JP3344508B2 - Method for producing Ag-Pd powder - Google Patents

Method for producing Ag-Pd powder

Info

Publication number
JP3344508B2
JP3344508B2 JP30164793A JP30164793A JP3344508B2 JP 3344508 B2 JP3344508 B2 JP 3344508B2 JP 30164793 A JP30164793 A JP 30164793A JP 30164793 A JP30164793 A JP 30164793A JP 3344508 B2 JP3344508 B2 JP 3344508B2
Authority
JP
Japan
Prior art keywords
powder
producing
reducing agent
added
hydrazine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30164793A
Other languages
Japanese (ja)
Other versions
JPH07150206A (en
Inventor
理 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP30164793A priority Critical patent/JP3344508B2/en
Publication of JPH07150206A publication Critical patent/JPH07150206A/en
Application granted granted Critical
Publication of JP3344508B2 publication Critical patent/JP3344508B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ハイブリッドIC、積
層セラミックスコンデンサー、チップ抵抗器の電極等に
用いる導電性ペースト用粉末の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a conductive paste powder used for electrodes of hybrid ICs, multilayer ceramic capacitors, chip resistors and the like.

【0002】[0002]

【従来の技術】電子部品の微細化、高密度実装のため
に、導電性ペーストが使用されている。導電性ペースト
は、導電性粉末、有機バインダー、ガラス等を混合した
組成物をペースト状としたものである。これに用いられ
る導電性粉末としては導電性がよく、耐マイグレーショ
ン性に優れたAg−Pd粉末が用いられている。ここに
マイグレーションとは、Agがイオン化して移動し、移
動先において電荷を失ってそこで析出する現象であっ
て、マイグレーションを生じると、やがて回路が短絡
し、部品の寿命が尽きるので回避すべき現象である。
2. Description of the Related Art A conductive paste is used for miniaturization and high-density mounting of electronic components. The conductive paste is a paste obtained by mixing a composition obtained by mixing a conductive powder, an organic binder, glass, and the like. Ag-Pd powder having good conductivity and excellent migration resistance is used as the conductive powder used for this purpose. Here, migration is a phenomenon in which Ag ionizes and moves, loses electric charge at the movement destination, and precipitates there. When migration occurs, a circuit is short-circuited and the life of the component is exhausted, so a phenomenon that should be avoided. It is.

【0003】また、Ag−Pd粉末の製造方法として
は、経済的に微細粉末を得やすい共沈法がよく用いられ
る。従来、Ag−Pd共沈粉末は、Ag−Pdの硝酸溶
液をヒドラジンで還元しAg−Pd粉末を析出させると
いう方法で製造されている。Ag−Pd共沈粉末は、微
細粉末を得やすく、また250℃〜260℃という低温
で合金化可能であるという利点がある。
[0003] As a method for producing Ag-Pd powder, a coprecipitation method is often used, which makes it easy to obtain a fine powder economically. Conventionally, Ag-Pd coprecipitated powder has been produced by a method in which a nitric acid solution of Ag-Pd is reduced with hydrazine to precipitate Ag-Pd powder. Ag-Pd coprecipitated powder has the advantage that a fine powder can be easily obtained and alloying can be performed at a low temperature of 250 to 260 ° C.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
共沈法では析出したAg−Pd粉末は1〜2μmの粒径
を持つが、凝集して見掛け上直径10〜40μmの塊状
となりやすい。配線間隔に比べて凝集した粉末の粒子径
が大きくなれば微細回路の配線材料としては不都合であ
る。また、導電性ペーストを作製する際、凝集塊を含む
ものは有機バインダー量を多く混合することが必要とな
るので緻密な導電体を得るのが難しい。さらにスクリー
ン印刷においては、目づまりしやすいという欠点を持
つ。
However, in the conventional coprecipitation method, the precipitated Ag-Pd powder has a particle size of 1 to 2 μm, but tends to aggregate to form a block having an apparent diameter of 10 to 40 μm. If the particle diameter of the agglomerated powder is larger than the wiring interval, it is inconvenient as a wiring material for a fine circuit. In addition, when preparing a conductive paste, it is necessary to mix a large amount of an organic binder for a material containing an aggregate, so that it is difficult to obtain a dense conductor. Further, screen printing has a drawback of being easily clogged.

【0005】本発明は、上記問題を解決するためになさ
れたもので、その目的とするところは、凝集した塊をつ
くることがなく、分散したAg−Pd粉末の製造方法を
提供することにある。
[0005] The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for producing a dispersed Ag-Pd powder without forming an aggregate. .

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
の本発明によるAg−Pd粉末の製造方法は、Ag−P
d粉末を共沈させる方法であって、Ag−Pdの硝酸溶
液に塩基を添加してpH8以上に調整する工程と、芳香
族系還元剤を添加する第一の還元工程と、非芳香族系還
元剤を添加する第二の還元工程を含むことを特徴とす
る。
To solve the above-mentioned problems, a method for producing an Ag-Pd powder according to the present invention comprises the steps of:
d, a method of coprecipitating the powder, a step of adding a base to a nitric acid solution of Ag-Pd to adjust the pH to 8 or more, a first reducing step of adding an aromatic reducing agent, It is characterized by including a second reduction step of adding a reducing agent.

【0007】本発明のAg−Pd粉末の製造方法では、
Ag−Pdを溶解する硝酸溶液の溶媒としては水のほか
アルコール等の有機溶媒を用いることができる。濃度は
溶液1l中の金属分は0.1g〜500gが好ましい。
この溶液に、還元剤を添加して金属を析出させるため
に、塩基、例えばアンモニアを添加してpH8以上のア
ルカリ性溶液とする。
In the method for producing Ag-Pd powder of the present invention,
As a solvent of the nitric acid solution for dissolving Ag-Pd, an organic solvent such as alcohol in addition to water can be used. The concentration is preferably such that the metal content in 1 liter of the solution is 0.1 g to 500 g.
In order to add a reducing agent to the solution to precipitate a metal, a base, for example, ammonia is added to obtain an alkaline solution having a pH of 8 or more.

【0008】第一の還元工程として芳香族系還元剤を添
加する。この工程は本発明における最重要工程であっ
て、この工程により少量のAgを分散状態で核として析
出させることによって、第二の還元工程においてAg−
Pd粉末を共沈させたときにAg−Pd粉末が凝集する
ことを防ぐことができる。芳香族系還元剤の添加量は金
属分1gあたり1×10-3g〜2×10-1gとするのが
好ましい。芳香族系還元剤は粉末状の固体で添加しても
よいが、溶媒にとかして溶液とすれば拡散して均一化し
やすい。好ましい芳香族系還元剤と溶媒の組み合わせと
しては、例えばハイドロキノン水溶液、ヒドロキノン=
ジエチルエーテル、ヒドロキノン=ジメチルエーテル、
サリチル酸、m−ヒドロキシ安息香酸、p−ヒドロキシ
安息香酸があげられ、好ましくは溶媒1lあたり還元剤
0.1〜100gの濃度とする。
As a first reduction step, an aromatic reducing agent is added. This step is the most important step in the present invention. In this step, a small amount of Ag is precipitated as nuclei in a dispersed state, so that Ag-
Ag-Pd powder can be prevented from coagulating when co-precipitating Pd powder. The amount of the aromatic reducing agent to be added is preferably 1 × 10 −3 g to 2 × 10 −1 g per 1 g of the metal component. The aromatic reducing agent may be added as a powdery solid, but if it is dissolved in a solvent to form a solution, it is easily diffused and uniform. Preferred combinations of the aromatic reducing agent and the solvent include, for example, a hydroquinone aqueous solution, hydroquinone =
Diethyl ether, hydroquinone = dimethyl ether,
Salicylic acid, m-hydroxybenzoic acid and p-hydroxybenzoic acid can be mentioned, and the concentration of the reducing agent is preferably 0.1 to 100 g per liter of the solvent.

【0009】次に、Ag−Pd粉末を共沈させるために
第二還元工程として非芳香族系還元剤、例えばヒドラジ
ン、塩酸ヒドラジン、硫酸ヒドラジン、硝酸ヒドラジン
を添加する。添加量としては金属分1g当たり0.35
ml以上とするのが好ましい。第一還元工程および第二
還元工程における溶液温度は0〜90℃の範囲とするの
が好ましい。
Next, a non-aromatic reducing agent such as hydrazine, hydrazine hydrochloride, hydrazine sulfate or hydrazine nitrate is added as a second reduction step in order to co-precipitate the Ag-Pd powder. The added amount is 0.35 per gram of metal.
It is preferably at least ml. The solution temperature in the first reduction step and the second reduction step is preferably in the range of 0 to 90 ° C.

【0010】[0010]

【実施例】以下に本発明の実施例について説明する。実施例1 硝酸水溶液中にAg35g,Pd15gを含むAg−P
d硝酸水溶液を水で希釈して容積1lとする。これにア
ンモニアを加えpH=11とした後、水100mlに溶
かしたハイドロキノン1gをハイドロキノン分として
0.01g/分の速さで添加した。次いで、ヒドラジン
21mlを1ml/分の速さで添加して、20℃で2日
間保持した。実施例2 ヒドラジン添加後の保持を温度60℃、2時間とするこ
と以外は実施例1と同様の処理を実施した。比較例1 ハイドロキノンの添加を行なわないこと以外は実施例1
と同様の処理を実施した。
Embodiments of the present invention will be described below. Example 1 Ag-P containing 35 g of Ag and 15 g of Pd in an aqueous nitric acid solution
d Dilute the aqueous nitric acid solution with water to make the volume 1 liter. Ammonia was added thereto to adjust the pH to 11, and 1 g of hydroquinone dissolved in 100 ml of water was added at a rate of 0.01 g / min as a hydroquinone component. Then, 21 ml of hydrazine was added at a rate of 1 ml / min and kept at 20 ° C. for 2 days. Example 2 The same treatment as in Example 1 was performed except that the temperature after the addition of hydrazine was kept at 60 ° C. for 2 hours. Comparative Example 1 Example 1 except that no hydroquinone was added.
The same processing as described above was performed.

【0011】以上の各試料についてレーザー回析式粒度
分布測定装置を用いて各粉末試料の粒度分布を測定し
た。結果を表1に示す。
The particle size distribution of each powder sample was measured for each of the above samples using a laser diffraction type particle size distribution analyzer. Table 1 shows the results.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】以上説明したように本発明の製造方法に
よれば、Ag−Pd粉末製造工程において析出した粉末
が凝集することなく均一微細なAg−Pd共沈粉末の製
造方法を提供することができるという効果がある。
As described above, according to the production method of the present invention, it is possible to provide a method for producing an Ag-Pd coprecipitated powder which is uniform and fine without agglomeration of the powder precipitated in the Ag-Pd powder production step. There is an effect that can be.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Ag−Pd粉末を共沈させる方法であっ
て、Ag−Pdの硝酸溶液に塩基を添加してpH8以上
に調整する工程と、芳香族系還元剤を添加する第一の還
元工程と、非芳香族系還元剤を添加する第二の還元工程
を含むことを特徴とするAg−Pd粉末の製造方法。
1. A method for co-precipitating Ag-Pd powder, comprising: adding a base to a nitric acid solution of Ag-Pd to adjust the pH to 8 or more; and performing a first reduction by adding an aromatic reducing agent. A method for producing an Ag-Pd powder, comprising a step and a second reduction step of adding a non-aromatic reducing agent.
JP30164793A 1993-12-01 1993-12-01 Method for producing Ag-Pd powder Expired - Fee Related JP3344508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30164793A JP3344508B2 (en) 1993-12-01 1993-12-01 Method for producing Ag-Pd powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30164793A JP3344508B2 (en) 1993-12-01 1993-12-01 Method for producing Ag-Pd powder

Publications (2)

Publication Number Publication Date
JPH07150206A JPH07150206A (en) 1995-06-13
JP3344508B2 true JP3344508B2 (en) 2002-11-11

Family

ID=17899457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30164793A Expired - Fee Related JP3344508B2 (en) 1993-12-01 1993-12-01 Method for producing Ag-Pd powder

Country Status (1)

Country Link
JP (1) JP3344508B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104493194B (en) * 2014-12-01 2016-11-23 上海交通大学 Ag-Ag8snS6the preparation method of heterodimer nano material
CN104399972A (en) * 2014-12-11 2015-03-11 成都明日星辰科技有限公司 Preparation method of liquid phase single dispersing silver palladium composite powder
CN104399971B (en) * 2014-12-11 2017-01-04 成都明日星辰科技有限公司 A kind of preparation method of ultra-fine single dispersing silver palladium composite powder
CN108339990A (en) * 2018-03-30 2018-07-31 燕山大学 A kind of preparation method of the silver-colored palladium core-shell nanospheres with catalytic activity
CN114160804A (en) * 2021-11-17 2022-03-11 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) Preparation method of submicron monodisperse silver-palladium powder

Also Published As

Publication number Publication date
JPH07150206A (en) 1995-06-13

Similar Documents

Publication Publication Date Title
US4863510A (en) Reduction process for preparing copper, silver, and admixed silver-palladium metal particles
US20090023007A1 (en) Highly crystalline silver powder and method for producing the same
US20090116998A1 (en) Highly crystalline silver powder and production method of highly crystalline silver powder
EP1839784A1 (en) Nickel powder, process for producing the same, and conductive paste
JP2002180110A (en) Method for manufacturing metallic colloidal solution
JP3344508B2 (en) Method for producing Ag-Pd powder
US3620713A (en) Process of preparing noble metal powders
EP1702701B1 (en) Process for producing metal micropowder having particle diameter uniformalized
JPH07118868A (en) Production of palladium-coated spherical silver powder
US3717481A (en) Gold metallizing compositions
JP3656558B2 (en) Conductive paste and electronic component using the same
JP4061462B2 (en) Composite fine particles, conductive paste and conductive film
JP2774890B2 (en) Method for producing thick film thermistor composition
US3771996A (en) Process for manufacturing gold powder
JPH0266101A (en) Electric conductive particles and manufacture thereof
EP0291064A2 (en) Conductive paste composition
JPH07320535A (en) New conductive paste composition
US3708313A (en) Metalizing compositions
JP4284714B2 (en) Surface-coated metal powder and conductive paste using the same
JPS61136978A (en) Electroconductive paste for thick film circuit
US4439468A (en) Platinum coated silver powder
JP3727904B2 (en) Metal powder and method for producing the same
JPH0892612A (en) Production of silver powder
JPH09282935A (en) Silver-plated copper powder
JP2550156B2 (en) Method for producing silver-palladium composite fine powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees