JPH03120519A - Optical material - Google Patents

Optical material

Info

Publication number
JPH03120519A
JPH03120519A JP25783389A JP25783389A JPH03120519A JP H03120519 A JPH03120519 A JP H03120519A JP 25783389 A JP25783389 A JP 25783389A JP 25783389 A JP25783389 A JP 25783389A JP H03120519 A JPH03120519 A JP H03120519A
Authority
JP
Japan
Prior art keywords
core
silicon
carbon
gas
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25783389A
Other languages
Japanese (ja)
Inventor
Yumie Yamazaki
山崎 由美恵
Hirotsugu Takagi
高木 博嗣
Hiroko Ogawa
小川 博子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25783389A priority Critical patent/JPH03120519A/en
Publication of JPH03120519A publication Critical patent/JPH03120519A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical material with nonlinearity higher than ever by setting a silicon group semiconductor material of ultraparticulate as a core and coating the periphery of the material with carbon or silicon carbide. CONSTITUTION:GA grain 1 to be coated consists of the core 2 setting silicon group semiconductor as a main component and the mixture of the carbon or the silicon carbide with large band gap coating the core, and is formed by laminating them. As the size of the core 2, it is to be set at <=200Angstrom , desirably at <=100Angstrom , and further desirably at <=50Angstrom , and the lower the size, the more higher nonlinearity can be obtained. The ultraparticulate can be generated by flowing mixed gas of 20%H2 and 20% SiH4 as raw gas from a leading port 12, generating plasma by inputting a microwave via a waveguide 10, gener ating the core by dissolving the gas, and coating the core uniformly with the carbon material of an evaporation source 14 by evaporating with resistance heating.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は非線形光学効果を利用した光変調、光周波数変
換、光双安定1位相共役光学等の光学素子材料に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to optical element materials for optical modulation, optical frequency conversion, optical bistable one-phase conjugate optics, etc. using nonlinear optical effects.

(従来の技術) 従来、光学非線形材料は、強い第2高調波発生(SHG
)及び第3高調波発生(THG)を示し、光パラメトリ
ツク発振やラマンレーザー等、新規な光学機器材料とし
て注目されている。
(Prior Art) Conventionally, optical nonlinear materials have a strong second harmonic generation (SHG)
) and third harmonic generation (THG), and is attracting attention as a material for new optical devices such as optical parametric oscillation and Raman lasers.

その例としては、光学フィルターとして使用されている
CdS、或いはCdS、Se+−xの微細な結晶をガラ
スマトリックス中に分散したもの、GaAs等の半導体
超格子膜、メチルニトロアニリン、ポリジアセチレン等
の有機材料が挙げられる。
Examples include CdS used as optical filters, or those in which fine crystals of CdS and Se+-x are dispersed in a glass matrix, semiconductor superlattice films such as GaAs, and organic materials such as methylnitroaniline and polydiacetylene. Examples include materials.

その中で、半導体超格子或いは半導体超微粒子分散材は
、量子閉じ込め効果により室温で励起子が安定化され、
大きな非線形効果が期待されている。
Among these, semiconductor superlattices or semiconductor ultrafine particle dispersion materials stabilize excitons at room temperature due to the quantum confinement effect.
A large nonlinear effect is expected.

(発明が解決しようとしている問題点)特に、半導体超
微粒子分散材は3次元の閉じ込め効果により、より大1
な非線形効果が期待されるが、その反面、分散材中の超
微粒子の充填率を上げることが難しく、数%以上には上
げられないという問題点があった。
(Problem to be solved by the invention) In particular, the semiconductor ultrafine particle dispersion material has a three-dimensional confinement effect that increases the
Although a significant nonlinear effect is expected, on the other hand, there is a problem in that it is difficult to increase the filling rate of ultrafine particles in the dispersion material, and it cannot be increased to more than a few percent.

これらの問題を解決する為には、より大きな非線形性を
示す超微粒子材料を開発をしてゆくこと及び超微粒子の
充填率を上げることが重要である。
In order to solve these problems, it is important to develop ultrafine particle materials that exhibit greater nonlinearity and to increase the filling rate of ultrafine particles.

従って本発明の目的は、上記従来技術の問題点を解決し
、より大きな非線形性を有する光学材料を提供すること
である。
Therefore, an object of the present invention is to solve the problems of the prior art described above and to provide an optical material having greater nonlinearity.

(問題点を解決する為の手段) 上記目的は以下の本発明により達成される。(Means for solving problems) The above object is achieved by the present invention as described below.

即ち、本発明は、硅素系半導体材料を主成分とする核と
それを被覆している炭素又は炭化硅素層とからなる構造
を有する超微粒子を含むことを特徴とする光学材料であ
る。
That is, the present invention is an optical material characterized by containing ultrafine particles having a structure consisting of a core mainly composed of a silicon-based semiconductor material and a carbon or silicon carbide layer covering the core.

(作  用) 本発明では、硅素系半導体材料をマトリックス中に埋め
込むのではなく、硅素系半導体材料を核にして、その周
りを炭素又は炭化硅素で被覆することで、硅素系半導体
超微粒子の充填率を本質的に上げることが可能となり、
結果的に大きな非線形性を有した光学材料を提供するこ
とが出来る。
(Function) In the present invention, instead of embedding the silicon-based semiconductor material in a matrix, the silicon-based semiconductor material is used as a core and its surroundings are coated with carbon or silicon carbide, thereby filling the silicon-based semiconductor ultrafine particles. It becomes possible to essentially increase the rate,
As a result, an optical material with large nonlinearity can be provided.

(好ましい実施態様) 次に好ましい実施態様を挙げて本発明を更に詳しく説明
する。
(Preferred Embodiments) Next, the present invention will be described in more detail by citing preferred embodiments.

本発明で使用する核の材料は硅素系半導体であり、原核
の大きさは、200Å以下、好ましくは100Å以下、
更に好ましくは50Å以下であることが望ましく、核の
大きさが小さい程、十分な閉じ込め効果が発揮出来、大
きな非線形性が期待出来る。一方、核の大きさが大き過
ぎると、バルクの性質と同じになり、十分な閉じ込め効
果が発揮出来ない、又、粒径の下限は10人程度でも効
果が十分に確認される。
The material of the nucleus used in the present invention is a silicon-based semiconductor, and the size of the nucleus is 200 Å or less, preferably 100 Å or less,
More preferably, it is 50 Å or less, and the smaller the size of the nucleus, the more sufficient the confinement effect can be exhibited, and greater nonlinearity can be expected. On the other hand, if the size of the nucleus is too large, the properties will be the same as that of the bulk, and a sufficient confinement effect cannot be achieved.Also, the effect can be sufficiently confirmed even when the particle size is set at the lower limit of about 10 people.

本発明において上記核の被覆に使用するする材料は炭素
又は炭化硅素或はそれらの混合物であり又、被覆する材
料の厚さは核と核とを隔離する為に10Å以上必要であ
り、上限は特に規定されないが大きくなる程半導体超微
粒子の体積含有率が低下する。
In the present invention, the material used to cover the cores is carbon, silicon carbide, or a mixture thereof, and the thickness of the covering material is required to be 10 Å or more in order to isolate the cores, and the upper limit is Although not particularly specified, the larger the semiconductor ultrafine particles, the lower the volume content of the semiconductor ultrafine particles.

以上の如き観点からは、硅素系半導体超微粒子と被覆材
料との使用比率は、硅素系半導体粒子の粒径によっても
変化するが、一般的に云えば、容積的には前者/後者=
1/10乃至172程度の比率が好適であり、硅素系半
導体の比率が少なすぎると体積当りの非線形効果が小さ
いという点で不十分である。
From the above point of view, the usage ratio of silicon-based semiconductor ultrafine particles and coating material varies depending on the particle size of the silicon-based semiconductor particles, but generally speaking, in terms of volume, the former / the latter =
A ratio of about 1/10 to 172 is suitable; if the ratio of silicon-based semiconductor is too small, the nonlinear effect per volume is insufficient.

本発明の光学材料を構成する被覆粒子の構成を第1図を
以て図解的に説明する。該被覆粒子lは図示の様に硅素
系半導体を主成分とする核2とそれを被覆しているバン
ドギャップの大な炭素又は炭化硅素或はそれらの混合物
3とからなり、この様な被覆粒子1は好ましくは適当な
基板上に堆積して形成される。
The structure of the coated particles constituting the optical material of the present invention will be explained diagrammatically with reference to FIG. As shown in the figure, the coated particles 1 consist of a core 2 whose main component is a silicon-based semiconductor and a large bandgap carbon, silicon carbide, or a mixture thereof 3 covering the core. 1 is preferably formed by depositing on a suitable substrate.

次に本発明の光学材料を構成する超微粒子の作成方法に
ついて説明する。
Next, a method for producing ultrafine particles constituting the optical material of the present invention will be explained.

先ず、硅素系半導体超微粒子からなる核を形成する手段
としては、プラズマCVD法、スパッタ法或いはガス中
蒸発法等が挙げられる。
First, examples of means for forming nuclei made of silicon-based semiconductor ultrafine particles include a plasma CVD method, a sputtering method, and an evaporation method in a gas.

又、超微粒子の周りを被覆材料で被覆して粒子を二重構
造とする方法としては、上記被覆材料の極薄い膜で核の
表面を被覆する方法と、特に炭化硅素を被覆材料とする
場合には、核の表面の硅素を炭化処理する方法が挙げら
れる。具体的には、例えば、 (1)抵抗加熱蒸着方法で炭素材料を蒸発させた雰囲気
中に硅素核を通過させ、その表面を被覆する方法。
In addition, methods for forming a double structure by coating the ultrafine particles with a coating material include a method in which the surface of the core is covered with an extremely thin film of the above-mentioned coating material, and a method in which silicon carbide is used as the coating material. A method for carbonizing silicon on the surface of the core is included. Specifically, for example, (1) a method in which a silicon nucleus is passed through an atmosphere in which a carbon material has been evaporated by a resistance heating vapor deposition method, and the surface thereof is coated.

(2)RFスパッタ法で硅素又は炭化硅素をターゲット
とし、アルゴンガス混合のメタン、アセチレン、エチレ
ン、エタン、プロパン等の有機ガスで反応性スパッタリ
ングを行い、硅素炭化物の雰囲気内に核を通過させその
表面を炭化硅素で被覆する方法。
(2) Using RF sputtering, silicon or silicon carbide is targeted, and reactive sputtering is performed using an organic gas such as methane, acetylene, ethylene, ethane, or propane mixed with argon gas, and the nucleus is passed through the silicon carbide atmosphere. A method of coating the surface with silicon carbide.

(3)核を基板上に堆積させた後、メタン、エタン、エ
チレン、メタノール等の有機ガス雰囲気中に該堆積膜を
さらすと同時に基板を加熱して、核表面を炭化処理する
方法、。
(3) After depositing the nuclei on a substrate, the deposited film is exposed to an organic gas atmosphere such as methane, ethane, ethylene, methanol, etc., and at the same time the substrate is heated to carbonize the surface of the nuclei.

(4)核を基板上に堆積させた後、メタン、エタン、エ
チレン、メタノール等の有機ガスをグロー放電して分解
した雰囲気中に、該堆積膜をさらすと同時に基板を加熱
して、核表面を炭化処理する方法0以上代表的な被覆粒
子の作成方法を挙げたが、これら以外の方法で作成して
も勿論よい、更に本発明における被覆された超微粒子は
、実使用上は微粒子の集合体が基体上に層状に堆積した
微粒子膜となっていることが取り扱い易さの点から望ま
しい、しかしながら本発明の有効性はこの様な微粒子の
みに限定されるものではない。
(4) After depositing the nuclei on the substrate, the deposited film is exposed to an atmosphere in which organic gases such as methane, ethane, ethylene, and methanol are decomposed by glow discharge, and at the same time the substrate is heated to surface the nuclei. 0 or more representative methods for producing coated particles have been listed, but of course they may be produced by methods other than these.Furthermore, the coated ultrafine particles in the present invention are actually a collection of fine particles. It is desirable from the point of view of ease of handling that the body be a fine particle film deposited in a layered manner on a substrate, but the effectiveness of the present invention is not limited to such fine particles.

上述の構成からなる超微粒子は、光学吸収特性に励起子
による強い吸収が見られる。このことは、本発明の超微
粒子が量子閉じ込め効果を有するものであることを示し
ている。
The ultrafine particles having the above structure exhibit strong absorption by excitons in their optical absorption characteristics. This shows that the ultrafine particles of the present invention have a quantum confinement effect.

又、本発明の光学材料は励起エネルギー照射で蛍光を発
する発光部材として利用可能であり、量子閉じ込め効果
と充填率向上の為、発光強度が実用上望ましい程度に大
きい。
Furthermore, the optical material of the present invention can be used as a light-emitting member that emits fluorescence when irradiated with excitation energy, and the emission intensity is as high as is practically desirable due to the quantum confinement effect and the improvement in the filling rate.

(実施例) 以下に実施例及び比較例を挙げて本発明を更に具体的に
説明する。
(Example) The present invention will be explained in more detail by giving Examples and Comparative Examples below.

実施例1 マイクロ波プラズマCVD法により硅素を主成分とする
核を形成後、ビーム状に噴出させ、抵抗加熱で蒸発させ
た炭素雰囲気中を通過させ、核の表面に炭素単独で被覆
を施した。
Example 1 After forming a nucleus mainly composed of silicon by the microwave plasma CVD method, it was ejected in a beam shape and passed through a carbon atmosphere evaporated by resistance heating to coat the surface of the nucleus with carbon alone. .

第2図に本発明の光学材料である被覆超微粒子堆積膜を
作成する装置の概略を示す。
FIG. 2 schematically shows an apparatus for producing a coated ultrafine particle deposited film, which is the optical material of the present invention.

核形成の原料ガスとして、H820%と5iH420%
との混合ガスを図中のガス導入口12より50SCCM
で流し、2.45GHzのマイクロ波を導波管10及び
石英窓7を介して投入し、反応室である空胴共振器S内
でプラズマを発生させてガスを分解して硅素核を形成し
た。核は磁石9を配した縮小拡大ノズル11から圧力差
で下流室4ヘビーム状に噴出させ、続いて下流室4にて
炭素の被覆処理をした。即ち、蒸発源14に仕込んだ炭
素材を抵抗加熱で蒸発させ、この蒸発雰囲気内を上記ノ
ズルにより噴出した核が通過して炭素が該核周囲を均一
に被覆し、二重構造の超微粒子を形成した。形成された
超微粒子はそのまま石英基板6上に厚み4mm程度堆積
させた。−この際の基板温度は室温であった。得られた
超微粒子は透過型電子顕微鏡(TEM)観察で、均一球
形で硅素核のサイズが約40人、炭素被覆層が約20程
度度のものであった。
As raw material gas for nucleation, H820% and 5iH420%
50SCCM of mixed gas from gas inlet 12 in the figure.
A 2.45 GHz microwave was introduced through the waveguide 10 and the quartz window 7 to generate plasma in the cavity resonator S, which is a reaction chamber, to decompose the gas and form silicon nuclei. . The core was ejected from a contraction/expansion nozzle 11 equipped with a magnet 9 into a downstream chamber 4 in the shape of a heavy beam by a pressure difference, and then coated with carbon in the downstream chamber 4. That is, the carbon material charged in the evaporation source 14 is evaporated by resistance heating, and the nucleus ejected from the nozzle passes through this evaporation atmosphere, and carbon uniformly covers the area around the nucleus, forming double-structured ultrafine particles. Formed. The formed ultrafine particles were directly deposited on a quartz substrate 6 to a thickness of about 4 mm. -The substrate temperature at this time was room temperature. When observed using a transmission electron microscope (TEM), the obtained ultrafine particles were found to be uniformly spherical, with silicon nuclei having a size of about 40 degrees, and a carbon coating layer having a size of about 20 degrees.

又、可視紫外分光光度計により室温で吸収特性を調べた
。第6図に光学吸収スペクトルを示す。
In addition, absorption characteristics were investigated at room temperature using a visible and ultraviolet spectrophotometer. FIG. 6 shows the optical absorption spectrum.

図示の様に吸収端に励起子吸収による吸収ピークが見ら
れた。
As shown in the figure, an absorption peak due to exciton absorption was observed at the absorption edge.

更に同−膜を硅素基板上に形成したものを用意し、膜面
に430 nmに分光したキセノンランプを照射したと
ころ、第7図のaに示す発光スペクトルが得られ、60
0nm付近にピークを持つ蛍光を発した。
Furthermore, when the same film was prepared on a silicon substrate and the film surface was irradiated with a xenon lamp with a wavelength of 430 nm, the emission spectrum shown in a of Figure 7 was obtained.
Fluorescence with a peak around 0 nm was emitted.

実施例2 核表面なRF−2極反応性スパッタ法で硅素炭化物で被
覆した以外は実施例1と同様にして本発明の光学材料を
得た。
Example 2 An optical material of the present invention was obtained in the same manner as in Example 1, except that the core surface was coated with silicon carbide by RF-dipolar reactive sputtering.

第3図に上記光学材料を作成する装置の概略図を示す。FIG. 3 shows a schematic diagram of an apparatus for producing the above-mentioned optical material.

実施例1の核形成方法に準じて第3図において作成され
た硅素核は、ノズルを介して下流室に噴出させる。下流
室には硅素(111)ターゲット17が陰極18に接し
ており、ガス導入口15より、CHa +ar混合ガス
(Ar/ CH4= 1 )を導入し、室内圧力を5 
X 10−”Torrとした。陽極16と陰極18に高
周波60Wを印加してプラズマを立たせ、硅素ターゲッ
トをスパッタリング(反応性)し、このプラズマ雰囲気
内を上記ノズルにより噴出した核が通過し、硅素炭化物
被覆の超微粒子とした後、石英基板6上に厚み4μm程
度堆積させた。基板温度は室温であった。
The silicon nuclei created in FIG. 3 according to the nucleation method of Example 1 are ejected into the downstream chamber through a nozzle. A silicon (111) target 17 is in contact with a cathode 18 in the downstream chamber, and CHa + ar mixed gas (Ar/CH4=1) is introduced from the gas inlet 15 to bring the pressure in the room to 5.
X 10-” Torr. A high frequency of 60 W is applied to the anode 16 and the cathode 18 to generate a plasma, and the silicon target is sputtered (reactive). The nuclei ejected from the nozzle pass through this plasma atmosphere, and the silicon target is sputtered (reactive). After forming ultrafine particles coated with carbide, they were deposited to a thickness of about 4 μm on a quartz substrate 6. The substrate temperature was room temperature.

得られた超微粒子は、TEM観察で均一球形で、核サイ
ズが約40人、炭化物被覆層が約10程度度のものであ
った。
The obtained ultrafine particles were found to be uniformly spherical by TEM observation, with a core size of about 40 degrees and a carbide coating layer of about 10 degrees.

又、室温で吸収特性を調べたところ、実施例1(第6図
)とほぼ同様に吸収端に励起子吸収による吸収ピークが
認められた。
Further, when the absorption characteristics were examined at room temperature, an absorption peak due to exciton absorption was observed at the absorption edge, almost the same as in Example 1 (FIG. 6).

更に硅素基板上に同−膜を形成後、発光スペクトルを測
定したところ、第7図のaとほぼ同じく600nm付近
にピークを持つ蛍光を発した。
Furthermore, when the same film was formed on a silicon substrate and its emission spectrum was measured, it emitted fluorescence having a peak around 600 nm, almost the same as a in FIG. 7.

実施例3 実施例1と同様の方法で作成した硅素核をノズルから噴
出させ、基板上に体積させた後、有機ガス中で基板を加
熱し、核表面を炭化処理した。
Example 3 Silicon nuclei prepared in the same manner as in Example 1 were ejected from a nozzle and deposited on a substrate, and then the substrate was heated in an organic gas to carbonize the surface of the nuclei.

第4図に上記光学材料を作成する装置の概略図を示す。FIG. 4 shows a schematic diagram of an apparatus for producing the optical material.

実施例1の核形成方法に準じて第4図において作成され
た硅素核は、ノズルを介して下流室に噴出させ、石英基
板上に体積させた。続いてガス導入口15よりC,H,
ガス11005CCを流し、基板温度を550℃として
60分間さらし、核表面を炭化した。表面炭化された硅
素超微粒子堆積膜は厚み4μm程度のものであった。
The silicon nuclei created in FIG. 4 according to the nucleation method of Example 1 were ejected into a downstream chamber through a nozzle and deposited on a quartz substrate. Then, from the gas inlet 15, C, H,
A gas of 11,005 cc was flowed, the substrate temperature was set to 550° C., and the substrate was exposed for 60 minutes to carbonize the surface of the nucleus. The surface carbonized ultrafine silicon particle deposited film had a thickness of about 4 μm.

得られた様微粒子は、TEM観察で均一球形で、核サイ
ズが約35人、炭化物被覆層が約15人種度のものであ
った。
The obtained fine particles were observed by TEM to have a uniform spherical shape, a core size of about 35 particles, and a carbide coating layer of about 15 particles.

又、室温で吸収特性を調べたところ、実施例1゜(第6
図)とほぼ同様に吸収端に励起子吸収による吸収ピーク
が認められた。
In addition, when the absorption characteristics were investigated at room temperature, it was found that Example 1゜ (No. 6
Almost the same as in Figure), an absorption peak due to exciton absorption was observed at the absorption edge.

更に硅素基板上に同−膜を形成後、発光スペクトルを測
定したところ、第7図のaとほぼ同じ(600nm付近
にピークを持つ蛍光を発した。
Furthermore, after forming the same film on a silicon substrate, the emission spectrum was measured, and the result was that it emitted fluorescence having a peak near 600 nm, which was almost the same as that shown in a of FIG.

実施例4 実施例1と同様の方法で作成した硅素核をノズルから噴
出させ、基板上に体積させた後、有機ガスを用いたグロ
ー(GD)プラズマ中で基板を加熱し、核表面を炭化処
理した。
Example 4 Silicon nuclei created in the same manner as in Example 1 were ejected from a nozzle and deposited on a substrate, and then the substrate was heated in glow (GD) plasma using organic gas to carbonize the surface of the nuclei. Processed.

第5図に上記光学材料を作成する装置の概略図を示す。FIG. 5 shows a schematic diagram of an apparatus for producing the optical material.

★施例1の核形成方法に準じて第5図において作成され
た硅素核は、ノズルを介して下流室に噴出させ、石英基
板上に体積させた。続いてガス導入口15よりArガス
100 SCCMを流し、室内圧力を0 、5 Tor
rとし、50Wの高周波を印加してプラズマを立てた。
*Silicon nuclei created in FIG. 5 according to the nucleation method of Example 1 were ejected into a downstream chamber through a nozzle and deposited on a quartz substrate. Next, 100 SCCM of Ar gas was flowed through the gas inlet 15, and the indoor pressure was reduced to 0.5 Torr.
r, and a high frequency of 50 W was applied to generate plasma.

そこへCI、ガス803CCMを流して分解し、生成し
たプラズマ雰囲気中に上記核堆積膜を基板温度400℃
で25分間さらし核表面を炭化した0表面炭化された硅
素超微粒子堆積膜は厚み4μm程度のものであった。
803CCM of CI and gas are passed through it to decompose it, and the above nuclear deposited film is placed in the generated plasma atmosphere at a substrate temperature of 400°C.
The surface of the core was carbonized by exposing it for 25 minutes, and the silicon ultrafine particle deposited film was about 4 μm thick.

又、得られた様微粒子は、TEM観察で均一球形で、核
サイズが約35人、炭化物被覆層が約15人種度のもの
であった。
Further, the obtained fine particles were found to be uniformly spherical by TEM observation, with a core size of about 35 particles and a carbide coating layer of about 15 particles.

又、室温で吸収特性を調べたところ、実施例1(第6図
)とほぼ同様に吸収端に励起子吸収による吸収ピークが
認められた。
Further, when the absorption characteristics were examined at room temperature, an absorption peak due to exciton absorption was observed at the absorption edge, almost the same as in Example 1 (FIG. 6).

更に硅素基板上に同−膜を形成後、発光スペクトルを測
定したところ、第7図のaとほぼ同じく600 nm付
近にピークを持つ蛍光を発した。
Furthermore, when the same film was formed on a silicon substrate and its emission spectrum was measured, it emitted fluorescence having a peak around 600 nm, almost the same as a in FIG. 7.

実施例5 実施例1において核形成の原料ガスをSiH<とH2+
Ar混合ガスとし、硅素核表面に炭素単独の被覆を施し
た。
Example 5 In Example 1, the source gas for nucleation was SiH< and H2+
The silicon core surface was coated with carbon alone using an Ar mixed gas.

使用したガスは(Ar+H*) 80%と5iH420
%とし、更にAr/ (H* + Ar)混合比を12
.5%とした。
The gases used were (Ar+H*) 80% and 5iH420
%, and further set the Ar/(H* + Ar) mixing ratio to 12
.. It was set at 5%.

実施例1に準する方法で作製された微微粒子は石英基板
上に厚み3μm程度に堆積させた。
Fine particles produced by a method similar to Example 1 were deposited on a quartz substrate to a thickness of about 3 μm.

得られた超微粒子は、TEM観察で均一球形で、核サイ
ズが約60人、炭化物被覆層が約20人種度のものであ
った。
The obtained ultrafine particles were found to be uniformly spherical by TEM observation, with a core size of about 60 particles and a carbide coating layer of about 20 particles.

又、室温で吸収特性を調べたところ、吸収端に励起子吸
収による吸収ピークが認められた。但しピーク強度は実
施例1(第6図)よりやや小さく、又、ピーク位置は2
.3eV付近にシフトした。
Furthermore, when the absorption characteristics were examined at room temperature, an absorption peak due to exciton absorption was observed at the absorption edge. However, the peak intensity is slightly smaller than that of Example 1 (Figure 6), and the peak position is 2.
.. It shifted to around 3 eV.

更に硅素基板上に同−膜を形成後、発光スペクトルを測
定したところ、第7図のbの様に620nm付近にピー
クを持つ蛍光を発した。
Furthermore, when the same film was formed on a silicon substrate and the emission spectrum was measured, fluorescence having a peak around 620 nm was emitted as shown in FIG. 7b.

実施例6 実施例5において、Ar/ (H*+Ar)混合比を1
7.5%とした以外は実施例5と全く同様にした。
Example 6 In Example 5, the Ar/(H*+Ar) mixing ratio was set to 1.
The same procedure as in Example 5 was carried out except that the content was 7.5%.

実施例1に準する方法で作製された微微粒子を石英基板
上に厚み3μm程度に堆積させた。
Fine particles produced by a method similar to Example 1 were deposited on a quartz substrate to a thickness of about 3 μm.

得られた様微粒子は、TEM観察で均一球形で、核サイ
ズが約100人、炭素被覆層が約20人種度のものであ
った。
The obtained fine particles were observed by TEM to have a uniform spherical shape, a core size of about 100 particles, and a carbon coating layer of about 20 particles.

又、室温で吸収特性を調べたところ、吸収端に励起子吸
収による吸収ピークが認められた。但しピーク強度は実
施例5よりやや小さく、又、ピーク位置は2.OeV付
近にシフトした。
Furthermore, when the absorption characteristics were examined at room temperature, an absorption peak due to exciton absorption was observed at the absorption edge. However, the peak intensity is slightly smaller than that of Example 5, and the peak position is 2. It shifted to around OeV.

更に硅素基板上に同−膜を形成後、発光スペクトルを測
定したところ、第7図のCの様に620nm付近にピー
クを持つ蛍光を発した。
Furthermore, when the same film was formed on a silicon substrate and the emission spectrum was measured, fluorescence having a peak around 620 nm was emitted as shown in C in FIG.

比較例 実施例1と同様の方法で炭化物被覆の機微粒子を作製し
た。但し原料ガスをキャリヤーガスAr20%希釈のS
iH4混合ガスとじIO3CCM流した。
Comparative Example Carbide-coated fine particles were prepared in the same manner as in Example 1. However, the raw material gas is diluted with carrier gas Ar by 20%.
The iH4 mixed gas and IO3CCM were flowed.

得られた超微粒子は、TEM観察で均一球形で、核サイ
ズが約230人、炭化物被覆層が約15人の超微粒子で
あった。
The obtained ultrafine particles were found to be uniformly spherical by TEM observation, with a core size of about 230 particles and a carbide coating layer of about 15 particles.

又、室温で吸収特性を調べたところ、励起子ピークは全
く認められなかった。更に硅素基板上に同−膜を形成後
、発光スペクトルを測定したが蛍光は発しなかった。
Furthermore, when the absorption characteristics were examined at room temperature, no exciton peak was observed at all. Furthermore, after forming the same film on a silicon substrate, the emission spectrum was measured, but no fluorescence was emitted.

(発明の効果) 以上説明した様に、硅素系半導体材料の核な炭素又は硅
素炭化物で被覆した構造の超微粒子材料は、量子閉じ込
め効果で吸収端に励起子吸収を示し、非線形光学素子材
料として有用なものである。
(Effects of the Invention) As explained above, ultrafine particle materials coated with carbon or silicon carbide, which is the core of silicon-based semiconductor materials, exhibit exciton absorption at the absorption edge due to the quantum confinement effect, and can be used as nonlinear optical element materials. It is useful.

又、その効果は核の粒径により大きく変わり、200Å
以下で該効果が表われ、好ましくは100Å以下、更に
好ましくは50Å以下がよい。
In addition, the effect varies greatly depending on the particle size of the nucleus, and
The effect appears below, preferably 100 Å or less, more preferably 50 Å or less.

又、本発明では、超微粒子を基板上に密に堆積すること
が可能であり、従来のバインダー分散型のものに比べ高
い非線形感受率が期待出来る。
Furthermore, in the present invention, it is possible to deposit ultrafine particles densely on a substrate, and higher nonlinear susceptibility can be expected than in conventional binder-dispersed types.

加えて本発明の光学材料は実用可能な高輝度発光部材と
して有用なものである。
In addition, the optical material of the present invention is useful as a practical high-brightness light-emitting member.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光学材料を構成する超微粒子の構造模
式図、第2図乃至第5図は本発明の超微粒子の作成装置
概略図、第6図は本発明の超微粒子の光学吸収の代表例
を示す図、第7図は実施例1乃至6において作製した超
微粒子堆積膜のキセノンランプ430nm励起光による
蛍光スペクトルを示す図であり、aは実施例1乃至4を
、bは実施例5を、Cは実施例6を示している。 第1図 1:被覆超微粒子 3:炭化物層 5:空胴共振器 7:石英窓 9:磁石 11:縮小拡大ノズル 13:電源 15:ガス導入口 17:ターゲット 19:電極 2:硅素系半導体核 4:下流室 6:基板 8:排気ポンプ 10:マイクロ波導波管 12:ガス導入管 14:蒸発源 16:陽極 18:陰極 第2図 第3図
Figure 1 is a schematic diagram of the structure of the ultrafine particles constituting the optical material of the present invention, Figures 2 to 5 are schematic diagrams of the apparatus for producing the ultrafine particles of the present invention, and Figure 6 is the optical absorption of the ultrafine particles of the present invention. FIG. 7 is a diagram showing the fluorescence spectra of the ultrafine particle deposited films produced in Examples 1 to 6 by excitation light of 430 nm from a xenon lamp, where a represents Examples 1 to 4, and b represents the C indicates Example 5, and C indicates Example 6. Fig. 1: Coated ultrafine particles 3: Carbide layer 5: Cavity resonator 7: Quartz window 9: Magnet 11: Reduction/expansion nozzle 13: Power supply 15: Gas inlet 17: Target 19: Electrode 2: Silicon-based semiconductor core 4: Downstream chamber 6: Substrate 8: Exhaust pump 10: Microwave waveguide 12: Gas introduction tube 14: Evaporation source 16: Anode 18: Cathode Figure 2 Figure 3

Claims (5)

【特許請求の範囲】[Claims] (1)硅素系半導体材料を主成分とする核とそれを被覆
している炭素又は炭化硅素層とからなる構造を有する超
微粒子を含むことを特徴とする光学材料。
(1) An optical material characterized by containing ultrafine particles having a structure consisting of a core mainly composed of a silicon-based semiconductor material and a carbon or silicon carbide layer covering the core.
(2)核の大きさが200Å以下である請求項1に記載
の光学材料。
(2) The optical material according to claim 1, wherein the size of the nucleus is 200 Å or less.
(3)核の大きさが100Å以下である請求項1に記載
の光学材料。
(3) The optical material according to claim 1, wherein the size of the nucleus is 100 Å or less.
(4)核の大きさが50Å以下である請求項1に記載の
光学材料。
(4) The optical material according to claim 1, wherein the size of the nucleus is 50 Å or less.
(5)請求項1に記載の超微粒子を基板上に堆積してな
る光学材料。
(5) An optical material obtained by depositing the ultrafine particles according to claim 1 on a substrate.
JP25783389A 1989-10-04 1989-10-04 Optical material Pending JPH03120519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25783389A JPH03120519A (en) 1989-10-04 1989-10-04 Optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25783389A JPH03120519A (en) 1989-10-04 1989-10-04 Optical material

Publications (1)

Publication Number Publication Date
JPH03120519A true JPH03120519A (en) 1991-05-22

Family

ID=17311770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25783389A Pending JPH03120519A (en) 1989-10-04 1989-10-04 Optical material

Country Status (1)

Country Link
JP (1) JPH03120519A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294830A (en) * 1990-04-13 1991-12-26 Matsushita Electric Ind Co Ltd Nonlinear optical material and production thereof
WO1999063129A1 (en) * 1998-05-30 1999-12-09 Robert Bosch Gmbh Method for applying a coating system to surfaces

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294830A (en) * 1990-04-13 1991-12-26 Matsushita Electric Ind Co Ltd Nonlinear optical material and production thereof
WO1999063129A1 (en) * 1998-05-30 1999-12-09 Robert Bosch Gmbh Method for applying a coating system to surfaces
US6613393B1 (en) 1998-05-30 2003-09-02 Robert Bosch Gmbh Method for applying a wear protection layer system having optical properties onto surfaces

Similar Documents

Publication Publication Date Title
TW414726B (en) Method and apparatus for coating diamond-like networks onto particles
Iqbal et al. Evidence for a solid phase of dodecahedral C 20
US4767517A (en) Process of depositing diamond-like thin film by cathode sputtering
US5620512A (en) Diamond film growth from fullerene precursors
Iwano et al. Study of amorphous carbon nitride films aiming at white light emitting devices
Mukhopadhyay et al. Silicon rich silicon oxide films deposited by radio frequency plasma enhanced chemical vapor deposition method: optical and structural properties
Yudasaka et al. Influence of chemical bond of carbon on Ni catalyzed graphitization
Vandevelde et al. Correlation between the OES plasma composition and the diamond film properties during microwave PA-CVD with nitrogen addition
Heiman et al. Nano-diamond films deposited by direct current glow discharge assisted chemical vapor deposition
JP2004511064A (en) Film type cathode for cold cathode emission and method of manufacturing the same
JP3029160B2 (en) Nonlinear optical material and manufacturing method thereof
JPS62202897A (en) Production of diamond
JPS62138395A (en) Preparation of diamond film
JPH03120519A (en) Optical material
JPS60195092A (en) Method and apparatus for production of carbon thin film
Yelisseyev et al. Structure of a diamond deposited from microwave plasma by a new gas-jet method
JPS6184379A (en) Production of high-hardness boron nitride film
JPH03212625A (en) Optical material
JP2895179B2 (en) Vapor phase synthesis method of diamond single crystal thin film
Yu et al. Fabrication of nanocrystalline silicon carbide thin film by helicon wave plasma enhanced chemical vapour deposition
JPWO2007145088A1 (en) Semiconductor nanoparticles and manufacturing method thereof
JPS61236691A (en) Vapor phase synthesis of diamond
Ismat Shah et al. Plasma assisted conversion of carbon fibers to diamond
JP2775340B2 (en) Synthetic film deposition method
JPS60145995A (en) Preparation of diamond-shaped carbon