JPH05205750A - 炭素質予備成形体及び燃料電池用電極基板の製造方法 - Google Patents

炭素質予備成形体及び燃料電池用電極基板の製造方法

Info

Publication number
JPH05205750A
JPH05205750A JP4100608A JP10060892A JPH05205750A JP H05205750 A JPH05205750 A JP H05205750A JP 4100608 A JP4100608 A JP 4100608A JP 10060892 A JP10060892 A JP 10060892A JP H05205750 A JPH05205750 A JP H05205750A
Authority
JP
Japan
Prior art keywords
weight
carbonaceous
preform
fuel cell
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4100608A
Other languages
English (en)
Inventor
Hiroyuki Tajiri
博幸 田尻
Shoji Doi
祥司 土肥
Satoru Hamaoka
覚 浜岡
Kazuo Okamoto
一夫 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP4100608A priority Critical patent/JPH05205750A/ja
Publication of JPH05205750A publication Critical patent/JPH05205750A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Products (AREA)
  • Inert Electrodes (AREA)

Abstract

(57)【要約】 【目的】 均質な炭素質予備成形体を圧縮成形した後、
焼成し、ガス透過性、電気伝導性、機械的強度に優れる
と共に、細孔とその分布がコントロールされた燃料電池
用電極基板を得る。 【構成】 炭素繊維化可能な繊維又は炭素繊維の短繊維
20〜50重量%、炭化収率40〜75重量%の結合剤
15〜50重量%、及び炭化収率30重量%以下の有機
粒状物質30〜60重量%を用い、抄紙構造を有する予
備成形体とする。その後、予備成形体を加熱加圧成形す
ることにより、有機粒状物質の偏析がなく均質な成形体
を得ることができる。この成形体を炭化又は黒鉛化する
ことにより、燃料電池用電極基板が得られる。特に、有
機粒状物質として熱により軟化しない熱硬化性樹脂の硬
化物を用いる場合には、より優れた性能を有する電極基
板が得られる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、リン酸型燃料電池など
の電極板を作成する上で有用な炭素質予備成形体及び燃
料電池用電極基板に関する。
【0002】
【従来の技術】燃料電池は、他の発電装置と異なり、S
Ox 、NOx 及び粉塵などの公害物質の発生が極めて少
なく、騒音発生源も少ないなどの特徴を有している。こ
のような燃料電池のうちリン酸型燃料電池は、電解液の
両側にポーラスな陰極と陽極を設けて単位セルを構成
し、各単位セルをセパレータを介して積層した構造を有
する。前記陰極および陽極には、電気エネルギーへの変
換効率を高めるため、細孔分布がコントロールされ、ガ
ス透過性が高いことが要求される。さらに、電気伝導
性、熱伝導性、機械的強度および作動温度における耐リ
ン酸液性などが要求される。
【0003】従来、燃料電池電極板の製造方法として、
フェノール樹脂などの結合剤と、炭素繊維と、粉粒状の
熱可塑性樹脂を特定の割合で乾式混合し、混合物を熱ロ
ールや熱プレスによりシート状に加圧成形し、炭化又は
黒鉛化処理する方法が採用されている(特公平1−36
670号公報)。
【0004】
【0004】しかし、この方法では、炭素繊維と、気孔
形成剤としての熱可塑性樹脂とが、混合性の悪い繊維状
と粉粒状であるため、乾式混合する際、炭素繊維と熱可
塑性樹脂とが偏析し易く、均質な混合物を得るのが困難
である。また、粉末状混合物の加圧成形により、偏析し
た熱可塑性樹脂が凝集し、成形物がさらに不均質となり
易い。そのため、細孔径分布をコントロールするのが困
難である。特に厚みの薄い電極板を得る場合には、均質
な細孔を形成させるのが困難である。
【0005】より具体的には、前記の方法において厚み
が1mm以上である場合には、大きさが1000mm×
1000mm程度であっても、電極板の細孔が比較的均
質であるが、厚みが1mm未満では均質な細孔が形成さ
れない。さらに、炭素繊維の短繊維、結合剤及び粉粒状
の有機物質とを乾式混合した粉末状であるため、加圧成
形時に金型に均一に充填するのが困難であり、作業性が
極めて悪い。
【0006】また、上記方法では、混合物を熱ロールや
熱プレスによりシート状に加熱加圧成形すると、偏析し
た熱可塑性樹脂が軟化し、成形板に反りや、膨れが発生
しやすく、特に脱型時にその発生が著しい。更に、この
成形板を焼成により炭化又は黒鉛化処理する際に、再び
熱可塑性樹脂が軟化、分解するため、焼成板に反り及び
膨れが発生し易く、均一性、寸法安定性が低下し、最終
的に高品質の電極板の歩留まりが悪い。しかも、上記方
法においては、気孔形成剤としての熱可塑性樹脂の粒径
が細孔径分布と直接関わるところ、加熱加圧成形時及び
焼成時の二度に亘って熱可塑性樹脂が軟化するため、熱
硬化性樹脂が偏析していることと相まって、細孔径が大
きく変化し、細孔径とその分布が不均一になり易い。そ
の結果、細孔径とその分布を任意に精度よくコントロー
ルできず、ガス透過性、電気伝導性及び機械的強度の優
れた電極板を得ることができない。
【0007】
【発明が解決しようとする課題】従って、本発明の目的
は、細孔径とその分布をコントロールでき、ガス透過
性、電気伝導性、機械的強度に優れる均質な燃料電池用
電極基板を製造する上で有用な炭素質予備成形体を提供
することにある。
【0008】本発明の他の目的は、燃料電池用電極基板
の細孔径とその分布を任意に精度よくコントロールでき
る炭素質予備成形体を提供することにある。
【0009】本発明のさらに他の目的は、前記の如き優
れた特性を有する均質な燃料電池用電極基板を提供する
ことにある。
【0010】
【発明の構成】前記目的を達成するため、本発明者等
は、鋭意検討の結果、炭素繊維、結合剤及び有機粒状物
質を含む抄紙構造の炭素質予備成形体を圧縮成形し、か
つ炭化又は黒鉛化する場合には、有機粒状物質の偏析を
防止でき、均質な炭素質基板が得られることを見いだ
し、本発明を完成した。
【0011】すなわち、本発明は、炭素繊維化可能な繊
維又は炭素繊維の短繊維20〜50重量%、炭化収率4
0〜75重量%の結合剤15〜50重量%、及び炭化収
率30重量%以下の有機粒状物質30〜60重量%を含
む抄紙構造の炭素質予備成形体を提供する。
【0012】前記予備成形体において、有機粒状物質は
熱硬化性樹脂硬化物であるのが好ましく、有機粒状物質
の粒径は、50〜300μmであるのが好ましい。
【0013】また、本発明は、上記予備成形体が圧縮成
形され、かつ炭化又は黒鉛化されている燃料電池用電極
基板を提供する。
【0014】なお、本明細書において、炭化とは、炭素
化可能な成分を、例えば、450〜1500℃程度の温
度で焼成処理することを言う。黒鉛化とは、例えば、1
500〜3000℃程度の温度で焼成することを言い、
黒鉛の結晶構造を有していないときでも黒鉛化の概念に
含める。また、炭化収率とは、炭素化可能な成分を炭化
又は黒鉛化したときの残炭率を言う。
【0015】炭素繊維とは炭化又は黒鉛化された繊維を
言う。耐炎化処理とは、ピッチ系繊維以外の繊維を、例
えば、酸素存在下、200〜450℃程度の温度で加熱
して表面に耐熱層を形成し、焼成時の溶融を防止する処
理を言う。不融化処理とは、例えば、ピッチ系繊維を、
酸素存在下、200〜450℃程度の温度で加熱して表
面に耐熱層を形成し、焼成時の溶融を防止する処理を言
う。
【0016】本発明において、炭素繊維化可能な繊維と
しては、炭素繊維の素材となり得る種々の繊維、例え
ば、ポリアクリロニトリル繊維、フェノール樹脂繊維、
レーヨン、セルロース系繊維、ピッチ系繊維などが挙げ
られる。炭素繊維化可能な繊維は、耐炎化処理又は不融
化処理されていてもよい。炭素繊維としては、前記炭素
繊維化可能な繊維を炭化又は黒鉛化した繊維が挙げられ
る。炭素繊維化可能な繊維や炭素繊維は一種又は二種以
上使用できる。
【0017】本発明では、炭素繊維化可能な繊維又は炭
素繊維の短繊維が用いられる。短繊維の繊維長は、例え
ば0.05mm〜10mm、好ましくは0.5mm〜3
mm程度である。炭素繊維の繊維長は、電極基板の曲げ
強度、電気伝導性や熱伝導度に大きく寄与する。繊維長
が10mmを越えると細孔径とその分布が不均一になり
易く、0.05mm未満では強度などが低下し易い。
【0018】炭素繊維化可能な繊維又は炭素繊維の割合
は、20〜50重量%、好ましくは22.5〜40重量
%程度である。20重量%未満では電極基板の電気伝導
度、熱伝導度及び曲げ強度が低下し、50重量%を越え
る場合には、気孔率が小さくなり易い。
【0019】結合剤としては、例えば、フェノール樹
脂、フラン樹脂などの熱硬化性樹脂;ポリアクリロニト
リルなどの熱可塑性樹脂;石炭又は石油ピッチなどが使
用できる。これらの結合剤のうち、熱硬化性樹脂、特に
フェノール樹脂が好ましい。結合剤の炭化収率は、電極
基板の機械的強度の低下を防止し、気孔率を調整するた
め、40〜75重量%、好ましくは50〜75重量%程
度である。なお、前記フェノール樹脂の炭化収率は、通
常65〜75重量%程度と大きい。これらの結合剤は少
なくとも一種使用できる。
【0020】結合剤の割合は15〜50重量%、好まし
くは15〜40重量%程度である。15重量%未満では
機械的強度が低下し、50重量%を越える場合には気孔
率が小さくなり易く、細孔径とその分布も不均一になり
易い。
【0021】本発明における有機粒状物質としては、炭
化収率30重量%以下の有機粒状物質を用いる。炭化収
率が30%を越えると、微細で均一な気孔の形成や気孔
率の調整が困難である。
【0022】このような有機粒状物質としては、例え
ば、フェノール樹脂、エポキシ樹脂、不飽和ポリエステ
ル樹脂、メラミン樹脂、ジアリルフタレート樹脂、ユリ
ア樹脂及びポリウレタンなどの熱硬化性樹脂の粉粒体
や、これら熱硬化性樹脂の硬化物からなる粉粒体;ポリ
酢酸ビニル、エチレン−酢酸ビニル共重合体、ポリビニ
ルアルコール、ポリ塩化ビニル、アクリル系ポリマー、
ポリエステル、ナイロン、ポリスチレン、スチレン−ブ
タジエン共重合体、アクリロニトリル−ブタジエン−ス
チレン共重合体、スチレン−アクリル共重合体などのス
チレン系ポリマー、ポリカーボネート、ポリアセタール
などの合成樹脂、ロジンなどの天然物とその誘導体など
の熱可塑性樹脂の粉粒体等が挙げられる。
【0023】なお、前記熱硬化性樹脂のうち、フェノー
ル樹脂としては、前記結合剤と異なり、炭化収率30%
以下のものが使用される。これらの有機粒状物質は一種
又は二種以上混合して使用できる。
【0024】これらの有機粒状物質は、炭素材に細孔を
生成させる気孔形成剤として機能する。前記有機粒状物
質のなかで、熱硬化性樹脂の硬化物からなる粉粒体が好
ましい。特に、エポキシ樹脂、不飽和ポリエステル樹脂
などの硬化物の粉粒体が好ましい。熱硬化性樹脂の硬化
物からなる粉粒体を用いると、気孔率及び細孔径を精度
よくコントロールできる。すなわち、熱硬化性樹脂の硬
化物からなる粉粒体は加熱により軟化しないため、硬化
物の粒径とその量に対応する細孔径の気孔が形成され
る。そのため、細孔径とその分布が任意にコントロール
された電極板が得られる。また、同様な理由から、均質
で、ガス透過性、電気伝導度及び機械強度の優れた電極
板を得ることができる。
【0025】さらに、前記硬化物からなる粉粒体が加熱
加圧成形時に軟化しないため、厚みが1mm以下と薄
く、1000mm×1000mm程度の大きな面積であ
っても、脱型時などに反り及び膨れが発生せず、均一性
及び寸法安定性の優れた電極基板が得られる。また、炭
化又は黒鉛化処理時にも気孔形成剤は再軟化しないた
め、電極板の反り、膨れ、割れ等が発生せず製造工程で
の歩留まりが非常に高い。
【0026】上記粒状物質の粒径は、所望する細孔径な
どに応じて選択できるが、通常、10〜500μm、好
ましくは50〜300μm、さらに好ましくは100〜
250μm程度である。粒径が10μm未満では、ガス
透過性が著しく低下し、500μmを越えるとガス透過
性は向上するが曲げ強度が低下する。なお、ここにいう
「粒径」とは主に平均粒子径を意味し、粉粒状硬化物に
は、不可避的に混入する微細粒子や粗大粒子が含まれて
いてもよい。有機粒状物質の粒径を適宜選択することに
よって、気孔率及び細孔径を調節することができる。
【0027】上記有機粒状物質の割合は30〜60重量
%、好ましくは30〜55重量%である。この範囲を外
れると、電極板の気孔率及び曲げ強度のいずれか一方の
特性が低下する。
【0028】本発明の炭素質予備成形体は、炭素繊維、
結合剤及び有機粒状物質を含む抄紙構造を有する。抄紙
構造とは、和紙の如く、繊維がランダムに配向している
構造を意味する。このような予備成形体は、例えば、吸
引成形法により得ることができる。前記吸引成形法とし
ては、例えば、(1)前記成分を含むスラリーを多数の
吸引孔が形成された吸引成形型により吸引し、吸引成形
型の表面に前記成分を堆積させる方法、(2)吸引成形
型内にスラリーを注入して吸引する方法などが採用でき
る。吸引成形法により得られた吸引成形体の密度は、吸
引圧により容易にコントロールできる。
【0029】なお、スラリーの調製に際しては、炭素繊
維を叩解し、前記短繊維としてもよい。スラリーの固形
分濃度は、吸引成形性を損わない範囲で選択でき、例え
ば、0.1〜2重量%程度である。また、スラリーに
は、前記炭素繊維、結合剤及び有機粒状物質を均一に分
散させるため、分散剤、安定剤、粘度調整剤、沈降防止
剤などを添加してもよく、増粘剤、紙力増強剤、凝集作
用を有する界面活性剤、特に高分子凝集剤や歩留り向上
剤などの種々の添加剤を添加してもよい。
【0030】吸引成形型から脱型した炭素質予備成形体
は、通常、加熱乾燥される。湿潤状態の炭素質予備成形
体の加熱乾燥は、常圧又は減圧下50〜200℃程度の
温度で行うことができる。
【0031】前記のような吸引成形法によると、従来の
乾式混合法では均一に混合することが困難な繊維状物質
と粉粒状物質を用いても、繊維状物質や粉粒状物質が偏
析せず、均質な炭素質予備成形体が得られる。また、炭
素質予備成形体を圧縮成形しても、成形体の均質性は維
持される。従って、有機粒状物質として熱により軟化す
る熱可塑性樹脂を用いても、可塑性樹脂の偏析に起因し
て加熱加圧成形及び焼成時に生じる、成形体や電極板の
反りや膨れを著しく抑制でき、成形体や電極板の均一性
を高めることができる。
【0032】また、炭素質予備成形体を圧縮成形する場
合には、厚みが1mm未満であっても組成、密度及び厚
みが均質な成形体が得られる。特に、前記結合剤として
熱硬化性樹脂を使用する場合には、炭素質予備成形体が
プリプレグとして機能し、加熱加圧成形により、硬化し
て一体化する。そのため、厚みが1mm未満であっても
均質で均一な成形体が得られる。
【0033】さらに、繁雑な乾式混合の工程が不要であ
るため、吸引成形により予備成形体を簡易に製造でき
る。さらに、予備成形体を圧縮成形する場合、粉粒状の
混合物を金型内に均一に装填する必要がなく、シート状
の予備成形体を成形金型へ装填すればよく、装填作業が
容易であり、成形サイクルを短縮でき、成形効率、ひい
ては電極基板の生産効率を高めることができる。
【0034】本発明の燃料電池用電極基板は、前記炭素
質予備成形体を圧縮成形、好ましくは加熱加圧成形した
後、炭化又は黒鉛化する焼成工程に供することにより製
造できる。前記圧縮成形により、成形体の均質性をさら
に高めることができる。
【0035】吸引成形体の圧縮成形は、慣用の方法、例
えば、金型プレス又はローラーによるプレス等の方法で
行なうことができる。圧縮成形は成形体の均一性を高め
るため加熱下で行うのが好ましい。加熱温度は、適当に
選択できるが、通常、100〜250℃程度である。成
形圧は、所望する電極板の密度や厚みなどに応じて選択
でき、例えば、30〜750kgf/cm2 、好ましく
は50〜500kgf/cm2 程度である。
【0036】炭素質予備成形体は、圧縮成形された後、
炭化又は黒鉛化する焼成工程に供せられる。焼成温度
は、800℃以上、好ましくは1000〜3000℃程
度である。焼成は、真空下または不活性ガス雰囲気中で
行われる。不活性ガスとしては、窒素、ヘリウム、アル
ゴン等が使用できる。
【0037】このようにして得られた炭素質の電極基板
は、予備成形体が均質であるため、厚みが1mm未満で
あっても気孔径が均一であり、機械的強度も大きく、ま
た優れたガス透過性及び導電性を有する。
【0038】
【発明の効果】本発明の炭素質予備成形体は、炭素繊
維、結合剤及び有機粒状物質を含む抄紙構造を有してい
るため、有機粒状物質の偏析がなく、均質で、細孔とそ
の分布をコントロールでき、ガス透過性、電気伝導度、
機械強度及び均一性に優れる炭素質の電極基板を得る上
で有用である。
【0039】特に有機粒状物質として熱硬化性樹脂の硬
化物を用いる場合には、電極基板の細孔径とその分布を
精度よくコントロールでき、均一な細孔径とその分布を
有すると共に、反り、膨れ、割れ等のない均一な電極基
板を得ることができる。
【0040】さらに、本発明の燃料電池用電極基板は、
均質で、細孔径とその分布が任意二コントロールされ、
ガス透過性、電気伝導度、機械強度及び均一性に優れ
る。
【0041】
【実施例】以下に、実施例に基づいて本発明をより詳細
に説明する。
【0042】実施例1 フェノール樹脂[群栄化学工業(株)製、商品名レジト
ップPS−4101、炭化収率60重量%]100重量
部、平均繊維長0.7mmの炭素繊維[(株)ドナッ
ク、商品名ドナカーボS−244]100重量部及びエ
ポキシ樹脂硬化物[油化シェル(株)製、商品名エピコ
ート815、炭化収率10重量%]の粉末(粒径20〜
80μm)250重量部を水中に分散させ、均一なスラ
リーを調製した。
【0043】そして、底面に多数の吸引用小孔を形成し
た吸引成形型(600mm×600mm)内に、吸引を
行いながら上記のスラリーを流し込み、成形用型の底面
に堆積させた。形成された湿潤状態の平板を型から取り
外し、100℃で4時間乾燥した。こうして得られた抄
紙構造の予備成形体の寸法は、厚み10mm×600m
m×600mmであり、その密度は0.2g/cm3
あった。
【0044】次いで、この予備成形体を、600mm×
600mmの平板金型に入れ、プレス温度165℃、成
形圧150kgf/cm2 で20分間加熱加圧成形して
硬化させ、厚み1mm、密度1.3g/cm3 の成形体
を得た。この成形体を、220℃の温度で4時間放置し
て後硬化させた後、黒鉛板に挾み、30℃/時の昇温速
度で2000℃まで昇温し、同温度で3時間黒鉛化処理
することにより、炭素質の電極基板を得た。
【0045】実施例2 実施例1と同様にして得られた抄紙構造の予備成形体
を、成形圧を代える以外は、実施例1と同様に加圧成形
し、厚み1.3mm、密度1.0g/cm3 の成形体を
得た。この成形体を実施例1と同様に処理して炭素質の
電極基板を得た。
【0046】実施例3 フェノール樹脂[鐘紡(株)製、商品名ベルパールS−
899、炭化収率65重量%]60重量部、平均繊維長
0.7mmの炭素繊維[(株)ドナック、商品名ドナカ
ーボS−244]100重量部及び不飽和ポリエステル
樹脂硬化物[武田薬品工業(株)製、商品名ポリマール
9802、炭化収率10重量%]の粉末(粒径100〜
250μm)100重量部を水中に分散させ、均一なス
ラリーを調製した。
【0047】そして、実施例1と同様に予備成形体を作
製した後、成形し、スペーサーにより、厚み2mm、密
度1.0g/cm3 の成形体を得た。この成形体を、実
施例1と同様に処理して炭素質の電極基板を得た。
【0048】実施例4 実施例3と同様にして得られた抄紙構造の予備成形体を
成形する際、成形圧を変える以外、実施例3と同様に加
圧成形し、厚み2.5mm、密度0.8g/cm3 の成
形体を得た。この成形体を、実施例1と同様に処理して
炭素質の電極基板を得た。
【0049】比較例1 実施例1で用いたフェノール樹脂100重量部、平均繊
維長0.7mmの炭素繊維100重量部及びポリビニル
アルコール[(株)クラレ製、粒径20〜80μm]2
50重量部を乾式混合した。
【0050】この混合物を、600mm×600mmの
平板金型に入れ、プレス温度165℃、成形圧150k
gf/cm2 で20分間加熱加圧成形し、厚み1mmの
硬化板を得た。この硬化板を、220℃の温度で4時間
放置して後硬化させた後、黒鉛板に挾み、30℃/時の
昇温速度で2000℃まで昇温し、同温度で3時間黒鉛
化処理することにより、炭素質の電極基板を得た。
【0051】比較例2 実施例1で用いたフェノール樹脂60重量部、平均繊維
長0.7mmの炭素繊維100重量部及びポリビニルア
ルコール[(株)クラレ製、粒径100〜250μm]
100重量部を乾式混合した。この混合物を用い、比較
例1と同様にして炭素質の電極基板を得た。
【0052】実施例1〜4及び比較例1,2で得られた
電極基板の気孔率、曲げ強度、ガス透過度及び体積固有
抵抗を測定したところ、表1に示す結果を得た。
【0053】
【表1】 表1より、実施例1〜4で得られた電極基板は適度な気
孔率を有し、かつ、比較例1,2と比べ、曲げ強度およ
び導電性が非常に大きく、優れたガス透過性を示した。
─────────────────────────────────────────────────────
【手続補正書】
【提出日】平成4年6月8日
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】全文
【補正方法】変更
【補正内容】
【書類名】 明細書
【発明の名称】 炭素質予備成形体及び燃料電池用電極
基板の製造方法
【特許請求の範囲】
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、リン酸型燃料電池など
の電極板を作成する上で有用な炭素質予備成形体及び燃
料電池用電極基板の製造方法に関する。
【0002】
【従来の技術】燃料電池は、他の発電装置と異なり、S
Ox、NOx及び粉塵などの公害物質の発生が極めて少
なく、騒音発生源も少ないなどの特徴を有している。こ
のような燃料電池のうちリン酸型燃料電池は、電解液の
両側にポーラスな陰極と陽極を設けて単位セルを構成
し、各単位セルをセパレータを介して積層した構造を有
する。前記陰極および陽極には、電気エネルギーへの変
換効率を高めるため、細孔分布がコントロールされ、ガ
ス透過性が高いことが要求される。さらに、電気伝導
性、熱伝導性、機械的強度および作動温度における耐リ
ン酸液性などが要求される。
【0003】従来、燃料電池電極板の製造方法として、
フェノール樹脂などの結合剤と、炭素繊維と、粉粒状の
熱可塑性樹脂を特定の割合で乾式混合し、混合物を熱ロ
ールや熱プレスによりシート状に加圧成形し、炭化又は
黒鉛化処理する方法が採用されている(特公平1−36
670号公報)。
【0004】しかし、この方法では、炭素繊維と、気孔
形成剤としての熱可塑性樹脂とが、混合性の悪い繊維状
と粉粒状であるため、乾式混合する際、炭素繊維と熱可
塑性樹脂とが偏析し易く、均質な混合物を得るのが困難
である。また、粉末状混合物の加圧成形により、偏析し
た熱可塑性樹脂が凝集し、成形物がさらに不均質となり
易い。そのため、細孔径分布をコントロールするのが困
難である。特に厚みの薄い電極板を得る場合には、均質
な細孔を形成させるのが困難である。
【0005】より具体的には、前記の方法において厚み
が1mm以上である場合には、大きさが1000mm×
1000mm程度であっても、電極板の細孔が比較的均
質であるが、厚みが1mm未満では均質な細孔が形成さ
れない。さらに、炭素繊維の短繊維、結合剤及び粉粒状
の有機物質とを乾式混合した粉末状であるため、加圧成
形時に金型に均一に充填するのが困難であり、作業性が
極めて悪い。
【0006】また、上記方法では、混合物を熱ロールや
熱プレスによりシート状に加熱加圧成形すると、偏析し
た熱可塑性樹脂が軟化し、成形板に反りや、膨れが発生
しやすく、特に脱型時にその発生が著しい。更に、この
成形板を焼成により炭化又は黒鉛化処理する際に、再び
熱可塑性樹脂が軟化、分解するため、焼成板に反り及び
膨れが発生し易く、均一性、寸法安定性が低下し、最終
的に高品質の電極板の歩留まりが悪い。しかも、上記方
法においては、気孔形成剤としての熱可塑性樹脂の粒径
が細孔径分布と直接関わるところ、加熱加圧成形時及び
焼成時の二度に亘って熱可塑性樹脂が軟化するため、熱
硬化性樹脂が偏析していることと相まって、細孔径が大
きく変化し、細孔径とその分布が不均一になり易い。そ
の結果、細孔径とその分布を任意に精度よくコントロー
ルできず、ガス透過性、電気伝導性及び機械的強度の優
れた電極板を得ることができない。
【0007】
【発明が解決しようとする課題】従って、本発明の目的
は、細孔径とその分布をコントロールでき、ガス透過
性、電気伝導性、機械的強度に優れる均質な燃料電池用
電極基板を製造する上で有用な炭素質予備成形体を提供
することにある。
【0008】本発明の他の目的は、燃料電池用電極基板
の細孔径とその分布を任意に精度よくコントロールでき
る炭素質予備成形体を提供することにある。
【0009】本発明のさらに他の目的は、前記の如き優
れた特性を有する均質な燃料電池用電極基板の製造方法
を提供することにある。
【0010】
【発明の構成】前記目的を達成するため、本発明者等
は、鋭意検討の結果、炭素繊維、結合剤及び有機粒状物
質を含む抄紙構造の炭素質予備成形体を圧縮成形し、か
つ炭化又は黒鉛化する場合には、有機粒状物質の偏析を
防止でき、均質な炭素質基板が得られることを見いだ
し、本発明を完成した。
【0011】すなわち、本発明は、炭素繊維化可能な繊
維又は炭素繊維の短繊維20〜50重量%、炭化収率4
0〜75重量%の結合剤15〜50重量%、及び炭化収
率30重量%以下の有機粒状物質30〜60重量%を含
む抄紙構造の炭素質予備成形体を提供する。
【0012】前記予備成形体において、有機粒状物質は
熱硬化性樹脂硬化物であるのが好ましく、有機粒状物質
の粒径は、50〜300μmであるのが好ましい。
【0013】また、本発明は、上記予備成形体圧縮成
、かつ炭化又は黒鉛化する燃料電池用電極基板の製
造方法を提供する。
【0014】なお、本明細書において、炭化とは、炭素
化可能な成分を、例えば、450〜1500℃程度の温
度で焼成処理することを言う。黒鉛化とは、例えば、1
500〜3000℃程度の温度で焼成することを言い、
黒鉛の結晶構造を有していないときでも黒鉛化の概念に
含める。また、炭化収率とは、炭素化可能な成分を炭化
又は黒鉛化したときの残炭率を言う。
【0015】炭素繊維とは炭化又は黒鉛化された繊維を
言う。耐炎化処理とは、ピッチ系繊維以外の繊維を、例
えば、酸素存在下、200〜450℃程度の温度で加熱
して表面に耐熱層を形成し、焼成時の溶融を防止する処
理を言う。不融化処理とは、例えば、ピッチ系繊維を、
酸素存在下、200〜450℃程度の温度で加熱して表
面に耐熱層を形成し、焼成時の溶融を防止する処理を言
う。
【0016】本発明において、炭素繊維化可能な繊維と
しては、炭素繊維の素材となり得る種々の繊維、例え
ば、ポリアクリロニトリル繊維、フェノール樹脂繊維、
レーヨン、セルロース系繊維、ピッチ系繊維などが挙げ
られる。炭素繊維化可能な繊維は、耐炎化処理又は不融
化処理されていてもよい。炭素繊維としては、前記炭素
繊維化可能な繊維を炭化又は黒鉛化した繊維が挙げられ
る。炭素繊維化可能な繊維や炭素繊維は一種又は二種以
上使用できる。
【0017】本発明では、炭素繊維化可能な繊維又は炭
素繊維の短繊維が用いられる。短繊維の繊維長は、例え
ば0.05mm〜10mm、好ましくは0.5mm〜3
mm程度である。炭素繊維の繊維長は、電極基板の曲げ
強度、電気伝導性や熱伝導度に大きく寄与する。繊維長
が10mmを越えると細孔径とその分布が不均一になり
易く、0.05mm未満では強度などが低下し易い。
【0018】炭素繊維化可能な繊維又は炭素繊維の割合
は、20〜50重量%、好ましくは22.5〜40重量
%程度である。20重量%未満では電極基板の電気伝導
度、熱伝導度及び曲げ強度が低下し、50重量%を越え
る場合には、気孔率が小さくなり易い。
【0019】結合剤としては、例えば、フェノール樹
脂、フラン樹脂などの熱硬化性樹脂;ポリアクリロニト
リルなどの熱可塑性樹脂;石炭又は石油ピッチなどが使
用できる。これらの結合剤のうち、熱硬化性樹脂、特に
フェノール樹脂が好ましい。結合剤の炭化収率は、電極
基板の機械的強度の低下を防止し、気孔率を調整するた
め、40〜75重量%、好ましくは50〜75重量%程
度である。なお、前記フェノール樹脂の炭化収率は、通
常65〜75重量%程度と大きい。これらの結合剤は少
なくとも一種使用できる。
【0020】結合剤の割合は15〜50重量%、好まし
くは15〜40重量%程度である。15重量%未満では
機械的強度が低下し、50重量%を越える場合には気孔
率が小さくなり易く、細孔径とその分布も不均一になり
易い。
【0021】本発明における有機粒状物質としては、炭
化収率30重量%以下の有機粒状物質を用いる。炭化収
率が30%を越えると、微細で均一な気孔の形成や気孔
率の調整が困難である。
【0022】このような有機粒状物質としては、例え
ば、フェノール樹脂、エポキシ樹脂、不飽和ポリエステ
ル樹脂、メラミン樹脂、ジアリルフタレート樹脂、ユリ
ア樹脂及びポリウレタンなどの熱硬化性樹脂の粉粒体
や、これら熱硬化性樹脂の硬化物からなる粉粒体;ポリ
酢酸ビニル、エチレン−酢酸ビニル共重合体、ポリビニ
ルアルコール、ポリ塩化ビニル、アクリル系ポリマー、
ポリエステル、ナイロン、ポリスチレン、スチレン−ブ
タジエン共重合体、アクリロニトリル−ブタジエン−ス
チレン共重合体、スチレン−アクリル共重合体などのス
チレン系ポリマー、ポリカーボネート、ポリアセタール
などの合成樹脂、ロジンなどの天然物とその誘導体など
の熱可塑性樹脂の粉粒体等が挙げられる。
【0023】なお、前記熱硬化性樹脂のうち、フェノー
ル樹脂としては、前記結合剤と異なり、炭化収率30%
以下のものが使用される。これらの有機粒状物質は一種
又は二種以上混合して使用できる。
【0024】これらの有機粒状物質は、炭素材に細孔を
生成させる気孔形成剤として機能する。前記有機粒状物
質のなかで、熱硬化性樹脂の硬化物からなる粉粒体が好
ましい。特に、エポキシ樹脂、不飽和ポリエステル樹脂
などの硬化物の粉粒体が好ましい。熱硬化性樹脂の硬化
物からなる粉粒体を用いると、気孔率及び細孔径を精度
よくコントロールできる。すなわち、熱硬化性樹脂の硬
化物からなる粉粒体は加熱により軟化しないため、硬化
物の粒径とその量に対応する細孔径の気孔が形成され
る。そのため、細孔径とその分布が任意にコントロール
された電極板が得られる。また、同様な理由から、均質
で、ガス透過性、電気伝導度及び機械強度の優れた電極
板を得ることができる。
【0025】さらに、前記硬化物からなる粉粒体が加熱
加圧成形時に軟化しないため、厚みが1mm以下と薄
く、1000mm×1000mm程度の大きな面積であ
っても、脱型時などに反り及び膨れが発生せず、均一性
及び寸法安定性の優れた電極基板が得られる。また、炭
化又は黒鉛化処理時にも気孔形成剤は再軟化しないた
め、電極板の反り、膨れ、割れ等が発生せず製造工程で
の歩留まりが非常に高い。
【0026】上記粒状物質の粒径は、所望する細孔径な
どに応じて選択できるが、通常、10〜500μm、好
ましくは50〜300μm、さらに好ましくは100〜
250μm程度である。粒径が10μm未満では、ガス
透過性が著しく低下し、500μmを越えるとガス透過
性は向上するが曲げ強度が低下する。なお、ここにいう
「粒径」とは主に平均粒子径を意味し、粉粒状硬化物に
は、不可避的に混入する微細粒子や粗大粒子が含まれて
いてもよい。有機粒状物質の粒径を適宜選択することに
よって、気孔率及び細孔径を調節することができる。
【0027】上記有機粒状物質の割合は30〜60重量
%、好ましくは30〜55重量%である。この範囲を外
れると、電極板の気孔率及び曲げ強度のいずれか一方の
特性が低下する。
【0028】本発明の炭素質予備成形体は、炭素繊維、
結合剤及び有機粒状物質を含む抄紙構造を有する。抄紙
構造とは、和紙の如く、繊維がランダムに配向している
構造を意味する。このような予備成形体は、例えば、吸
引成形法により得ることができる。前記吸引成形法とし
ては、例えば、(1)前記成分を含むスラリーを多数の
吸引孔が形成された吸引成形型により吸引し、吸引成形
型の表面に前記成分を堆積させる方法、(2)吸引成形
型内にスラリーを注入して吸引する方法などが採用でき
る。吸引成形法により得られた吸引成形体の密度は、吸
引圧により容易にコントロールできる。
【0029】なお、スラリーの調製に際しては、炭素繊
維を叩解し、前記短繊維としてもよい。スラリーの固形
分濃度は、吸引成形性を損わない範囲で選択でき、例え
ば、0.1〜2重量%程度である。また、スラリーに
は、前記炭素繊維、結合剤及び有機粒状物質を均一に分
散させるため、分散剤、安定剤、粘度調整剤、沈降防止
剤などを添加してもよく、増粘剤、紙力増強剤、凝集作
用を有する界面活性剤、特に高分子凝集剤や歩留り向上
剤などの種々の添加剤を添加してもよい。
【0030】吸引成形型から脱型した炭素質予備成形体
は、通常、加熱乾燥される。湿潤状態の炭素質予備成形
体の加熱乾燥は、常圧又は減圧下50〜200℃程度の
温度で行うことができる。
【0031】前記のような吸引成形法によると、従来の
乾式混合法では均一に混合することが困難な繊維状物質
と粉粒状物質を用いても、繊維状物質や粉粒状物質が偏
析せず、均質な炭素質予備成形体が得られる。また、炭
素質予備成形体を圧縮成形しても、成形体の均質性は維
持される。従って、有機粒状物質として熱により軟化す
る熱可塑性樹脂を用いても、可塑性樹脂の偏析に起因し
て加熱加圧成形及び焼成時に生じる、成形体や電極板の
反りや膨れを著しく抑制でき、成形体や電極板の均一性
を高めることができる。
【0032】また、炭素質予備成形体を圧縮成形する場
合には、厚みが1mm未満であっても組成、密度及び厚
みが均質な成形体が得られる。特に、前記結合剤として
熱硬化性樹脂を使用する場合には、炭素質予備成形体が
プリプレグとして機能し、加熱加圧成形により、硬化し
て一体化する。そのため、厚みが1mm未満であっても
均質で均一な成形体が得られる。
【0033】さらに、繁雑な乾式混合の工程が不要であ
るため、吸引成形により予備成形体を簡易に製造でき
る。さらに、予備成形体を圧縮成形する場合、粉粒状の
混合物を金型内に均一に装填する必要がなく、シート状
の予備成形体を成形金型へ装填すればよく、装填作業が
容易であり、成形サイクルを短縮でき、成形効率、ひい
ては電極基板の生産効率を高めることができる。
【0034】本発明の燃料電池用電極基板は、前記炭素
質予備成形体を圧縮成形、好ましくは加熱加圧成形した
後、炭化又は黒鉛化する焼成工程に供することにより製
造できる。前記圧縮成形により、成形体の均質性をさら
に高めることができる。
【0035】吸引成形体の圧縮成形は、慣用の方法、例
えば、金型プレス又はローラーによるプレス等の方法で
行なうことができる。圧縮成形は成形体の均一性を高め
るため加熱下で行うのが好ましい。加熱温度は、適当に
選択できるが、通常、100〜250℃程度である。成
形圧は、所望する電極板の密度や厚みなどに応じて選択
でき、例えば、30〜750kgf/cm、好ましく
は50〜500kgf/cm程度である。
【0036】炭素質予備成形体は、圧縮成形された後、
炭化又は黒鉛化する焼成工程に供せられる。焼成温度
は、800℃以上、好ましくは1000〜3000℃程
度である。焼成は、真空下または不活性ガス雰囲気中で
行われる。不活性ガスとしては、窒素、ヘリウム、アル
ゴン等が使用できる。
【0037】このようにして得られた炭素質の電極基板
は、予備成形体が均質であるため、厚みが1mm未満で
あっても気孔径が均一であり、機械的強度も大きく、ま
た優れたガス透過性及び導電性を有する。
【0038】
【発明の効果】本発明の炭素質予備成形体は、炭素繊
維、結合剤及び有機粒状物質を含む抄紙構造を有してい
るため、有機粒状物質の偏析がなく、均質で、細孔とそ
の分布をコントロールでき、ガス透過性、電気伝導度、
機械強度及び均一性に優れる炭素質の電極基板を得る上
で有用である。
【0039】特に有機粒状物質として熱硬化性樹脂の硬
化物を用いる場合には、電極基板の細孔径とその分布を
精度よくコントロールでき、均一な細孔径とその分布を
有すると共に、反り、膨れ、割れ等のない均一な電極基
板を得ることができる。
【0040】さらに、本発明の燃料電池用電極基板の製
造方法によれば、均質で、細孔径とその分布が任意
ントロールされ、ガス透過性、電気伝導度、機械強度及
び均一性に優れた燃料電池用電極基板を得ることができ
【0041】
【実施例】以下に、実施例に基づいて本発明をより詳細
に説明する。
【0042】実施例1 フェノール樹脂[群栄化学工業(株)製、商品名レジト
ップPS−4101、炭化収率60重量%]100重量
部、平均繊維長0.7mmの炭素繊維[(株)ドナッ
ク、商品名ドナカーボS−244]100重量部及びエ
ポキシ樹脂硬化物[油化シェル(株)製、商品名エピコ
ート815、炭化収率10重量%]の粉末(粒径20〜
80μm)250重量部を水中に分散させ、均一なスラ
リーを調製した。
【0043】そして、底面に多数の吸引用小孔を形成し
た吸引成形型(600mm×600mm)内に、吸引を
行いながら上記のスラリーを流し込み、成形用型の底面
に堆積させた。形成された湿潤状態の平板を型から取り
外し、100℃で4時間乾燥した。こうして得られた抄
紙構造の予備成形体の寸法は、厚み10mm×600m
m×600mmであり、その密度は0.2g/cm
あった。
【0044】次いで、この予備成形体を、600mm×
600mmの平板金型に入れ、プレス温度165℃、成
形圧150kgf/cmで20分間加熱加圧成形して
硬化させ、厚み1mm、密度1.3g/cmの成形体
を得た。この成形体を、220℃の温度で4時間放置し
て後硬化させた後、黒鉛板に挾み、30℃/時の昇温速
度で2000℃まで昇温し、同温度で3時間黒鉛化処理
することにより、炭素質の電極基板を得た。
【0045】実施例2 実施例1と同様にして得られた抄紙構造の予備成形体
を、成形圧を代える以外は、実施例1と同様に加圧成形
し、厚み1.3mm、密度1.0g/cmの成形体を
得た。この成形体を実施例1と同様に処理して炭素質の
電極基板を得た。
【0046】実施例3 フェノール樹脂[鐘紡(株)製、商品名ベルパールS−
899、炭化収率65重量%]60重量部、平均繊維長
0.7mmの炭素繊維[(株)ドナック、商品名ドナカ
ーボS−244]100重量部及び不飽和ポリエステル
樹脂硬化物[武田薬品工業(株)製、商品名ポリマール
9802、炭化収率10重量%]の粉末(粒径100〜
250μm)100重量部を水中に分散させ、均一なス
ラリーを調製した。
【0047】そして、実施例1と同様に予備成形体を作
製した後、成形し、スペーサーにより、厚み2mm、密
度1.0g/cmの成形体を得た。この成形体を、実
施例1と同様に処理して炭素質の電極基板を得た。
【0048】実施例4 実施例3と同様にして得られた抄紙構造の予備成形体を
成形する際、成形圧を変える以外、実施例3と同様に加
圧成形し、厚み2.5mm、密度0.8g/cmの成
形体を得た。この成形体を、実施例1と同様に処理して
炭素質の電極基板を得た。
【0049】比較例1 実施例1で用いたフェノール樹脂100重量部、平均繊
維長0.7mmの炭素繊維100重量部及びポリビニル
アルコール[(株)クラレ製、粒径20〜80μm]2
50重量部を乾式混合した。
【0050】この混合物を、600mm×600mmの
平板金型に入れ、プレス温度165℃、成形圧150k
gf/cmで20分間加熱加圧成形し、厚み1mmの
硬化板を得た。この硬化板を、220℃の温度で4時間
放置して後硬化させた後、黒鉛板に挾み、30℃/時の
昇温速度で2000℃まで昇温し、同温度で3時間黒鉛
化処理することにより、炭素質の電極基板を得た。
【0051】比較例2 実施例1で用いたフェノール樹脂60重量部、平均繊維
長0.7mmの炭素繊維100重量部及びポリビニルア
ルコール[(株)クラレ製、粒径100〜250μm]
100重量部を乾式混合した。この混合物を用い、比較
例1と同様にして炭素質の電極基板を得た。
【0052】実施例1〜4及び比較例1,2で得られた
電極基板の気孔率、曲げ強度、ガス透過度及び体積固有
抵抗を測定したところ、表1に示す結果を得た。
【0053】
【表1】 表1より、実施例1〜4で得られた電極基板は適度な気
孔率を有し、かつ、比較例1,2と比べ、曲げ強度およ
び導電性が非常に大きく、優れたガス透過性を示した。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 一夫 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 炭素繊維化可能な繊維又は炭素繊維の短
    繊維20〜50重量%、炭化収率40〜75重量%の結
    合剤15〜50重量%、及び炭化収率30重量%以下の
    有機粒状物質30〜60重量%を含む抄紙構造の炭素質
    予備成形体。
  2. 【請求項2】 有機粒状物質が熱硬化性樹脂硬化物であ
    る請求項1記載の炭素質予備成形体。
  3. 【請求項3】 有機粒状物質の粒径が、10〜500μ
    mである請求項1記載の炭素質予備成形体。
  4. 【請求項4】 請求項1記載の予備成形体が圧縮成形さ
    れ、かつ炭化又は黒鉛化されている燃料電池用電極基
    板。
JP4100608A 1991-10-17 1992-03-25 炭素質予備成形体及び燃料電池用電極基板の製造方法 Pending JPH05205750A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4100608A JPH05205750A (ja) 1991-10-17 1992-03-25 炭素質予備成形体及び燃料電池用電極基板の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29791091 1991-10-17
JP3-297910 1991-10-17
JP4100608A JPH05205750A (ja) 1991-10-17 1992-03-25 炭素質予備成形体及び燃料電池用電極基板の製造方法

Publications (1)

Publication Number Publication Date
JPH05205750A true JPH05205750A (ja) 1993-08-13

Family

ID=26441605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4100608A Pending JPH05205750A (ja) 1991-10-17 1992-03-25 炭素質予備成形体及び燃料電池用電極基板の製造方法

Country Status (1)

Country Link
JP (1) JPH05205750A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158350A (ja) * 2003-11-21 2005-06-16 Mitsubishi Pencil Co Ltd 燃料電池用電極触媒及びその製造方法
US7820290B2 (en) 2004-08-19 2010-10-26 Toray Industries, Inc. Water dispersible carbon fiber and water dispersible chopped carbon fiber
JP2011146373A (ja) * 2009-12-17 2011-07-28 Toray Ind Inc ガス拡散電極基材の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158350A (ja) * 2003-11-21 2005-06-16 Mitsubishi Pencil Co Ltd 燃料電池用電極触媒及びその製造方法
US7820290B2 (en) 2004-08-19 2010-10-26 Toray Industries, Inc. Water dispersible carbon fiber and water dispersible chopped carbon fiber
KR101154279B1 (ko) * 2004-08-19 2012-06-13 도레이 카부시키가이샤 수계 프로세스용 탄소섬유 및 수계 프로세스용 촙드탄소섬유
JP2011146373A (ja) * 2009-12-17 2011-07-28 Toray Ind Inc ガス拡散電極基材の製造方法

Similar Documents

Publication Publication Date Title
US5648027A (en) Porous carbonaceous material and a method for producing the same
US20080057303A1 (en) Method for Manufacturing Carbon Fiber Reinforced Carbon Composite Material Suitable for Semiconductor Heat Sink
JPH0136670B2 (ja)
JP2001126744A (ja) 燃料電池用セパレータおよびその製造方法
JP3142587B2 (ja) 炭素質組成物、燃料電池用炭素材およびその製造方法
JPH02106876A (ja) 燃料電池用多孔性炭素電極基板の製造方法
JPH0449747B2 (ja)
JPH082979A (ja) 多孔質炭素材およびその製造方法
JP2000021421A (ja) 固体高分子型燃料電池用セパレータ部材及びその製造方法
JPH05325984A (ja) 炭素質予備成形体とその製造方法並びに燃料電池用電極基板の製造方法
JPH05205750A (ja) 炭素質予備成形体及び燃料電池用電極基板の製造方法
JPH06135770A (ja) 炭素質予備成形体とその製造方法並びに電極基板の製造方法
JPH0644978A (ja) 燃料電池電極板の製造方法
JPH0578182A (ja) 多孔質炭素成形品の製法および電極材
JPH0757741A (ja) 炭素質予備成形体、および電極基板の製造方法
JPH06329469A (ja) 炭素質予備成形体、および電極基板の製造方法
JPH11185771A (ja) 抄紙体および燃料電池用多孔質炭素板の製造方法
JPH0517260A (ja) 炭素質多孔体の製造方法
JPS63967A (ja) 燃料電池用電極基板の製造方法
JPH04284363A (ja) 炭素板の製造方法
JPS60239358A (ja) 炭素質薄板およびその製造方法
JPH09157065A (ja) 炭素質多孔体及び多孔質複合シートの製造方法
JPS61186209A (ja) 炭素多孔体の製造法
JPS62171908A (ja) 炭素板の製造方法
JPS59141170A (ja) 燃料電池用電極基板及びその製造方法