と比べ
て、約10倍に増加した。
Example 2 As a raw material gas, SiH 4 mixed gas diluted with H 2 10% was used, and a method similar to that of Example 1 was used except that the input microwave power was 0.50 V. An ultrafine particle deposition film was created. The obtained ultrafine particles had an average silicon crystal grain size of about 40Å, and had a double structure coated with a polysilane layer of about 5Å. Subsequently, the surface of the particles was subjected to a strong alkali treatment in the same manner as in Example 1. As a result, the average silicon crystal grain size is about 30Å
And has a structure similar to that shown in FIG.
What was covered with an insulating layer mainly composed of silicon oxide having a thickness of about Å was obtained. Further, when the fluorescence due to the irradiation of ultraviolet light was examined, it was found that it had a peak near 630 nm. In addition, the luminous efficiency was increased about 10 times as compared with the case of forming the insulating layer mainly composed of silicon oxide by steam oxidation, as in Example 1.

【0015】実施例3 原料ガスとしてSiH4 流量10SCCM、H2 流量3
7SCCM及びAr流量3SCCMとし、また投入マイ
クロ波パワーを0.50Vとした以外は、実施例1に準
ずる方法でシリコン主体の超微粒子堆積膜を基板10上
に作成した。得られた超微粒子は、平均シリコン結晶粒
径が50Å程度であり、約5Åのポリシラン層でコート
された2重構造となっていた。続いて、実施例1と同一
の方法で粒子表面に強アルカリ処理を施した結果、平均
シリコン結晶粒径が約35Åであり、図2(a)と同様
の組織をもつ、15Å程度の厚さの酸化シリコン主体の
絶縁層に覆われたものが得られた。又、可視光照射によ
る蛍光を調べたところ、750nm付近にピークをもつこ
とがわかった。また、発光効率に関しても実施例1同
様、水蒸気酸化による酸化シリコン主体の絶縁層形成の
場合に比べ、約10倍に増加した。
Example 3 As raw material gas, SiH 4 flow rate 10 SCCM, H 2 flow rate 3
A silicon-based ultrafine particle deposition film was formed on the substrate 10 by a method similar to that of Example 1 except that the flow rate was 7 SCCM, the Ar flow rate was 3 SCCM, and the input microwave power was 0.50 V. The obtained ultrafine particles had an average silicon crystal grain size of about 50Å and had a double structure coated with a polysilane layer of about 5Å. Subsequently, as a result of subjecting the particle surface to a strong alkali treatment in the same manner as in Example 1, the average silicon crystal grain size was about 35Å, and the structure was the same as that of Fig. 2 (a) and the thickness was about 15Å. What was covered with the insulating layer mainly composed of silicon oxide was obtained. Further, when the fluorescence due to irradiation with visible light was examined, it was found to have a peak near 750 nm. Also, the luminous efficiency was increased about 10 times as in the case of Example 1 as compared with the case of forming an insulating layer mainly composed of silicon oxide by steam oxidation.

【0016】[0016]

【発明の効果】以上説明した様に、本発明の非線形光学
材料は、シリコン半導体を核として、その表面に酸化シ
リコンを主体とする絶縁層を有する超微粒子を含む非線
形光学材料において、シリコン核を単結晶とし、且つ、
該絶縁層を水素化シリコンを殆ど含有せずに、更に末端
Si−O- 結合を部分的にもつ構造とすることで、より
大きな非線形性、高い量子収率が達成される。又、上記
の様な絶縁層は、強アルカリ剤を使用する酸化絶縁処理
工程を有する本発明方法で容易に作成することが出来
る。更に、本発明方法により得られる非線形光学材料
は、超微粒子が基板上に密に堆積されており、従来のバ
インダー分散型のものに比べ高い非線形感受率が期待で
き、実用上好ましく、高輝度発光部材として有用なもの
である。
As described above, the nonlinear optical material of the present invention is a nonlinear optical material containing ultrafine particles having a silicon semiconductor as a nucleus and an insulating layer mainly containing silicon oxide on the surface thereof. Single crystal, and
When the insulating layer contains almost no silicon hydride and further has a terminal Si—O bond partially, a larger nonlinearity and a higher quantum yield can be achieved. Further, the insulating layer as described above can be easily formed by the method of the present invention having an oxidation insulating treatment step using a strong alkaline agent. Furthermore, in the nonlinear optical material obtained by the method of the present invention, ultrafine particles are densely deposited on the substrate, and a higher nonlinear susceptibility can be expected as compared with the conventional binder-dispersion type, which is preferable in practical use and has high luminance emission. It is useful as a member.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の非線形光学材料を構成する超
微粒子の構造模式図である。
FIG. 1 is a structural schematic view of ultrafine particles constituting a nonlinear optical material of the present invention.

【図2】図2はFT−IRチャート図であり、(a)は
超微粒子表面酸化層を本発明の強アルカリ剤処理方法で
形成した場合のスペクトル、(b)は比較例として表面
酸化層を水蒸気酸化で形成した場合のスペクトルであ
る。
FIG. 2 is an FT-IR chart, in which (a) is a spectrum of an ultrafine particle surface-oxidized layer formed by the strong alkaline agent treatment method of the present invention, and (b) is a surface-oxidized layer as a comparative example. Is a spectrum in the case of being formed by steam oxidation.

【図3】図3は本発明の非線形光学材料を構成する為の
超微粒子の作成装置の一例の概略図である。
FIG. 3 is a schematic view of an example of an apparatus for producing ultrafine particles for constituting the nonlinear optical material of the present invention.

【符号の説明】[Explanation of symbols]

1:超微粒子 2:シリコン核 3:絶縁層 4:縮小拡大ノズル 5:ノズルののど部 6:磁気コイル 7:下流室 8:空胴共振器 9:基体ホルダー 10:基体 11:マイクロ波投入窓 12:マイクロ波の導波管 13:ガス導入口 14:排気ポンプ 1: Ultrafine Particles 2: Silicon Nucleus 3: Insulating Layer 4: Reduction / Enlargement Nozzle 5: Nozzle Throat 6: Magnetic Coil 7: Downstream Chamber 8: Cavity Resonator 9: Substrate Holder 10: Substrate 11: Microwave Input Window 12: microwave waveguide 13: gas inlet 14: exhaust pump

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 シリコン核の表面に酸化シリコン主体の
絶縁層を有する超微粒子が設けられていることを特徴と
する非線形光学材料。
1. A non-linear optical material, characterized in that ultrafine particles having an insulating layer mainly composed of silicon oxide are provided on the surface of a silicon nucleus.
【請求項2】 シリコン核が単結晶である請求項1に記
載の非線形光学材料。
2. The nonlinear optical material according to claim 1, wherein the silicon nucleus is a single crystal.
【請求項3】 酸化シリコン主体の絶縁層中に殆ど水素
化シリコンを含有しない請求項1に記載の非線形光学材
料。
3. The nonlinear optical material according to claim 1, wherein the silicon oxide-based insulating layer contains almost no silicon hydride.
【請求項4】 酸化シリコン主体の絶縁層中に部分的に
末端Si−O- 構造を有する請求項3に記載の非線形光
学材料。
4. The nonlinear optical material according to claim 3, which has a terminal Si—O structure partially in a silicon oxide-based insulating layer.
【請求項5】 請求項1に記載の非線形光学材料の製造
方法において、シリコンを含むガスをマイクロ波により
分解して形成したシリコン超微粒子核をノズルより噴出
させ基体上に堆積する工程と、該シリコン超微粒子核の
表面を酸化絶縁処理する工程とを含むことを特徴とする
非線形光学材料の製造方法。
5. The method for producing a nonlinear optical material according to claim 1, wherein a step of ejecting silicon ultrafine particle nuclei formed by decomposing a gas containing silicon by microwaves from a nozzle and depositing it on a substrate, A step of subjecting the surface of the silicon ultrafine particle nucleus to an oxidation insulation treatment, the method for producing a non-linear optical material.
【請求項6】 酸化絶縁処理する工程において強アルカ
リ剤を用いる請求項5に記載の非線形光学材料の製造方
法。
6. The method for producing a non-linear optical material according to claim 5, wherein a strong alkali agent is used in the step of performing the oxidation insulation treatment.
JP4056476A 1992-02-10 1992-02-10 Nonlinear optical material and manufacturing method thereof Expired - Fee Related JP3029160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4056476A JP3029160B2 (en) 1992-02-10 1992-02-10 Nonlinear optical material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4056476A JP3029160B2 (en) 1992-02-10 1992-02-10 Nonlinear optical material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH05224261A true JPH05224261A (en) 1993-09-03
JP3029160B2 JP3029160B2 (en) 2000-04-04

Family

ID=13028159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4056476A Expired - Fee Related JP3029160B2 (en) 1992-02-10 1992-02-10 Nonlinear optical material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3029160B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143861A (en) * 2004-11-18 2006-06-08 Stanley Electric Co Ltd Luminescent material
WO2007086225A1 (en) * 2006-01-27 2007-08-02 Konica Minolta Medical & Graphic, Inc. Process for producing nanoparticle
WO2007086321A1 (en) 2006-01-27 2007-08-02 Konica Minolta Medical & Graphic, Inc. Nanosemiconductor particle
WO2007086232A1 (en) * 2006-01-27 2007-08-02 Konica Minolta Medical & Graphic, Inc. Method for manufacturing nano-sized phosphor
WO2007086267A1 (en) 2006-01-27 2007-08-02 Konica Minolta Medical & Graphic, Inc. Semiconductor nanoparticle having core/shell structure and process for producing the same
JP2007246329A (en) * 2006-03-15 2007-09-27 Tokyo Denki Univ Nano-silicon particle excellent in durability of light emission brightness and its producing method
WO2007145089A1 (en) * 2006-06-14 2007-12-21 Konica Minolta Medical & Graphic, Inc. Three-layer semiconductor particle
WO2008032619A1 (en) * 2006-09-15 2008-03-20 Konica Minolta Medical & Graphic, Inc. Semiconductor nanoparticle and method for producing the same
WO2008032618A1 (en) * 2006-09-15 2008-03-20 Konica Minolta Medical & Graphic, Inc. Semiconductor nanoparticle and process for producing the same
WO2008139810A1 (en) * 2007-04-26 2008-11-20 Konica Minolta Medical & Graphic, Inc. Method for production of core/shell-type inorganic fluorescent substance particle, and compound labeled with fluorescent substance
US8197720B2 (en) 2007-01-22 2012-06-12 Konica Minolta Medical & Graphic, Inc. Core/shell type semiconductor nanoparticle and method for production thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143861A (en) * 2004-11-18 2006-06-08 Stanley Electric Co Ltd Luminescent material
JPWO2007086267A1 (en) * 2006-01-27 2009-06-18 コニカミノルタエムジー株式会社 Nano-semiconductor particle having core-shell structure and method for producing the same
WO2007086225A1 (en) * 2006-01-27 2007-08-02 Konica Minolta Medical & Graphic, Inc. Process for producing nanoparticle
EP1978072A1 (en) * 2006-01-27 2008-10-08 Konica Minolta Medical & Graphic, Inc. Semiconductor nanoparticle having core/shell structure and process for producing the same
EP1978072A4 (en) * 2006-01-27 2009-04-08 Konica Minolta Med & Graphic Semiconductor nanoparticle having core/shell structure and process for producing the same
WO2007086321A1 (en) 2006-01-27 2007-08-02 Konica Minolta Medical & Graphic, Inc. Nanosemiconductor particle
JP5223339B2 (en) * 2006-01-27 2013-06-26 コニカミノルタエムジー株式会社 Method for producing nano semiconductor particles
JP5125516B2 (en) * 2006-01-27 2013-01-23 コニカミノルタエムジー株式会社 Method for producing nanoparticles
US7658899B2 (en) 2006-01-27 2010-02-09 Konica Minolta Medical & Graphic, Inc. Production method of nanoparticle
WO2007086232A1 (en) * 2006-01-27 2007-08-02 Konica Minolta Medical & Graphic, Inc. Method for manufacturing nano-sized phosphor
WO2007086267A1 (en) 2006-01-27 2007-08-02 Konica Minolta Medical & Graphic, Inc. Semiconductor nanoparticle having core/shell structure and process for producing the same
JP2007246329A (en) * 2006-03-15 2007-09-27 Tokyo Denki Univ Nano-silicon particle excellent in durability of light emission brightness and its producing method
WO2007145089A1 (en) * 2006-06-14 2007-12-21 Konica Minolta Medical & Graphic, Inc. Three-layer semiconductor particle
JP5233673B2 (en) * 2006-09-15 2013-07-10 コニカミノルタエムジー株式会社 Semiconductor nanoparticles and manufacturing method thereof
WO2008032618A1 (en) * 2006-09-15 2008-03-20 Konica Minolta Medical & Graphic, Inc. Semiconductor nanoparticle and process for producing the same
JP5131195B2 (en) * 2006-09-15 2013-01-30 コニカミノルタエムジー株式会社 Semiconductor nanoparticles and manufacturing method thereof
WO2008032619A1 (en) * 2006-09-15 2008-03-20 Konica Minolta Medical & Graphic, Inc. Semiconductor nanoparticle and method for producing the same
US8197720B2 (en) 2007-01-22 2012-06-12 Konica Minolta Medical & Graphic, Inc. Core/shell type semiconductor nanoparticle and method for production thereof
WO2008139810A1 (en) * 2007-04-26 2008-11-20 Konica Minolta Medical & Graphic, Inc. Method for production of core/shell-type inorganic fluorescent substance particle, and compound labeled with fluorescent substance

Also Published As

Publication number Publication date
JP3029160B2 (en) 2000-04-04

Similar Documents

Publication Publication Date Title
Mawhinney et al. FTIR study of the oxidation of porous silicon
Ha et al. Open air plasma chemical vapor deposition of highly dielectric amorphous TiO2 films
US4683838A (en) Plasma treatment system
US5412246A (en) Low temperature plasma oxidation process
US7807225B2 (en) High density plasma non-stoichiometric SiOxNy films
EP1719735A1 (en) Ozone generator and ozone generating method
JPH05224261A (en) Nonlinear optical material and production thereof
US20040056271A1 (en) Nanotip arrays
Kim Visible light emissions and single-electron tunneling from silicon quantum dots embedded in Si-rich SiO 2 deposited in plasma phase
JPS5984420A (en) Method of producing product including multicomponent material covering substrate
Dahle et al. Silicon dioxide coating of titanium dioxide nanoparticles from dielectric barrier discharge in a gaseous mixture of silane and nitrogen
JPS5982732A (en) Manufacture for semiconductor device
JP2006176859A (en) Method for producing silicon nano-crystal structure
Zhang et al. Ultrathin high-quality tantalum pentoxide films grown by photoinduced chemical vapor deposition
Park et al. Low temperature silicon dioxide film deposition by remote plasma enhanced chemical vapor deposition: growth mechanism
Tuan et al. On the origin of photoluminescence enhancement of Si nanocrystals on silica glass template and Si/SiO2 superlattice
US8007332B2 (en) Fabrication of a semiconductor nanoparticle embedded insulating film electroluminescence device
US20110175207A1 (en) Method for producing metal oxide layers
JPH03212625A (en) Optical material
JPH03120519A (en) Optical material
Liu et al. Photoluminescence characteristics of oxidized hydrogenated nanocrystalline silicon film
JP2795590B2 (en) Nonlinear optical material and manufacturing method thereof
JPH03164448A (en) Optical material and production thereof
JPH09181353A (en) Manufacture of si fine particle and manufacture of si fine particle thin film, and light-emitting device provided with si fine particle thin film
US7902088B2 (en) High quantum efficiency silicon nanoparticle embedded SiOXNY luminescence device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees