WO2007086232A1 - Method for manufacturing nano-sized phosphor - Google Patents

Method for manufacturing nano-sized phosphor Download PDF

Info

Publication number
WO2007086232A1
WO2007086232A1 PCT/JP2006/326196 JP2006326196W WO2007086232A1 WO 2007086232 A1 WO2007086232 A1 WO 2007086232A1 JP 2006326196 W JP2006326196 W JP 2006326196W WO 2007086232 A1 WO2007086232 A1 WO 2007086232A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
nano
phosphor
crystal
fine particles
Prior art date
Application number
PCT/JP2006/326196
Other languages
French (fr)
Japanese (ja)
Inventor
Yasushi Nagata
Kazuya Tsukada
Naoko Furusawa
Original Assignee
Konica Minolta Medical & Graphic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical & Graphic, Inc. filed Critical Konica Minolta Medical & Graphic, Inc.
Priority to JP2007555875A priority Critical patent/JPWO2007086232A1/en
Publication of WO2007086232A1 publication Critical patent/WO2007086232A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon

Definitions

  • the present invention relates to a method for producing a nano-size phosphor, and more specifically, a nano-size phosphor having a core portion formed mainly from silicon crystals and a shell portion formed mainly from silicon oxide. It relates to a method of manufacturing.
  • a so-called nano-sized particle having a particle size of about the wavelength of an electron (about lOnm) formed from a crystal such as a semiconductor or a metal has a large influence on the size of the electron motion. It is known to exhibit unique physical properties different from those of the body (for example, see Non-Patent Document 1).
  • the above-mentioned nano-sized particles are considered to have a wide band gap due to the effect of size finiteness. However, they exhibit excellent light absorption and emission characteristics, and are expected to be developed as nano-sized phosphors. Yes.
  • Patent Document 1 As a method for producing such a nano-sized phosphor, a production method by a liquid phase reaction using coprecipitation (for example, Patent Document 1), a production method based on a reverse micelle method (for example, Patent Document 2). It has been known.
  • nano-sized phosphors mainly composed of silicon nano-sized phosphors having an insulating layer mainly composed of silicon oxide on the surface of silicon nuclei are known (for example, Patent Document 3).
  • Non-Patent Document 1 Nikkei Advanced Technology, 27 January 2003, p. 1-4
  • Patent Document 1 Japanese Patent Laid-Open No. 10-310770
  • Patent Document 2 JP 2002-201471
  • Patent Document 3 Japanese Patent Application Laid-Open No. 5-224261
  • the nano-sized phosphor having a silicon nucleus described in Patent Document 3 is a silicon-based microscopic material having a polysilane amorphous layer on the surface of the silicon single crystal nucleus.
  • the particles are obtained by using the particles as raw materials and treating the surface thereof with an acid, and there is still room for improvement in the emission intensity and fluorescence lifetime.
  • the inventors have studied the above problems, and after forming a core part mainly having silicon force, after processing the core part under a specific condition, the nano part having a shell part mainly having acid-silicon force is formed.
  • the inventors have found that the emission intensity and the fluorescence lifetime are improved by producing a size phosphor, and thus the present invention has been completed.
  • the method for producing the nano-sized phosphor of the present invention includes:
  • a shell portion mainly having an oxide silicon strength is formed. There is a feature.
  • a nano-sized phosphor having a core portion mainly formed of silicon crystal and a shell portion mainly formed of silicon oxide, and having improved emission intensity and fluorescence lifetime. Is obtained.
  • the core of the nano-sized phosphor of the present invention is fine particles mainly formed from silicon crystals.
  • the method for producing silicon fine particles is not particularly limited as long as most of the core part, preferably 90% by mass or more, becomes silicon crystal, but it can be produced, for example, by a vapor phase method.
  • SiH, SiF, etc. are produced by thermal decomposition, or by decomposition with plasma.
  • the silicon fine particles produced by such a vapor phase method usually have an inner layer which is a main part formed of silicon crystals and an outer layer which is an amorphous layer made of silicon compound. is doing.
  • the outer layer of the silicon fine particles is usually formed of an amorphous polysilane.
  • the average particle size of the silicon fine particles produced by the above method is usually in the range of 1 to: LOOnm, and preferably in the range of 1 to 5 Onm from the viewpoint of maximizing the light emission characteristics of the nano-sized phosphor. More preferably, it is in the range of 1 to 10 nm.
  • the average particle size of the silicon fine particles produced in this way is determined by observation with a transmission microscope (TEM).
  • SiH is heated.
  • the vacuum chamber pressure was reduced to 133. 322 X 10 _7 Pa (l X 10- 7 Torr), by introducing SiH at a flow rate 100 SCCM, the chamber first temperature 500 ° C, pressure 26 .644
  • the treatment is performed so that at least the entire surface of the silicon fine particles obtained as described above is covered with a silicon crystal having a (100) plane.
  • Specific examples of such treatment include plasma treatment with hydrogen gas and irradiation treatment using a laser, but the nano-sized phosphor obtained in the present invention has more excellent optical characteristics and can be obtained. From the viewpoint that the silicon fine particles to be formed tend to be formed from a single crystal having a (100) plane, plasma treatment with hydrogen gas is preferred.
  • the outermost layer part of at least the entire surface of the silicon fine particles is changed to a silicon crystal having a (100) plane.
  • reaction apparatus that performs such plasma treatment
  • ICP Inductive Coupled Plasma
  • parallel plate plasma apparatus and the like equipped with a vacuum pump can be used.
  • the silicon fine particles when the silicon fine particles are produced by a vapor phase method, the silicon fine particles usually include an inner layer that is a main part formed of silicon crystals and an outer layer that is an amorphous layer that also has silicon compound strength. Have. In particular, SiH etc. is produced by plasma decomposition or Si is sputtered
  • the outer layer of the silicon fine particles is usually a polysilane amorphous. It is formed with According to Patent Document 3 (Japanese Patent Laid-Open No. 5-224261), an amorphous layer of such a polysilane is subjected to an acid treatment, whereby an insulating layer having an acid silicon power is formed on the surface of the silicon single crystal nucleus. Nano-sized phosphors have been manufactured. However, the outermost layer of this silicon single crystal nucleus may not have a crystal structure having a (100) plane depending on the manufacturing conditions. Therefore, depending on the method of Patent Document 3, it is presumed to be caused by defects generated between the silicon single crystal nucleus and the silicon oxide silicon, but the excellent light absorption characteristics and light emission characteristics that silicon crystals should originally have. Can not be fully demonstrated.
  • the outer layer portion which is the surface of the silicon fine particles, changes to a silicon crystal having a (100) plane. Therefore, in the nanosize phosphor obtained in the present invention, a silicon oxide crystal having a (100) plane is formed between the silicon crystal and the silicon oxide interface. Therefore, even in the vicinity of the interface, the stability of the silicon crystal in the core portion is not impaired, and there is a tendency that defects estimated to be derived from the structure of the silicon crystal are almost eliminated.
  • nano-sized phosphor of the present invention can fully exhibit the excellent light absorption and emission characteristics that silicon crystals should originally have, and the emission intensity and fluorescence lifetime. Is improved.
  • the output condition of the plasma to be applied is usually in the range of 0.1 to 5 kW, preferably in the range of 0.5 to 3 kW.
  • the amount of hydrogen gas to be introduced is usually in the range of 1-1, OOOSCCM, preferably in the range of 20-200 SCCM.
  • the chamber first pressure is usually 133. 322 X 10 _3 ⁇ 13 33. 22Pa : range of (l X 10- 3 ⁇ LOTorr) , preferably, 1. 33322 ⁇ 133 322Pa (0. 01 ⁇ : . LTorr ).
  • One discharge environment can be created.
  • the average thickness of the outermost layer of the core portion formed from the silicon crystal having the (100) plane obtained as described above is, for example, when silicon fine particles are manufactured when the core layer is manufactured by the above-described vapor phase method. Although it may depend on the thickness of the outermost layer formed by the amorphous material, which is also the silicon compound force generated at the time, it is usually 1 to: LOOnm, preferably 1 to 50 nm, more preferably 1 to The range is 1 Onm.
  • the outermost layer of the core portion is covered with the silicon crystal having the (100) plane having the above thickness, it is also included in the nano-sized phosphor even at the interface contacting the silicon oxide film serving as the shell portion.
  • TEM transmission microscope
  • the thickness of the outermost layer can be determined by TEM observation in the same manner as when the average particle diameter of the shell portion is determined.
  • a shell part mainly having an acid-silicon force is formed on the surface of the core part.
  • the method of forming the shell part is not particularly limited as long as 90% by mass or more of the shell part is preferably oxidized silicon, but for example, it can be produced by a vapor phase method.
  • SiH and O are pyrolyzed, which is produced by reacting with plasma.
  • SiH and O can be reacted with plasma to reduce oxygen
  • CCM introduced with silicon fine particles, plasma output 300W, chamber pressure 66.
  • a stable shell can be obtained by processing at 61 Pa (0.5 Torr).
  • the silicon fine particles to be the core part are manufactured by the gas phase method, after the core part is manufactured by the gas phase method, the above-mentioned core part is processed to continuously form the shell part.
  • the average thickness of the shell portion mainly formed from silicon oxide produced by the above method is usually in the range of 1 to 100 nm, preferably in the range of 1 to 50 nm, and more preferably 1 to: in the range of LOnm.
  • the thickness of the shell part thus produced can be determined by TEM observation, as in the case of the average particle diameter of the shell part.
  • the nano-sized phosphor of the present invention thus obtained is composed of a core portion mainly formed from a silicon crystal and a shell portion mainly formed from an acid silicon shell.
  • the silicon crystal near the interface in contact with silicon is covered with a silicon crystal having a (100) plane. Therefore, the nanosize phosphor of the present invention exhibits excellent light absorption characteristics and light emission characteristics.
  • the nano-sized fluorescent light obtained by the present invention is generally compared with the emission intensity of a nano-sized fluorescent material obtained by a steam oxidation method and having a silicon crystal as a core part and an acid silicon shell as a shell part.
  • the light intensity of the body is about 15 times higher when excited by light with a wavelength of 365 nm.
  • the nano-sized phosphor obtained by the present invention is excellent in the emission intensity.
  • the nano-sized phosphor obtained by the present invention has a silicon crystal as a core part when the half-life of the intensity of an emission spectrum obtained by excitation with light having a wavelength of 365 nm is measured. Compared to a normal nano-size phosphor with a shell that has a silicon oxide strength, it is about 1.5 times. Therefore, according to the nanosize phosphor of the present invention, the fluorescence lifetime is greatly improved.
  • silicon fine particles are obtained by controlling the temperature in the vacuum vessel to 500 ° C and pressure 26.644Pa (0.2Torr).
  • the average particle size of the silicon fine particles produced at this time is determined by observation with a transmission microscope (TEM) (manufactured by JEOL Ltd .: JEM4000SFX, measurement magnification: 1 million times).
  • the average particle size of the silicon fine particles obtained is in the range of 1 to: LOnm.
  • Silicon fine particles obtained in this way are introduced into an ICP device with a frequency of 13.56 MHz with a chamber volume of 40 L, a plasma output of 2 kW, a hydrogen gas introduction amount of 100 SCCM, and an internal pressure of 66.661 Pa (0.5 Torr).
  • silicon fine particles formed from silicon crystals having a (100) plane can be obtained.
  • the crystal plane formed at this time is confirmed by observing the fine particles with a transmission microscope (TEM).
  • TEM transmission microscope
  • the plasma-treated silicon fine particles were introduced together with O gas 200SCCM into a vacuum container with a chamber pressure of 66.661Pa (0.5Torr) and treated at a plasma output of 300W.
  • an oxide silicon layer serving as a shell portion is formed on the surface of the core portion.
  • the formation of silicon oxide in the shell portion is confirmed by observation with a transmission microscope (TEM).
  • the thickness of the shell portion can be confirmed to be in the range of 1 to 10 nm by TEM observation.
  • the intensity and fluorescence lifetime of the emission spectrum of the obtained nanosize phosphor can be measured as follows.
  • a nano-sized phosphor is packed in a 2 cm x 2 cm x 5 cm cell with almost no light absorption, and irradiated with black light (Black Light Illuminator BS3, Dentsu Sangyo Co., Ltd., wavelength: 365 nm).
  • the emission spectrum intensity is measured and monitored using a luminance meter (CS-200, manufactured by Koyu Minolta Sensing Co., Ltd.).
  • the intensity of the emission spectrum is generally compared with the intensity of the emission spectrum of a nano-sized phosphor having a silicon crystal obtained by a water vapor acid method as a core part and silicon oxide as a shell part.
  • the emission intensity of the nano-sized phosphor obtained in is about 15 times.
  • the emission intensity is about 10 times. Therefore, the nanosize phosphor obtained by the present invention is excellent in the emission intensity.
  • the half-life is about 1.5 times that of an ordinary nano-sized phosphor in which a silicon crystal is used as a core and a shell that also has an acid-silicon force is formed thereon.
  • the nano-sized phosphor obtained in the present invention has a long half-life, that is, an improved fluorescence lifetime.
  • the (100) crystallization of the entire silicon microparticles as the core does not impair the stability of the silicon crystal in the core even near the interface, and is also derived from the structure of the silicon crystal. Then, the estimated defects tend to be almost eliminated. It is estimated that this is the case, but the nano-sized phosphor of the present invention can fully exhibit the excellent light absorption and emission characteristics that silicon crystals should originally have, and the emission intensity and fluorescence lifetime can be fully exhibited. Is improved.
  • the ultrafine particles obtained at this time are collected and packed in a cell of 2 cm x 2 cm x 5 cm with little light absorption.
  • the ultrafine particles are irradiated with black light (Dentsu Sangyo Co., Ltd., Black Light Illuminator BS3, wavelength: 365 nm), and the resulting emission spectrum intensity is measured using a luminance meter (Co-Power Minota Sensing Co., Ltd., CS — Measure according to 200).
  • the intensity of the emission spectrum is generally about 10 times the intensity of the emission spectrum of a nano-sized phosphor with a silicon crystal obtained by the steam-oxygen method as the core and silicon oxide as the shell. Compared with the emission spectrum of the nano-sized phosphor obtained in Example 1 above, the emission intensity is about 2Z3.
  • the nano-sized phosphor light-emitting silicon obtained in Comparative Example 1 The outer layer of the fine particles is amorphous and does not have a (100) crystal plane. For this reason, it is presumed that there is a defect presumed to be derived from the structure of the silicon crystal in the vicinity of the interface, and it is considered that the emission intensity is inferior to that of the nanosize phosphor of Example 1.

Abstract

A method is provided for manufacturing a nano-sized phosphor having excellent emission characteristics, such as emission intensity, phosphor life and the like. A core section mainly composed of silicon crystal is formed, at least the entire surface of the core section is processed to be covered with silicon crystal having the (100) plane, and then, a shell section mainly composed of silicon oxide is formed.

Description

ナノサイズ蛍光体の製造方法  Method for producing nano-sized phosphor
技術分野  Technical field
[0001] 本発明はナノサイズ蛍光体を製造する方法に関し、より詳細には、主としてシリコン 結晶から形成されるコア部と、主として酸化シリコンから形成されるシェル部とを有す るナノサイズ蛍光体を製造する方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a method for producing a nano-size phosphor, and more specifically, a nano-size phosphor having a core portion formed mainly from silicon crystals and a shell portion formed mainly from silicon oxide. It relates to a method of manufacturing.
背景技術  Background art
[0002] 半導体、金属等の結晶から形成される、電子の波長 (約 lOnm)程度の粒径のいわ ゆるナノサイズの粒子は、電子の運動に対するサイズ有限性の影響が大きくなるため 、ノ レク体とは異なる特異な物性を示すことが知られている(例えば、非特許文献 1 参照。)。  A so-called nano-sized particle having a particle size of about the wavelength of an electron (about lOnm) formed from a crystal such as a semiconductor or a metal has a large influence on the size of the electron motion. It is known to exhibit unique physical properties different from those of the body (for example, see Non-Patent Document 1).
[0003] 例えば上記ナノサイズの粒子は、サイズ有限性の効果によりバンドギャップが広げ られるためと考えられるが、優れた光吸収特性、発光特性を示し、ナノサイズ蛍光体 としての展開が期待されている。  [0003] For example, the above-mentioned nano-sized particles are considered to have a wide band gap due to the effect of size finiteness. However, they exhibit excellent light absorption and emission characteristics, and are expected to be developed as nano-sized phosphors. Yes.
[0004] このようなナノサイズ蛍光体の製造方法としては、共沈を利用した液相反応による 製造方法 (例えば、特許文献 1。)、逆ミセル法に基づく製造方法 (例えば、特許文献 2)が知られている。また、シリコンを主体とするナノサイズ蛍光体としては、シリコン核 の表面に酸ィ匕シリコン主体の絶縁層を有するナノサイズ蛍光体が知られている(例え ば、特許文献 3。)。  [0004] As a method for producing such a nano-sized phosphor, a production method by a liquid phase reaction using coprecipitation (for example, Patent Document 1), a production method based on a reverse micelle method (for example, Patent Document 2). It has been known. As nano-sized phosphors mainly composed of silicon, nano-sized phosphors having an insulating layer mainly composed of silicon oxide on the surface of silicon nuclei are known (for example, Patent Document 3).
非特許文献 1 :日経先端技術, 2003. 1. 27号, p. 1—4  Non-Patent Document 1: Nikkei Advanced Technology, 27 January 2003, p. 1-4
特許文献 1:特開平 10— 310770号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-310770
特許文献 2 :特開 2002— 201471号公報  Patent Document 2: JP 2002-201471
特許文献 3:特開平 5 - 224261号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 5-224261
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力し特許文献 3に記載されるシリコン核を有するナノサイズ蛍光体は、シリコン単 結晶核の表面にポリシランのアモルファス層を有したままの状態のシリコン主体の微 粒子を原料とし、その表面を酸ィ匕処理することにより得られる粒子であり、その発光強 度、蛍光寿命にはいまだ改善の余地があった。 [0005] However, the nano-sized phosphor having a silicon nucleus described in Patent Document 3 is a silicon-based microscopic material having a polysilane amorphous layer on the surface of the silicon single crystal nucleus. The particles are obtained by using the particles as raw materials and treating the surface thereof with an acid, and there is still room for improvement in the emission intensity and fluorescence lifetime.
課題を解決するための手段  Means for solving the problem
[0006] 本発明者らは上記課題を検討し、主としてシリコン力もなるコア部を形成してから、 該コア部を特定条件で処理した後に、主として酸ィ匕シリコン力もなるシェル部を形成 したナノサイズ蛍光体を製造することにより、発光強度、蛍光寿命が改善することを見 出し本発明を完成させた。  [0006] The inventors have studied the above problems, and after forming a core part mainly having silicon force, after processing the core part under a specific condition, the nano part having a shell part mainly having acid-silicon force is formed. The inventors have found that the emission intensity and the fluorescence lifetime are improved by producing a size phosphor, and thus the present invention has been completed.
[0007] すなわち本発明のナノサイズ蛍光体の製造方法は、  That is, the method for producing the nano-sized phosphor of the present invention includes:
主としてシリコン結晶からなるコア部を形成し、該コア部の少なくとも表面全体が(100 )面を有するシリコン結晶で覆われるように処理した後に、主として酸ィ匕シリコン力もな るシェル部を形成することに特徴がある。  After forming a core portion mainly made of silicon crystal and processing so that at least the entire surface of the core portion is covered with a silicon crystal having a (100) plane, a shell portion mainly having an oxide silicon strength is formed. There is a feature.
発明の効果  The invention's effect
[0008] 本発明によれば、主としてシリコン結晶から形成されたコア部と、主として酸化シリコ ンカゝら形成されたシェル部とを有し、発光強度、蛍光寿命が改善されたナノサイズ蛍 光体が得られる。  [0008] According to the present invention, a nano-sized phosphor having a core portion mainly formed of silicon crystal and a shell portion mainly formed of silicon oxide, and having improved emission intensity and fluorescence lifetime. Is obtained.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
[0010] 〔コア部〕 [0010] [Core]
本発明のナノサイズ蛍光体のコア部は主としてシリコン結晶から形成された微粒子 である。シリコン微粒子の製造方法については、そのコア部の大部分、好ましくは 90 質量%以上がシリコン結晶となる限り特に制限はないが、例えば、気相法で製造する ことができる。  The core of the nano-sized phosphor of the present invention is fine particles mainly formed from silicon crystals. The method for producing silicon fine particles is not particularly limited as long as most of the core part, preferably 90% by mass or more, becomes silicon crystal, but it can be produced, for example, by a vapor phase method.
[0011] 上記気相法としては、 SiH、 SiF等を熱分解、ある 、はプラズマで分解して製造す  [0011] As the gas phase method, SiH, SiF, etc. are produced by thermal decomposition, or by decomposition with plasma.
4 4  4 4
る方法、 Siを蒸発、あるいはスパッタして製造する方法、シリコンターゲットにレーザー 光を照射し、アブレーシヨンによってナノシリコン粒子を生成させるレーザーアブレ一 シヨン法などが挙げられる。  And a method of manufacturing by evaporating or sputtering Si, a laser ablation method in which a silicon target is irradiated with laser light and nano silicon particles are generated by abrasion.
[0012] このような気相法で製造された上記シリコン微粒子は、通常、シリコン結晶から形成 された主要部分である内層と、シリコンィ匕合物からなるアモルファスである外層とを有 している。特に、 SiH等をプラズマ分解して製造、あるいは Siをスパッタして製造した [0012] The silicon fine particles produced by such a vapor phase method usually have an inner layer which is a main part formed of silicon crystals and an outer layer which is an amorphous layer made of silicon compound. is doing. In particular, manufactured by plasma decomposition of SiH etc., or manufactured by sputtering Si
4  Four
場合には、上記シリコン微粒子の外層は、通常、ポリシランのアモルファスで形成され ている。  In some cases, the outer layer of the silicon fine particles is usually formed of an amorphous polysilane.
[0013] 上記方法により製造されるシリコン微粒子の平均粒径は通常 1〜: LOOnmの範囲で あり、ナノサイズ蛍光体の発光特性を最大限に引き出す観点からは、好ましくは 1〜5 Onmの範囲であり、より好ましくは l〜10nmの範囲である。  [0013] The average particle size of the silicon fine particles produced by the above method is usually in the range of 1 to: LOOnm, and preferably in the range of 1 to 5 Onm from the viewpoint of maximizing the light emission characteristics of the nano-sized phosphor. More preferably, it is in the range of 1 to 10 nm.
[0014] このように製造されたシリコン微粒子の平均粒径は、透過型顕微鏡 (TEM)観察に より求められる。  [0014] The average particle size of the silicon fine particles produced in this way is determined by observation with a transmission microscope (TEM).
[0015] このような平均粒径 lOnm以下のシリコン微粒子を得るためには、例えば SiHを熱  [0015] In order to obtain such silicon fine particles having an average particle diameter of lOnm or less, for example, SiH is heated.
4 分解して製造する場合には、 133. 322 X 10_7Pa (l X 10—7Torr)まで減圧した真空 容器に、 SiHを流量 100SCCMで導入して、チャンバ一温度 500°C、圧力 26. 644 4 When decompose and production, the vacuum chamber pressure was reduced to 133. 322 X 10 _7 Pa (l X 10- 7 Torr), by introducing SiH at a flow rate 100 SCCM, the chamber first temperature 500 ° C, pressure 26 .644
4  Four
Pa (0. 2Torr)となる条件で反応することにより製造できる。  It can be produced by reacting under conditions of Pa (0.2 Torr).
[0016] 〔コア部の処理〕  [Processing of core part]
本発明では、上述のようにして得られたシリコン微粒子の少なくとも表面全体が(10 0)面を有するシリコン結晶で覆われるように処理をする。このような処理としては、具 体的には、水素ガスによるプラズマ処理、レーザーを用いた照射処理等が挙げられ るが、本発明で得られるナノサイズ蛍光体の光学特性がより優れ、しかも得られるシリ コン微粒子が(100)面を有する単結晶から形成される傾向となるという観点からは、 水素ガスによるプラズマ処理が好まし 、。  In the present invention, the treatment is performed so that at least the entire surface of the silicon fine particles obtained as described above is covered with a silicon crystal having a (100) plane. Specific examples of such treatment include plasma treatment with hydrogen gas and irradiation treatment using a laser, but the nano-sized phosphor obtained in the present invention has more excellent optical characteristics and can be obtained. From the viewpoint that the silicon fine particles to be formed tend to be formed from a single crystal having a (100) plane, plasma treatment with hydrogen gas is preferred.
[0017] このようなプラズマ処理により、上記シリコン微粒子の少なくとも表面全体の、最外 層部分が(100)面を有するシリコン結晶に変化をする。  [0017] By such a plasma treatment, the outermost layer part of at least the entire surface of the silicon fine particles is changed to a silicon crystal having a (100) plane.
[0018] このようなプラズマ処理を行う反応装置については特に制限はないが、例えば、真 空ポンプを備えた ICP (Inductive Coupled Plasma、高周波誘導プラズマ)装置 、平行平板型プラズマ装置等を使用できる。  [0018] There are no particular limitations on the reaction apparatus that performs such plasma treatment, and for example, an ICP (Inductive Coupled Plasma) apparatus, a parallel plate plasma apparatus, and the like equipped with a vacuum pump can be used.
[0019] 上述したように、気相法で製造された場合、上記シリコン微粒子は、通常、シリコン 結晶から形成された主要部分である内層と、シリコンィ匕合物力もなるアモルファスであ る外層とを有している。特に、 SiH等をプラズマ分解して製造、あるいは Siをスパッタ  [0019] As described above, when the silicon fine particles are produced by a vapor phase method, the silicon fine particles usually include an inner layer that is a main part formed of silicon crystals and an outer layer that is an amorphous layer that also has silicon compound strength. Have. In particular, SiH etc. is produced by plasma decomposition or Si is sputtered
4  Four
して製造した場合には、上記シリコン微粒子の外層は、通常、ポリシランのァモルファ スで形成されている。そして特許文献 3 (特開平 5— 224261)によれば、このようなポ リシランのアモルファス層を酸ィ匕処理することにより、シリコン単結晶核の表面に酸ィ匕 シリコン力もなる絶縁層が形成されたナノサイズ蛍光体が製造されている。しかし、こ のシリコン単結晶核の最外層は、その製造条件によっては、(100)面を有する結晶 構造とはならない場合がある。そのため、特許文献 3の方法によっては、シリコン単結 晶核と酸ィ匕シリコンとの間に発生する欠陥に由来すると推定されるが、シリコン結晶 が本来有するはずの優れた光吸収特性、発光特性を十分発揮できていなかった。 The outer layer of the silicon fine particles is usually a polysilane amorphous. It is formed with According to Patent Document 3 (Japanese Patent Laid-Open No. 5-224261), an amorphous layer of such a polysilane is subjected to an acid treatment, whereby an insulating layer having an acid silicon power is formed on the surface of the silicon single crystal nucleus. Nano-sized phosphors have been manufactured. However, the outermost layer of this silicon single crystal nucleus may not have a crystal structure having a (100) plane depending on the manufacturing conditions. Therefore, depending on the method of Patent Document 3, it is presumed to be caused by defects generated between the silicon single crystal nucleus and the silicon oxide silicon, but the excellent light absorption characteristics and light emission characteristics that silicon crystals should originally have. Could not be fully demonstrated.
[0020] しかし、一度生成したシリコン微粒子を水素ガスでプラズマ処理すると、シリコン微 粒子の表面である外層部分が(100)面を有するシリコン結晶に変化をする。そのた め、本発明で得られるナノサイズ蛍光体では、シリコン結晶と酸ィ匕シリコンとの界面と の間には、(100)面を有する酸化シリコン結晶が形成されることになる。したがって、 界面近傍においても、コア部のシリコン結晶の安定性が損なわれることはなぐまたシ リコン結晶の構造に由来すると推定される欠陥もほとんどなくなる傾向にある。 However, when the silicon fine particles once generated are subjected to plasma treatment with hydrogen gas, the outer layer portion, which is the surface of the silicon fine particles, changes to a silicon crystal having a (100) plane. Therefore, in the nanosize phosphor obtained in the present invention, a silicon oxide crystal having a (100) plane is formed between the silicon crystal and the silicon oxide interface. Therefore, even in the vicinity of the interface, the stability of the silicon crystal in the core portion is not impaired, and there is a tendency that defects estimated to be derived from the structure of the silicon crystal are almost eliminated.
[0021] そのためであると推定される力 本発明のナノサイズ蛍光体は、シリコン結晶が本来 有するはずの優れた光吸収特性、発光特性をより十分に発揮できるようになり、発光 強度、蛍光寿命が改善される。  [0021] Power presumed to be for this reason The nano-sized phosphor of the present invention can fully exhibit the excellent light absorption and emission characteristics that silicon crystals should originally have, and the emission intensity and fluorescence lifetime. Is improved.
[0022] 上記プラズマ処理において、印加するプラズマの出力条件は、通常 0. l〜5kWの 範囲、好ましくは 0. 5〜3kWの範囲である。  [0022] In the above plasma treatment, the output condition of the plasma to be applied is usually in the range of 0.1 to 5 kW, preferably in the range of 0.5 to 3 kW.
[0023] 上記プラズマ処理を、例えばチャンバ一体積が 40Lである ICP装置でプラズマ処 理する場合には、導入する水素ガス量は、通常 1〜1, OOOSCCMの範囲、好ましく は 20〜200SCCMの範囲であり、チャンバ一圧力は、通常 133. 322 X 10_3〜13 33. 22Pa (l X 10— 3〜: LOTorr)の範囲、好ましくは、 1. 33322〜133. 322Pa (0. 01〜: LTorr)の範囲である。 [0023] When the plasma treatment is performed, for example, with an ICP apparatus having a chamber volume of 40L, the amount of hydrogen gas to be introduced is usually in the range of 1-1, OOOSCCM, preferably in the range of 20-200 SCCM. , and the chamber first pressure is usually 133. 322 X 10 _3 ~13 33. 22Pa : range of (l X 10- 3 ~ LOTorr) , preferably, 1. 33322~133 322Pa (0. 01~: . LTorr ).
[0024] プラズマ処理の条件が上記範囲にある場合には、安定した Hのグロ  [0024] When the plasma treatment conditions are within the above range, stable H gloss
2 一放電環境を 作ることができる。  2 One discharge environment can be created.
[0025] これらプラズマ処理の条件の中でも、例えば周波数 13. 56MHzの ICP装置を用い る場合においては、プラズマ出力 2kW、水素ガス流量 100SCCM、チャンバ一圧力 66. 61Pa (0.5Torr)が好ましい。 [0026] 上記条件で処理することにより、シリコン微粒子全体が(100)面を有する単結晶か ら形成される傾向となり、より光学特性の優れたナノサイズ蛍光体を製造できるからで ある。 [0025] Among these plasma processing conditions, for example, when using an ICP apparatus with a frequency of 13.56 MHz, a plasma output of 2 kW, a hydrogen gas flow rate of 100 SCCM, and a chamber pressure of 66.61 Pa (0.5 Torr) are preferable. This is because, by treating under the above conditions, the entire silicon fine particles tend to be formed from a single crystal having a (100) plane, and a nano-sized phosphor having more excellent optical characteristics can be produced.
[0027] このようにして得られる、(100)面を有するシリコン結晶から形成されるコア部の最 外層の平均厚みは、例えば上記気相法で製造された場合には、シリコン微粒子を製 造した際に生成するシリコンィ匕合物力もなるアモルファスにより形成される最外層の 厚みにも依存しうるが、通常 1〜: LOOnmの範囲、好ましくは l〜50nmの範囲、より好 ましくは 1〜 1 Onmの範囲である。  [0027] The average thickness of the outermost layer of the core portion formed from the silicon crystal having the (100) plane obtained as described above is, for example, when silicon fine particles are manufactured when the core layer is manufactured by the above-described vapor phase method. Although it may depend on the thickness of the outermost layer formed by the amorphous material, which is also the silicon compound force generated at the time, it is usually 1 to: LOOnm, preferably 1 to 50 nm, more preferably 1 to The range is 1 Onm.
[0028] コア部の最外層が上記厚みの(100)面を有するシリコン結晶で覆われて 、るため、 シェル部となる酸ィ匕シリコンと接する界面においても、ナノサイズ蛍光体中に含まれる シリコン結晶の安定性に優れており、発光強度、蛍光寿命等の発光特性にも優れる  [0028] Since the outermost layer of the core portion is covered with the silicon crystal having the (100) plane having the above thickness, it is also included in the nano-sized phosphor even at the interface contacting the silicon oxide film serving as the shell portion. Excellent stability of silicon crystals, and excellent emission characteristics such as emission intensity and fluorescence lifetime
[0029] 上記プラズマ処理等により、コア部の、少なくとも表面全体、すなわち最外層が(10[0029] By the plasma treatment or the like, at least the entire surface of the core portion, that is, the outermost layer is (10
0)面を有するシリコン結晶から形成されて!ヽることは、透過型顕微鏡 (TEM)観察を して確認することができる。 It can be confirmed by observation with a transmission microscope (TEM) that the crystal is formed from a silicon crystal having a 0) plane.
[0030] またその最外層の厚みは、シェル部の平均粒子径を求めた場合と同様に、 TEM観 察により求めることができる。 [0030] The thickness of the outermost layer can be determined by TEM observation in the same manner as when the average particle diameter of the shell portion is determined.
[0031] 〔シェル部〕 [0031] [Shell]
本発明では、コア部の表面をプラズマ処理した後に、主として酸ィ匕シリコン力もなる シェル部をコア部の表面に形成する。  In the present invention, after the surface of the core part is subjected to plasma treatment, a shell part mainly having an acid-silicon force is formed on the surface of the core part.
[0032] シェル部を形成する方法については、そのシェル部の大部分好ましくは 90質量% 以上が酸ィ匕シリコンとなる限り特に制限はないが、例えば、気相法で製造することが できる。 [0032] The method of forming the shell part is not particularly limited as long as 90% by mass or more of the shell part is preferably oxidized silicon, but for example, it can be produced by a vapor phase method.
[0033] 上記気相法としては、 SiHおよび Oを熱分解ある 、はプラズマで反応させて製造  [0033] As the gas phase method, SiH and O are pyrolyzed, which is produced by reacting with plasma.
4 2  4 2
する方法、あるいは、 SiHおよび NOをプラズマで分解、反応させて製造する方法な  Or a method of decomposing and reacting SiH and NO with plasma.
4 2  4 2
どが挙げられる。例えば、 SiHおよび Oをプラズマで反応させて酸ィ匕シリコン力もな  And so on. For example, SiH and O can be reacted with plasma to reduce oxygen
4 2  4 2
るシェル部を形成させる場合には、真空容器に、 SiH流量 100SCCM 50S  In order to form a shell part, SiH flow rate 100SCCM 50S
4 、 O流量  4, O flow rate
2 2
CCMをシリコン微粒子とともに導入して、プラズマ出力 300W、チャンバ一圧力 66. 61Pa (0. 5Torr)で処理することで、安定したシェル部を得ることができる。コア部と なるシリコン微粒子を上記気相法で製造した場合には、前記コア部を気相法で製造 した後、前述のコア部の処理を行い、連続して、シェル部の形成ができる。 CCM introduced with silicon fine particles, plasma output 300W, chamber pressure 66. A stable shell can be obtained by processing at 61 Pa (0.5 Torr). In the case where the silicon fine particles to be the core part are manufactured by the gas phase method, after the core part is manufactured by the gas phase method, the above-mentioned core part is processed to continuously form the shell part.
[0034] 上記方法により製造される主として酸化シリコンから形成されるシェル部の平均厚 みは、通常、 l〜100nmの範囲であり、好ましくは、 l〜50nmの範囲であり、より好ま しくは、 1〜: LOnmの範囲である。  [0034] The average thickness of the shell portion mainly formed from silicon oxide produced by the above method is usually in the range of 1 to 100 nm, preferably in the range of 1 to 50 nm, and more preferably 1 to: in the range of LOnm.
[0035] このように製造されたシェル部の厚みは、シェル部の平均粒子径の場合と同様に、 TEM観察により求めることができる。  [0035] The thickness of the shell part thus produced can be determined by TEM observation, as in the case of the average particle diameter of the shell part.
[0036] 〔ナノサイズ蛍光体の物性〕  [Physical properties of nano-sized phosphor]
このようにして得られる本発明のナノサイズ蛍光体は、主としてシリコン結晶から形 成されるコア部と主として酸ィ匕シリコンカゝら形成されるシェル部とから構成されており、 シェル部の酸ィ匕シリコンと接する界面近傍のシリコン結晶は、(100)面を有するシリコ ン結晶で覆われている。そのため、本発明のナノサイズ蛍光体は、優れた光吸収特 性、発光特性を示す。  The nano-sized phosphor of the present invention thus obtained is composed of a core portion mainly formed from a silicon crystal and a shell portion mainly formed from an acid silicon shell. The silicon crystal near the interface in contact with silicon is covered with a silicon crystal having a (100) plane. Therefore, the nanosize phosphor of the present invention exhibits excellent light absorption characteristics and light emission characteristics.
[0037] 例えば、一般に水蒸気酸化法により得られる、シリコン結晶をコア部とし、酸ィ匕シリコ ンをシェル部とするナノサイズ蛍光体の発光強度と比較して、本発明で得られるナノ サイズ蛍光体の発光強度は、 365nmの波長の光で励起して発光をさせた場合、約 1 5倍となる。  [0037] For example, the nano-sized fluorescent light obtained by the present invention is generally compared with the emission intensity of a nano-sized fluorescent material obtained by a steam oxidation method and having a silicon crystal as a core part and an acid silicon shell as a shell part. The light intensity of the body is about 15 times higher when excited by light with a wavelength of 365 nm.
[0038] また、シリコン結晶をコア部とし、本発明のような水素ガスによるプラズマ処理をする ことなく単にその上に酸ィ匕シリコン力 なるシェル部を形成した通常のナノサイズ蛍光 体の場合には、その発光強度が約 10倍である。  [0038] In addition, in the case of a normal nano-sized phosphor in which a silicon crystal is used as a core portion and a shell portion having an oxide silicon power is simply formed on the core portion without plasma treatment with hydrogen gas as in the present invention. The emission intensity is about 10 times.
[0039] したがって、本発明で得られるナノサイズ蛍光体は、その発光強度に優れる。 Therefore, the nano-sized phosphor obtained by the present invention is excellent in the emission intensity.
[0040] さらに本発明で得られるナノサイズ蛍光体は、 365nmの波長の光で励起して得ら れる発光スペクトルの強度の半減期を測定すると、シリコン結晶をコア部とし、単にそ の上に酸ィ匕シリコン力 なるシェル部を形成した通常のナノサイズ蛍光体と比較して 、 1. 5倍程度となっている。したがって、本発明のナノサイズ蛍光体によれば、蛍光 寿命が大きく改善される。 [0040] Furthermore, the nano-sized phosphor obtained by the present invention has a silicon crystal as a core part when the half-life of the intensity of an emission spectrum obtained by excitation with light having a wavelength of 365 nm is measured. Compared to a normal nano-size phosphor with a shell that has a silicon oxide strength, it is about 1.5 times. Therefore, according to the nanosize phosphor of the present invention, the fluorescence lifetime is greatly improved.
実施例 [0041] 以下、本発明の好適な態様を実施例により具体的に説明するが、本発明は、これら 実施例により何ら限定されるものではない。 Example [0041] Preferred embodiments of the present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
〔実施例 1〕  Example 1
133. 322 X 10"7Pa (l X 10— 7Torr)まで減圧した真空容器に、 SiHを流量 100S 133. SiH was flowed to 100S in a vacuum vessel depressurized to 322 X 10 " 7 Pa (l X 10— 7 Torr)
4  Four
CCMで導入して、真空容器内の温度 500°C、圧力 26. 644Pa (0. 2Torr)となるよ うに制御してシリコン微粒子を得る。この時製造するシリコン微粒子の平均粒径は、 透過型顕微鏡 (TEM)観察(日本電子 (株)製: JEM4000SFX、測定倍率: 100万 倍)により求める。得られるシリコン微粒子の平均粒径は 1〜: LOnmの範囲にある。こ のようにして得るシリコン微粒子を、チャンバ一体積が 40Lである周波数 13. 56MH zの ICP装置へ導入し、プラズマ出力 2kW、水素ガス導入量 100SCCM、装置内圧 力 66. 661Pa (0. 5Torr)の条件でプラズマ処理を行うと、(100)面を有するシリコン 結晶から形成されているシリコン微粒子が得られる。この時形成された結晶面は、透 過型顕微鏡 (TEM)で微粒子を観察することにより確認する。  Introduced by CCM, silicon fine particles are obtained by controlling the temperature in the vacuum vessel to 500 ° C and pressure 26.644Pa (0.2Torr). The average particle size of the silicon fine particles produced at this time is determined by observation with a transmission microscope (TEM) (manufactured by JEOL Ltd .: JEM4000SFX, measurement magnification: 1 million times). The average particle size of the silicon fine particles obtained is in the range of 1 to: LOnm. Silicon fine particles obtained in this way are introduced into an ICP device with a frequency of 13.56 MHz with a chamber volume of 40 L, a plasma output of 2 kW, a hydrogen gas introduction amount of 100 SCCM, and an internal pressure of 66.661 Pa (0.5 Torr). When the plasma treatment is performed under these conditions, silicon fine particles formed from silicon crystals having a (100) plane can be obtained. The crystal plane formed at this time is confirmed by observing the fine particles with a transmission microscope (TEM).
[0042] プラズマ処理されたシリコン微粒子をチャンバ一圧力 66. 661Pa (0. 5Torr)の真 空容器に Oガス 200SCCMととも〖こ導入し、プラズマ出力 300Wで処理することによ [0042] The plasma-treated silicon fine particles were introduced together with O gas 200SCCM into a vacuum container with a chamber pressure of 66.661Pa (0.5Torr) and treated at a plasma output of 300W.
2  2
つて、コア部表面にシェル部となる酸ィ匕シリコン層を形成する。この時シェル部の酸ィ匕 シリコンの生成は、透過型顕微鏡 (TEM)観察により確認する。また、 TEM観察によ りシェル部の厚みは l〜10nmの範囲であることが確認できる。  Then, an oxide silicon layer serving as a shell portion is formed on the surface of the core portion. At this time, the formation of silicon oxide in the shell portion is confirmed by observation with a transmission microscope (TEM). In addition, the thickness of the shell portion can be confirmed to be in the range of 1 to 10 nm by TEM observation.
[0043] 得られるナノサイズ蛍光体の発光スペクトルの強度および蛍光寿命は、次のよう〖こ 測定することができる。ナノサイズ蛍光体を光吸収のほとんどない 2cm X 2cm X 5cm のセルに詰め、ブラックライト (電通産業 (株)製ブラックライト照明装置 BS3、波長:3 65nm)を照射する。発光スペクトル強度の測定およびそのモニタリングは輝度計 (コ ユカミノルタセンシング (株)製、 CS— 200)を用いて行う。  [0043] The intensity and fluorescence lifetime of the emission spectrum of the obtained nanosize phosphor can be measured as follows. A nano-sized phosphor is packed in a 2 cm x 2 cm x 5 cm cell with almost no light absorption, and irradiated with black light (Black Light Illuminator BS3, Dentsu Sangyo Co., Ltd., wavelength: 365 nm). The emission spectrum intensity is measured and monitored using a luminance meter (CS-200, manufactured by Koyu Minolta Sensing Co., Ltd.).
[0044] 発光スペクトルの強度は、一般に水蒸気酸ィ匕法により得られるシリコン結晶をコア部 とし、酸ィ匕シリコンをシェル部とするナノサイズ蛍光体の発光スペクトルの強度と比較 して、本発明で得られるナノサイズ蛍光体の発光強度は約 15倍である。  [0044] The intensity of the emission spectrum is generally compared with the intensity of the emission spectrum of a nano-sized phosphor having a silicon crystal obtained by a water vapor acid method as a core part and silicon oxide as a shell part. The emission intensity of the nano-sized phosphor obtained in is about 15 times.
[0045] また、シリコン結晶をコア部とし、本発明のような水素ガスによるプラズマ処理をする ことなく単にその上に酸ィ匕シリコン力 なるシェル部を形成した通常のナノサイズ蛍光 体の場合と比較すると、その発光強度は約 10倍である。したがって、本発明で得られ るナノサイズ蛍光体は、その発光強度に優れる。 [0045] In addition, a normal nano-size fluorescence in which a silicon crystal is used as a core portion, and a shell portion having an oxygen-silicon force is simply formed on the core portion without plasma treatment with hydrogen gas as in the present invention. Compared to the case of the body, the emission intensity is about 10 times. Therefore, the nanosize phosphor obtained by the present invention is excellent in the emission intensity.
[0046] ここで得られる発光スペクトルの強度が測定開始時の半分となるまでの時間、すな わち半減期を測定する。シリコン結晶をコア部とし、単にその上に酸ィ匕シリコン力もな るシェル部を形成した通常のナノサイズ蛍光体と比較して半減期は 1. 5倍程度であ る。  [0046] The time until the intensity of the emission spectrum obtained here becomes half that at the start of measurement, that is, the half-life is measured. The half-life is about 1.5 times that of an ordinary nano-sized phosphor in which a silicon crystal is used as a core and a shell that also has an acid-silicon force is formed thereon.
[0047] したがって、本発明で得られるナノサイズ蛍光体は、半減期が長いこと、すなわち、 蛍光寿命が改善されて ヽることがわかる。  [0047] Therefore, it can be seen that the nano-sized phosphor obtained in the present invention has a long half-life, that is, an improved fluorescence lifetime.
[0048] このように、コアとなるシリコン微粒子全体を(100)結晶化することによって、界面近 傍においてもコア部のシリコン結晶の安定性が損なわれることはなぐまたシリコン結 晶の構造に由来すると推定される欠陥もほとんどなくなる傾向にある。そのためであ ると推定されるが、本発明のナノサイズ蛍光体は、シリコン結晶が本来有するはずの 優れた光吸収特性、発光特性をより十分に発揮できるようになり、発光強度、蛍光寿 命が改善される。  [0048] As described above, the (100) crystallization of the entire silicon microparticles as the core does not impair the stability of the silicon crystal in the core even near the interface, and is also derived from the structure of the silicon crystal. Then, the estimated defects tend to be almost eliminated. It is estimated that this is the case, but the nano-sized phosphor of the present invention can fully exhibit the excellent light absorption and emission characteristics that silicon crystals should originally have, and the emission intensity and fluorescence lifetime can be fully exhibited. Is improved.
〔比較例 1〕  (Comparative Example 1)
Hガスで 3%希釈した SiH混合ガス 100SCCMを 266. 644 X 10— 7Pa (2 X 10— 7 SiSC mixed gas 100SCCM diluted 3% with H gas 266. 644 X 10— 7 Pa (2 X 10— 7
2 4 twenty four
Torr)まで減圧した真空容器に導入し、 2. 45GHzのマイクロ波を印加してシリコン 微粒子を作製する。この微粒子を、 5%希釈のアンモニア水溶液で酸ィ匕すると、平均 シリコン結晶径 2nm、アモルファス層が 1. 5nmの超微粒子が得られる。  Introduce into a vacuum vessel depressurized to Torr), and 2. Apply 45 GHz microwave to produce silicon particles. When these fine particles are oxidized with a 5% diluted aqueous ammonia solution, ultrafine particles having an average silicon crystal diameter of 2 nm and an amorphous layer of 1.5 nm are obtained.
[0049] この時得られる超微粒子を回収し、光吸収のほとんどない 2cm X 2cm X 5cmのセ ルに詰める。この超微粒子に、ブラックライト (電通産業 (株)製ブラックライト照明装置 BS3、波長: 365nm)を照射して、得られる発光スペクトル強度を輝度計 (コ-力ミノ ルタセンシング (株)製、 CS— 200)により測定する。その発光スペクトルの強度は、 一般に水蒸気酸ィ匕法により得られるシリコン結晶をコア部とし、酸ィ匕シリコンをシェル 部とするナノサイズ蛍光体の発光スペクトルの強度と比較して約 10倍である力 上記 実施例 1で得られるナノサイズ蛍光体の発光スペクトルと比較するとその発光強度は 約 2Z3である。 [0049] The ultrafine particles obtained at this time are collected and packed in a cell of 2 cm x 2 cm x 5 cm with little light absorption. The ultrafine particles are irradiated with black light (Dentsu Sangyo Co., Ltd., Black Light Illuminator BS3, wavelength: 365 nm), and the resulting emission spectrum intensity is measured using a luminance meter (Co-Power Minota Sensing Co., Ltd., CS — Measure according to 200). The intensity of the emission spectrum is generally about 10 times the intensity of the emission spectrum of a nano-sized phosphor with a silicon crystal obtained by the steam-oxygen method as the core and silicon oxide as the shell. Compared with the emission spectrum of the nano-sized phosphor obtained in Example 1 above, the emission intensity is about 2Z3.
[0050] TEMで観察して確認すると、比較例 1で得られたナノサイズ蛍光体の発光シリコン 微粒子の外層はアモルファスであり、(100)の結晶面を有していない。そのため、界 面近傍においてシリコン結晶の構造に由来すると推定される欠陥が存在すると推定 され、実施例 1のナノサイズ蛍光体と比較して発光強度が劣ると考えられる。 [0050] When confirmed by TEM observation, the nano-sized phosphor light-emitting silicon obtained in Comparative Example 1 The outer layer of the fine particles is amorphous and does not have a (100) crystal plane. For this reason, it is presumed that there is a defect presumed to be derived from the structure of the silicon crystal in the vicinity of the interface, and it is considered that the emission intensity is inferior to that of the nanosize phosphor of Example 1.

Claims

請求の範囲 The scope of the claims
主としてシリコン結晶からコア部を形成し、該コア部の少なくとも表面全体が(100) 面を有するシリコン結晶で覆われるように処理した後に、主として酸ィ匕シリコンカもシ エル部を形成することを特徴とするナノサイズ蛍光体の製造方法。  A core portion is mainly formed from a silicon crystal, and after processing so that at least the entire surface of the core portion is covered with a silicon crystal having a (100) plane, a silicon portion is also formed mainly by an oxide silicon shell. A method for producing a nano-sized phosphor.
PCT/JP2006/326196 2006-01-27 2006-12-28 Method for manufacturing nano-sized phosphor WO2007086232A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007555875A JPWO2007086232A1 (en) 2006-01-27 2006-12-28 Method for producing nano-sized phosphor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006019457 2006-01-27
JP2006-019457 2006-07-24

Publications (1)

Publication Number Publication Date
WO2007086232A1 true WO2007086232A1 (en) 2007-08-02

Family

ID=38309033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/326196 WO2007086232A1 (en) 2006-01-27 2006-12-28 Method for manufacturing nano-sized phosphor

Country Status (2)

Country Link
JP (1) JPWO2007086232A1 (en)
WO (1) WO2007086232A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139810A1 (en) * 2007-04-26 2008-11-20 Konica Minolta Medical & Graphic, Inc. Method for production of core/shell-type inorganic fluorescent substance particle, and compound labeled with fluorescent substance
WO2009050639A1 (en) * 2007-10-16 2009-04-23 Nxp B.V. Particle comprising core and shell and applications thereof
JP2009221288A (en) * 2008-03-14 2009-10-01 Konica Minolta Medical & Graphic Inc Method for producing core/shell type phosphor fine particle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03164448A (en) * 1989-08-03 1991-07-16 Canon Inc Optical material and production thereof
JPH05224261A (en) * 1992-02-10 1993-09-03 Canon Inc Nonlinear optical material and production thereof
JP2002294451A (en) * 2001-03-30 2002-10-09 Sony Corp Method for forming polycrystalline semiconductor thin- film, method for manufacturing semiconductor device, and apparatus for carrying out these methods
JP2004083740A (en) * 2002-08-27 2004-03-18 Japan Science & Technology Corp BLUE LIGHT-EMITTING Si:SiO2 FILM, BLUE LIGHT-EMITTING ELEMENT HAVING THE SAME AND METHOD FOR PRODUCING BLUE LIGHT-EMITTING Si:SiO2 FILM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03164448A (en) * 1989-08-03 1991-07-16 Canon Inc Optical material and production thereof
JPH05224261A (en) * 1992-02-10 1993-09-03 Canon Inc Nonlinear optical material and production thereof
JP2002294451A (en) * 2001-03-30 2002-10-09 Sony Corp Method for forming polycrystalline semiconductor thin- film, method for manufacturing semiconductor device, and apparatus for carrying out these methods
JP2004083740A (en) * 2002-08-27 2004-03-18 Japan Science & Technology Corp BLUE LIGHT-EMITTING Si:SiO2 FILM, BLUE LIGHT-EMITTING ELEMENT HAVING THE SAME AND METHOD FOR PRODUCING BLUE LIGHT-EMITTING Si:SiO2 FILM

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DITTRICH T. ET AL.: "Defect transformation under growth of submonolayer oxides on silicon surfaces at low temperatures", MICROELECTRONIC ENGINEERING, vol. 59, no. 1-4, 2001, pages 399 - 404, XP004310669 *
ISHIKAWA Y. ET AL.: "Fabrication of highly oriented Si:SiO2 nanoparticles using low oxygen ion implantation during Si molecular beam epitaxy", JFCC REVIEW, no. 8, 1996, pages 42 - 45, XP008083430 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139810A1 (en) * 2007-04-26 2008-11-20 Konica Minolta Medical & Graphic, Inc. Method for production of core/shell-type inorganic fluorescent substance particle, and compound labeled with fluorescent substance
WO2009050639A1 (en) * 2007-10-16 2009-04-23 Nxp B.V. Particle comprising core and shell and applications thereof
JP2009221288A (en) * 2008-03-14 2009-10-01 Konica Minolta Medical & Graphic Inc Method for producing core/shell type phosphor fine particle

Also Published As

Publication number Publication date
JPWO2007086232A1 (en) 2009-06-18

Similar Documents

Publication Publication Date Title
Ma et al. Synthesis of luminescent carbon quantum dots by microplasma process
Gu et al. Synthesis and defect engineering of molybdenum oxides and their SERS applications
Wang et al. Effects of elemental doping on the photoluminescence properties of graphene quantum dots
Nah et al. Nitrogen doping of nanoporous WO3 layers by NH3 treatment for increased visible light photoresponse
JP4151884B2 (en) Method for producing a material in which a composite metal oxide nanomaterial is formed on a solid surface
KR100917697B1 (en) Transition metal-carbon nitride nanotube hybrids catalyst, fabrication method thereof and method for producing hydrogen using the same
Lee et al. Hydrothermal synthesis and photocatalytic characterizations of transition metals doped nano TiO2 sols
Zheng et al. TiO2 films prepared by DC reactive magnetron sputtering at room temperature: Phase control and photocatalytic properties
Guerra-Nuñez et al. Morphology and crystallinity control of ultrathin TiO 2 layers deposited on carbon nanotubes by temperature-step atomic layer deposition
JP2007182370A (en) Method for manufacturing zinc oxide nanowire and zinc oxide nanowire manufactured thereby
Wang et al. Low temperature growth of vanadium pentoxide nanomaterials by chemical vapour deposition using VO (acac) 2 as precursor
Fedorenko et al. Synthesis and photoluminescence properties of hybrid 1D core–shell structured nanocomposites based on ZnO/polydopamine
Pei et al. Large-scale synthesis and the roles of growth conditions on the formation of Zn2GeO4 nanorods
Mukhopadhyay et al. Silicon rich silicon oxide films deposited by radio frequency plasma enhanced chemical vapor deposition method: optical and structural properties
Lin et al. Plasma-electrochemical synthesis of europium doped cerium oxide nanoparticles
JP5212353B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
CN115397554A (en) ZnS-based photocatalytic active particle material, preparation method and application thereof
WO2007086232A1 (en) Method for manufacturing nano-sized phosphor
Shen et al. Towards atomic level vanadium doping of TiO2 via liquid-phase atomic layer deposition
WO2007086225A1 (en) Process for producing nanoparticle
KR102268849B1 (en) Improved Method for Synthesis of Graphene Oxide
JP5282735B2 (en) Visible light responsive titanium oxide fine particle dispersion and method for producing the same
TW200304900A (en) Titanium oxide precursor and production method thereof, and production method of titanium oxide using the precursor
Liu et al. Enhanced photocatalytic activity of Mo–{001} TiO 2 core–shell nanoparticles under visible light
Lin et al. Growth of SiO2 nanowires without a catalyst via carbothermal reduction of CuO powders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007555875

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06843574

Country of ref document: EP

Kind code of ref document: A1