JPH0517435Y2 - - Google Patents

Info

Publication number
JPH0517435Y2
JPH0517435Y2 JP1987160001U JP16000187U JPH0517435Y2 JP H0517435 Y2 JPH0517435 Y2 JP H0517435Y2 JP 1987160001 U JP1987160001 U JP 1987160001U JP 16000187 U JP16000187 U JP 16000187U JP H0517435 Y2 JPH0517435 Y2 JP H0517435Y2
Authority
JP
Japan
Prior art keywords
pressure
solenoid valve
auto
valve
way solenoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987160001U
Other languages
Japanese (ja)
Other versions
JPH01114996U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987160001U priority Critical patent/JPH0517435Y2/ja
Publication of JPH01114996U publication Critical patent/JPH01114996U/ja
Application granted granted Critical
Publication of JPH0517435Y2 publication Critical patent/JPH0517435Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、圧縮機の無負荷運転時レシーバタン
ク内の圧縮空気をパージして無負荷運転動力を軽
減するように構成した圧縮機の無負荷動力軽減装
置に関する。
[Detailed description of the invention] (Field of industrial application) The present invention is a compressor that is configured to purge the compressed air in the receiver tank during no-load operation of the compressor to reduce the no-load operation power. The present invention relates to a load power reduction device.

(従来技術) 従来、圧縮機には吸入空気の容量制御を行うア
ンローダ装置と連動し、無負荷運転時吐出側の背
圧を一定圧力までパージさせ、該運転時における
動力の軽減を図るようにした無負荷時動力軽減装
置が設けられている。かかる装置としては、実開
昭48−57704号公報に示すものが知られている。
(Prior art) Conventionally, a compressor is linked with an unloader device that controls the capacity of intake air, and the back pressure on the discharge side is purged to a constant pressure during no-load operation, in order to reduce power consumption during such operation. A no-load power reduction device is provided. As such a device, one shown in Japanese Utility Model Application Publication No. 48-57704 is known.

この装置は、圧縮機の無負荷運転移行時吸気閉
塞弁を閉じると共に吸入口の負圧を検知してパー
ジ弁を動作せしめ、油分離器内の圧力を保圧弁の
設定圧力(1.5〜2kgf/cm2ゲージ圧力)まで下げ
無負荷運転状態を維持すると共に、圧縮機の停止
時には別途配置の電磁弁からのパイロツト圧によ
り作動する圧縮空気自動放出弁を動作せしめ、前
記油分離器内の圧縮空気を0kgf/cm2ゲージ圧力
まで大気開放する。
This device closes the intake blockage valve when the compressor transitions to no-load operation, detects negative pressure at the suction port, operates the purge valve, and adjusts the pressure inside the oil separator to the pressure set by the pressure holding valve (1.5 to 2 kgf/ cm 2 gauge pressure) to maintain a no-load operating state, and when the compressor is stopped, an automatic compressed air release valve, which is operated by pilot pressure from a separately installed solenoid valve, is activated to release the compressed air in the oil separator. is released to the atmosphere to a pressure of 0 kgf/cm 2 gauge.

そして、前記パージ弁には通常電磁弁が用いら
れるのが普通で、比較的大型の電磁弁を用いる割
にはその吐出容量は少く、前記圧縮空気自動放出
弁に比べ少いのが普通である。
A solenoid valve is normally used as the purge valve, and although a relatively large solenoid valve is used, its discharge capacity is small, and is usually smaller than that of the automatic compressed air release valve. .

(考案が解決しようとする問題点) 以上のように、従来の圧縮機に用いられるパー
ジ弁と圧縮空気自動放出弁は、共に油分離器内の
圧縮空気を大気放出するという共通の作用を有し
つつも、各々は個別に配設され制御されている。
(Problems to be solved by the invention) As described above, the purge valve and automatic compressed air release valve used in conventional compressors both have the common function of releasing the compressed air in the oil separator to the atmosphere. However, each is individually arranged and controlled.

その為、圧縮機1台当りの部品点数及び配管本
数も自ずと多く、装置全体の構造及びその電気制
御系統も複雑でかつコスト高となつている。
Therefore, the number of parts and pipes per compressor is naturally large, and the structure of the entire device and its electrical control system are also complex and costly.

それと共に、前記パージ弁は電磁弁構造のもの
であるから、高価でかつ無負荷運転移行時のパー
ジ時間も長く、特に圧縮機の全負荷、無負荷間の
動作頻度が多い場合には応答性に劣り充分な無負
荷動力の低減効果が得られないという問題点を有
している。
At the same time, since the purge valve has a solenoid valve structure, it is expensive and takes a long time to purge when transitioning to no-load operation, and the responsiveness is particularly low when the compressor frequently operates between full load and no-load operation. However, the problem is that a sufficient no-load power reduction effect cannot be obtained.

(考案の目的) 本考案は、以上の問題点に鑑み、圧縮空気自動
放出弁に無負荷運転移行時のレシーバタンク圧パ
ージ用と圧縮機停止時における前記タンク圧開放
用の二つの機能を果させ、構造の簡素化と圧縮空
気パージ時間の短縮を図り、安価でしかも応答性
能のよい無負荷動力軽減装置を提供することを目
的とする。
(Purpose of the invention) In view of the above problems, the present invention provides an automatic compressed air release valve with two functions: purging the receiver tank pressure when transitioning to no-load operation, and releasing the tank pressure when the compressor is stopped. The present invention aims to simplify the structure and shorten the compressed air purge time, and to provide an inexpensive no-load power reduction device with good response performance.

(考案の構成) 以上の目的を達成する為に、本考案は吸入口に
吸入空気制御用のアンローダ装置を有し、停止時
レシーバタンク内圧を大気へ自動放出するオート
レリーフバルブを備えた圧縮機において、前記吸
入口には負圧検知用の圧力スイツチVSを、レシ
ーバタンク側には内圧低下検知用の圧力スイツチ
VSを設け、レシーバタンクとオートレリーフバ
ルブ間を三方電磁弁を介してパイロツト配管で接
続すると共に、圧縮機の停止信号、前記圧力スイ
ツチVSおよびPSからの信号に基づき前記三方電
磁弁SVを切り替えオートレリーフバルブを開閉
するよう構成せしめ、圧縮機の停止時は該停止信
号により、また前記圧力スイツチVSの負圧検知
時は該負圧検知信号により前記三方電磁弁SVを
オートレリーフバルブが開く側に切り替え、一方
前記圧力スイツチPSの内圧低下検知時は該信号
により前記三方電磁弁SVをオートレリーフバル
ブが閉じる側に切り替えるよう構成したことを特
徴とする。
(Structure of the invention) In order to achieve the above objectives, the present invention is a compressor equipped with an unloader device for controlling intake air at the suction port and an auto-relief valve that automatically releases the internal pressure of the receiver tank to the atmosphere when stopped. , a pressure switch VS for detecting negative pressure is installed at the suction port, and a pressure switch VS for detecting a drop in internal pressure is installed at the receiver tank side.
A VS is provided, and the receiver tank and the auto relief valve are connected by pilot piping via a three-way solenoid valve, and the three-way solenoid valve SV is automatically switched based on the compressor stop signal and signals from the pressure switches VS and PS. The relief valve is configured to open and close, and when the compressor is stopped, the stop signal is used, and when the pressure switch VS detects negative pressure, the negative pressure detection signal causes the three-way solenoid valve SV to be set to the side where the auto relief valve opens. On the other hand, when a drop in the internal pressure of the pressure switch PS is detected, the three-way solenoid valve SV is switched to the side where the auto-relief valve closes based on the signal.

(実施例) 以下第1図及び第2図に基づき、本考案実施例
について説明する。
(Example) An example of the present invention will be described below based on FIGS. 1 and 2.

圧縮機本体1の吸入口2にはアンローダ装置3
が設けられ、レシーバタンク4、配管5、レギユ
レータ6、逆止弁7、配管8を介して導入される
圧縮空気により圧縮機本体1内に流入する吸入空
気量を制御する。
An unloader device 3 is installed at the suction port 2 of the compressor body 1.
is provided to control the amount of intake air flowing into the compressor main body 1 by compressed air introduced via the receiver tank 4, piping 5, regulator 6, check valve 7, and piping 8.

また、吸入口2には負圧検知用の圧力スイツチ
VS及びアンローダ復帰用の三方電磁弁SVVが接
続されている。
In addition, the suction port 2 has a pressure switch for negative pressure detection.
VS and three-way solenoid valve SVV for unloader return are connected.

この電磁弁は、圧縮機の無負荷運転時吸入室2
内の過度の真空を緩和するもので、全負荷運転中
は配管9,11が連通、配管10は閉、無負荷運
転中は配管10,11が連通、配管9は閉となる
ように設定されている。
This solenoid valve is used in the suction chamber 2 during no-load operation of the compressor.
It is set so that during full load operation, pipes 9 and 11 are in communication and pipe 10 is closed, and during no-load operation, pipes 10 and 11 are in communication and pipe 9 is closed. ing.

なお、12は絞りである。 Note that 12 is an aperture.

一方、レシーバタンク4に接続する配管5には
配管13を介してドレーンタンク14が接続し、
その下方底部にはオートレリーフバルブ15が設
けられ、前記ドレーンタンク14からパイロツト
配管16,16′三方電磁弁SVを介して導入され
るパイロツト圧により、レシーバタンク4内の圧
縮空気を大気開放するようになつている。
On the other hand, a drain tank 14 is connected to the pipe 5 connected to the receiver tank 4 via a pipe 13.
An auto-relief valve 15 is provided at the bottom of the receiver tank 4, and is configured to release the compressed air in the receiver tank 4 to the atmosphere by pilot pressure introduced from the drain tank 14 through the pilot piping 16, 16' and the three-way solenoid valve SV. It's getting old.

即ち、三方電磁弁SVのポートaはパイロツト
配管16を介してドレーンタンク14と連通し、
その他方のポートcよりパイロツト配管16′を
介してオートレリーフバルブ15のダイヤフラム
室17と接続している。
That is, port a of the three-way solenoid valve SV communicates with the drain tank 14 via the pilot pipe 16,
The other port c is connected to the diaphragm chamber 17 of the auto relief valve 15 via a pilot pipe 16'.

さらに、もう一方のポートbは大気と連通する
排気ポートとなつている。
Furthermore, the other port b serves as an exhaust port communicating with the atmosphere.

また、レシーバタンク4には、該タンク内圧が
ある一定圧力(1.5〜2kgf/cm2ゲージ圧力)まで
低下したときに、これを検知して三方電磁弁SV
を動作させる圧力スイツチPSが設けられると共
に、その空気取出口18には圧力調整弁兼逆止弁
19を介して供給配管20が接続し、消費側への
圧縮空気の供給が成される。
In addition, the receiver tank 4 is equipped with a three-way solenoid valve SV that detects when the tank internal pressure drops to a certain pressure (1.5 to 2 kgf/cm 2 gauge pressure).
A pressure switch PS is provided to operate the air outlet 18, and a supply pipe 20 is connected to the air outlet 18 via a pressure regulating valve/check valve 19 to supply compressed air to the consumer side.

そして、前記圧力スイツチ及び三方電磁弁の電
気制御回路は第2図に示すように、電源に対して
並列に圧力スイツチVS及びPSが接続されると共
に、それらと直列に三方電磁弁SVが接続されて
いる。
As shown in Fig. 2, the electric control circuit for the pressure switch and three-way solenoid valve is such that the pressure switches VS and PS are connected in parallel to the power supply, and the three-way solenoid valve SV is connected in series with them. ing.

そして、前記圧力スイツチVSの接点は圧縮機
本体1の吸入口2内が負圧となつたときに開とな
り、正圧時は閉となる。
The contacts of the pressure switch VS are opened when the suction port 2 of the compressor main body 1 has a negative pressure, and are closed when the pressure is positive.

一方、圧力スイツチPSの接点はレシーバタン
ク内圧が後述する第3図中のP3の圧力点(通常
1.5〜2kgf/cm2)以下のときは閉、それ以上のと
きは開となるように設定されている。
On the other hand, the contact point of the pressure switch PS is connected to the receiver tank internal pressure at pressure point P 3 (usually
It is set to close when it is below 1.5 to 2 kgf/cm 2 ) and open when it is above that.

また、図においてRUNは始動スイツチ、
STOPは停止スイツチ、MCは電磁開閉器を示
す。
Also, in the figure, RUN is the start switch,
STOP indicates a stop switch, and MC indicates an electromagnetic switch.

次いで、第1図ないし第3図によりその作用を
説明する。
Next, the operation will be explained with reference to FIGS. 1 to 3.

まず、第2図に示す始動スイツチRUNを押し
圧縮機を運転すると、アンローダ装置3より吸入
され圧縮された空気はレシーバタンク4内に蓄圧
され、第3図のP1若しくはその近傍圧力で消費
側に供給される。このとき、三方電磁弁SVは圧
力スイツチVSの接点が閉、圧力スイツチPSの接
点が開となつているので通電され、第1図中A側
に位置している。
First, when the start switch RUN shown in Fig. 2 is pressed to operate the compressor, the air sucked in from the unloader device 3 and compressed is accumulated in the receiver tank 4, and the pressure on the consumption side is at or near P 1 in Fig. 3. is supplied to At this time, the three-way solenoid valve SV is energized and located on the A side in FIG. 1 because the contacts of the pressure switch VS are closed and the contacts of the pressure switch PS are open.

次に、消費側に於て圧縮空気の消費が停止する
と、レシーバタンク4内の圧力は第3図P1から
P2に昇圧する。
Next, when the consumption of compressed air stops on the consumption side, the pressure inside the receiver tank 4 will change from P 1 in Figure 3.
Boost to P2 .

すると、レギユレータ6のニードルバルブ25
が開き、アンローダ装置3のダイヤフラム室26
内にレシーバタンク内圧が作用し、次いでアンロ
ーダバルブ27を閉塞し吸入空気を閉める。この
閉動作により、吸入口2内は急速に負圧となり、
負圧検知用の圧力スイツチVSが動作し、その接
点を開く。
Then, the needle valve 25 of the regulator 6
opens, and the diaphragm chamber 26 of the unloader device 3 opens.
The internal pressure of the receiver tank acts inside the tank, and then the unloader valve 27 is closed to close the intake air. Due to this closing operation, the inside of the suction port 2 rapidly becomes negative pressure,
Pressure switch VS for negative pressure detection operates and opens its contacts.

このとき、圧力スイツチPSの接点はレシーバ
タンク4内圧力がP3以上にある為開となつてお
り、したがつて三方電磁弁SVは非通電となり、
第1図中A側よりB側に切り替わる。
At this time, the contacts of the pressure switch PS are open because the pressure inside the receiver tank 4 is above P3 , and therefore the three-way solenoid valve SV is de-energized.
In FIG. 1, the A side is switched to the B side.

これにより、レシーバタンク内圧はドレーンタ
ンク14パイロツト配管16,16′を介してオ
ートレリーフバルブ15のダイヤフラム室17に
作用し、ピストン28を押し上げそのバルブシー
ト部29を開く、よつて、前記レシーバタンク内
圧は大気にパージされ第3図中の線イに沿つて急
速に降下し、圧力P3の点に達する。
As a result, the receiver tank internal pressure acts on the diaphragm chamber 17 of the auto-relief valve 15 through the drain tank 14 pilot piping 16, 16', pushing up the piston 28 and opening its valve seat 29. Therefore, the receiver tank internal pressure is purged into the atmosphere and rapidly falls along line A in Figure 3, reaching a point of pressure P3 .

すると、圧力スイツチPSの接点は閉となつて
前記三方電磁弁SVは通電され、第1図中B側よ
りA側に切り替わる。その為、パイロツト配管1
6,16′は閉じ、オートレリーフバルブ15に
よるパージ作用が停止し、この状態で圧縮機は無
負荷運転を継続する。
Then, the contacts of the pressure switch PS are closed and the three-way solenoid valve SV is energized, switching from the B side to the A side in FIG. Therefore, pilot piping 1
6 and 16' are closed, the purge action by the auto-relief valve 15 is stopped, and the compressor continues its no-load operation in this state.

そして、さらに無負荷運転が継続され、圧縮機
が停止されると、電磁開閉器MCの接点は開とな
り、前記三方電磁弁SVは再び非通電となつてA
側よりB側に切り替わり、オートレリーフバルブ
15を作用させてレシーバタンク4内圧を大気に
完全放気する。以上のように、電磁開閉器MCの
接点と圧力スイツチVSの接点は三方電磁弁SVと
直列に接続され、圧縮機の停止信号と圧力スイツ
チVSの負圧検知信号により圧縮機の停止時電磁
開閉器MCの接点が開となり、また圧力スイツチ
VSの負圧検知時圧力スイツチVSの接点が開とな
り、いづれの場合も三方電磁弁SVが非通電とな
り、オートレリーフバルブが開となる。
Then, when the no-load operation continues and the compressor is stopped, the contact point of the electromagnetic switch MC becomes open, and the three-way electromagnetic valve SV becomes de-energized again and the A
The side is switched from the side to the side B, and the auto relief valve 15 is activated to completely release the internal pressure of the receiver tank 4 to the atmosphere. As described above, the contacts of the electromagnetic switch MC and the pressure switch VS are connected in series with the three-way solenoid valve SV, and the electromagnetic opening/closing when the compressor is stopped is triggered by the compressor stop signal and the negative pressure detection signal of the pressure switch VS. The contact of the device MC is opened and the pressure switch is
When negative pressure is detected in VS, the pressure switch VS contact opens, and in either case, the three-way solenoid valve SV becomes de-energized and the auto-relief valve opens.

(第2実施例) 第4図及び第5図は本考案の第2実施例で、無
負荷運転移行時、圧縮機が中間負荷状態となつた
際に、レシーバタンク内圧のパージによりアンロ
ーダのダイヤフラム室26内の内圧が不足しアン
ローダバルブ27が半開きとなりチヤタリング現
象を生ずることを防止したものである。
(Second Embodiment) Figures 4 and 5 show a second embodiment of the present invention, in which when the compressor enters an intermediate load state during transition to no-load operation, the diaphragm of the unloader is removed by purging the receiver tank internal pressure. This prevents the unloader valve 27 from being half-opened due to insufficient internal pressure in the chamber 26, which would cause a chattering phenomenon.

即ち、第1実施例で説明した圧力スイツチVS,
PSの他に、消費側の供給配管20に該管内の圧
力変化を検知する圧力スイツチPSSを追加すると
共に、三方電磁弁SVVの一次側配管10′を供給
配管20に接続し、無負荷運転移行と同時に前記
供給配管20内圧を直ちにアンローダのダイヤフ
ラム室26内に導入し、レシーバタンク内圧のパ
ージに伴う圧力不足を補い、アンローダバルブ2
7を確実に閉塞し続けるようにする。
That is, the pressure switch VS explained in the first embodiment,
In addition to PS, a pressure switch PSS that detects pressure changes in the pipe is added to the supply pipe 20 on the consumption side, and the primary side pipe 10' of the three-way solenoid valve SVV is connected to the supply pipe 20 to shift to no-load operation. At the same time, the internal pressure of the supply pipe 20 is immediately introduced into the diaphragm chamber 26 of the unloader to compensate for the lack of pressure caused by purging the internal pressure of the receiver tank, and the unloader valve 2
7 to ensure that it continues to be occluded.

そして、この場合の電気制御回路は第5図に示
すようになつており、圧力スイツチPSSの接点は
供給配管20内圧がP1下方近傍以下のときは開、
それ以上のときは閉、圧力スイツチVSの接点は
吸入口2内圧が正圧の場合は開、負圧のときは閉
となるように設定し、それぞれの信号は三方電磁
弁SVVに入力するようになつている。
The electric control circuit in this case is as shown in Fig. 5, and the contacts of the pressure switch PSS are opened when the internal pressure of the supply pipe 20 is below the vicinity of the lower part of P1 .
The contacts of the pressure switch VS are set to open when the internal pressure of the suction port 2 is positive and close when the pressure is negative, and each signal is input to the three-way solenoid valve SVV. It's getting old.

さらに、圧力スイツチPSの接点はレシーバタ
ンク内圧がP3以下の場合は開、P3以上のときは
閉となるように設定され、その信号は電磁開閉器
PX1を介して三方電磁弁SVに入力するように構
成されている。そして、圧縮機の停止時電磁開閉
器MCの接点が開となり、三方電磁弁が非通電と
なり、また、圧力スイツチVSの負圧検知時圧力
スイツチVSの接点が閉、この時圧力スイツチ
PSSおよびPSの接点は閉で電磁開閉器PX1は通
電され接点が開となり、三方電磁弁が非通電とな
り、圧縮機の停止信号と前記圧力スイツチVSの
負圧検知信号路によつていづれの場合も三方電磁
弁が非通電となりオートレリーフバルブが開とな
る。
Furthermore, the contacts of the pressure switch PS are set to open when the receiver tank internal pressure is below P 3 and close when it is above P 3 , and the signal is sent to the electromagnetic switch.
It is configured to be input to the three-way solenoid valve SV via PX1. When the compressor is stopped, the contact of the electromagnetic switch MC is opened, and the three-way electromagnetic valve is de-energized, and when the pressure switch VS detects negative pressure, the contact of the pressure switch VS is closed.
The contacts of PSS and PS are closed, the solenoid switch PX1 is energized and the contact is open, and the three-way solenoid valve is de-energized. Also, the three-way solenoid valve is de-energized and the auto-relief valve is opened.

本考案第2実施例は以上のように構成したの
で、圧縮機の無負荷運転移行時は圧力スイツチ
VSは閉、圧力スイツチPSSも閉となり、アンロ
ーダのダイヤフラム室26内にはレギユレータ6
を介して導入されたレシーバタンク内圧力と、三
方電磁弁SVVを介して導入された供給配管内圧
力とが加わる。
Since the second embodiment of the present invention is constructed as described above, the pressure switch is turned off when the compressor shifts to no-load operation.
VS is closed, the pressure switch PSS is also closed, and the regulator 6 is in the diaphragm chamber 26 of the unloader.
The pressure inside the receiver tank introduced through the three-way solenoid valve SVV and the pressure inside the supply pipe introduced through the three-way solenoid valve SVV are added.

同時に、圧力スイツチPSもレシーバタンク4
内圧がP3以上にある為その接点を閉じており、
三方電磁弁SVは非通電となり、第4図中A側よ
りB側に切り替わりオートレリーフバルブ15に
よりレシーバタンク内圧を大気にパージする。
At the same time, the pressure switch PS also
Since the internal pressure is above P 3 , the contact is closed,
The three-way solenoid valve SV is de-energized and switched from the A side to the B side in FIG. 4, and the auto relief valve 15 purges the receiver tank internal pressure to the atmosphere.

このときの前記パージ動作により例えばレシー
バタンク内圧が低下しても、アンローダダイヤフ
ラム室26内には消費側供給配管20内の圧力が
加わつている為、アンローダバルブ27は確実に
閉止し続けるので、該バルブのチヤタリング現象
は生ずることはない。
Even if, for example, the internal pressure of the receiver tank decreases due to the purging operation at this time, the pressure inside the consumption-side supply pipe 20 is applied to the unloader diaphragm chamber 26, so the unloader valve 27 remains reliably closed. No valve chattering phenomenon occurs.

(第3実施例) 第6図は、第2実施例で説明したオートレリー
フバルブ15′の構造をパイロツト配管16′から
の圧力供給が遮断されたときに開、パイロツト圧
導入のときに閉となるように構成したもので、し
たがつて三方電磁弁SVの配管系統も通電時開
(B側)、非通電磁閉(A側)となるように接続さ
れており、その基本作用は第2実施例で説明した
内容と同じであるので省略する。
(Third Embodiment) Figure 6 shows the structure of the auto-relief valve 15' explained in the second embodiment, which opens when the pressure supply from the pilot pipe 16' is cut off and closes when pilot pressure is introduced. Therefore, the piping system of the three-way solenoid valve SV is also connected so that it is open when energized (B side) and closed when energized (A side), and its basic operation is as follows. Since the contents are the same as those explained in the embodiment, the explanation will be omitted.

なお、この場合パイロツト配管16″を配管1
0′と三方電磁弁SV間に追加してあるが、これは
オートレリーフバルブ15′からの放気時ドレー
ンタンク14内圧低下に伴うダイヤフラム室17
内圧の不足を供給配管20内圧力によつて補うた
めのものである。
In this case, pilot piping 16'' is connected to piping 1.
0' and the three-way solenoid valve SV, this is the diaphragm chamber 17 due to the decrease in the internal pressure of the drain tank 14 when air is released from the auto relief valve 15'.
This is to compensate for the lack of internal pressure with the internal pressure of the supply pipe 20.

また、31は逆止弁である。 Further, 31 is a check valve.

(考案の効果) 以上で説明した如く、本考案は従来機で用いる
無負荷時動力軽減用のパージ弁を廃止し、既存の
オートレリーフバルブに前記パージ弁の作用と停
止時レシーバタンク内圧の完全放気双方の作用を
果させるように構成したので、部品点数の減少と
構造の簡素化が図られる他、大容量の圧縮空気パ
ージ用の大型電磁弁も不要となり、大巾なコスト
ダウンが達成できる。
(Effects of the invention) As explained above, the present invention eliminates the purge valve used in conventional machines to reduce power during no-load conditions, and replaces the existing auto-relief valve with the effect of the purge valve and completely reduces the internal pressure of the receiver tank when stopped. Since it is configured to perform both functions of air release, it not only reduces the number of parts and simplifies the structure, but also eliminates the need for a large solenoid valve for purging large volumes of compressed air, resulting in significant cost reductions. can.

また、停止時レシーバタンクの内圧を開放する
前記オートレリーフバルブは、大容量であるた
め、無負荷運転移行時におけるレシーバタンク内
圧のパージ作用も従来以上に多量に成されるの
で、該パージ時間も短縮し全負荷、無負荷の応答
性能も一段と向上し、さらに無負荷運転時におけ
る運転動力の軽減効果も増大する。
In addition, since the auto-relief valve that releases the internal pressure of the receiver tank when stopped has a large capacity, the purging action of the receiver tank internal pressure during transition to no-load operation is performed in a larger amount than before, so the purging time is also reduced. This further improves response performance at full load and no load, and further increases the effect of reducing operating power during no load operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案装置の第1実施例の全体詳細
図、第2図はその電気制御回路図、第3図はレシ
ーバタンク内の圧力状態説明用の説明図、第4図
は第2実施例の全体詳細図、第5図はその電気制
御回路図、第6図は第3実施例の詳細図である。 1……圧縮機本体、2……吸入口、3……アン
ローダ装置、4……レシーバタンク、6……レギ
ユレータ、15……オートレリーフバルブ、1
6,16′……パイロツト配管、VS……圧力スイ
ツチ、PS……圧力スイツチ、SV……三方電磁
弁。
Fig. 1 is an overall detailed view of the first embodiment of the device of the present invention, Fig. 2 is its electrical control circuit diagram, Fig. 3 is an explanatory diagram for explaining the pressure state in the receiver tank, and Fig. 4 is the second embodiment. FIG. 5 is an electrical control circuit diagram thereof, and FIG. 6 is a detailed diagram of the third embodiment. 1... Compressor body, 2... Suction port, 3... Unloader device, 4... Receiver tank, 6... Regulator, 15... Auto relief valve, 1
6,16'...Pilot piping, VS...Pressure switch, PS...Pressure switch, SV...3-way solenoid valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 吸入口に吸入空気制御用のアンローダ装置を有
し、停止時レシーバタンク内圧を大気へ自動放出
するオートレリーフバルブを備えた圧縮機におい
て、前記吸入口には負圧検知用の圧力スイツチ
VSを、レシーバタンク側には内圧低下検知用の
圧力スイツチVSを設け、レシーバタンクとオー
トレリーフバルブ間を三方電磁弁を介してパイロ
ツト配管で接続すると共に、圧縮機の停止信号、
前記圧力スイツチVSおよびPSからの信号に基づ
き前記三方電磁弁SVを切り替えオートレリーフ
バルブを開閉するよう構成せしめ、圧縮機の停止
時は該停止信号により、また前記圧力スイツチ
VSの負圧検知信号により前記三方電磁弁SVをオ
ートレリーフバルブが開く側に切り替え、一方前
記圧力スイツチPSの内圧低下検知時は該信号に
より前記三方電磁弁SVをオートレリーフバルブ
が閉じる側に切り替えるよう構成したことを特徴
とする圧縮機の無負荷動力軽減装置。
In a compressor equipped with an unloader device for controlling intake air at the suction port and an auto-relief valve that automatically releases the internal pressure of the receiver tank to the atmosphere when stopped, the suction port is equipped with a pressure switch for detecting negative pressure.
A pressure switch VS is installed on the receiver tank side to detect internal pressure drop, and a pilot piping connects the receiver tank and auto relief valve via a three-way solenoid valve.
The three-way solenoid valve SV is switched to open and close the auto relief valve based on signals from the pressure switches VS and PS, and when the compressor is stopped, the pressure switch is
A negative pressure detection signal from VS switches the three-way solenoid valve SV to the side where the auto-relief valve opens, and when a drop in the internal pressure of the pressure switch PS is detected, the signal switches the three-way solenoid valve SV to the side where the auto-relief valve closes. A no-load power reduction device for a compressor, characterized in that it is configured as follows.
JP1987160001U 1987-10-21 1987-10-21 Expired - Lifetime JPH0517435Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987160001U JPH0517435Y2 (en) 1987-10-21 1987-10-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987160001U JPH0517435Y2 (en) 1987-10-21 1987-10-21

Publications (2)

Publication Number Publication Date
JPH01114996U JPH01114996U (en) 1989-08-02
JPH0517435Y2 true JPH0517435Y2 (en) 1993-05-11

Family

ID=31441702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987160001U Expired - Lifetime JPH0517435Y2 (en) 1987-10-21 1987-10-21

Country Status (1)

Country Link
JP (1) JPH0517435Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2814272B2 (en) * 1989-10-05 1998-10-22 北越工業株式会社 Rotary compressor capacity control method
JP5711684B2 (en) * 2012-03-19 2015-05-07 デンヨー株式会社 Engine driven compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112008B2 (en) * 1972-04-19 1976-04-15
JPS62118079A (en) * 1985-11-15 1987-05-29 Kobe Steel Ltd Intake air regulating device for displacement type compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4998805U (en) * 1972-12-18 1974-08-26
JPS5514785Y2 (en) * 1974-07-15 1980-04-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112008B2 (en) * 1972-04-19 1976-04-15
JPS62118079A (en) * 1985-11-15 1987-05-29 Kobe Steel Ltd Intake air regulating device for displacement type compressor

Also Published As

Publication number Publication date
JPH01114996U (en) 1989-08-02

Similar Documents

Publication Publication Date Title
JPH025621B2 (en)
KR20030036757A (en) Vehicle air braking system
JPH0517435Y2 (en)
JPH0739828B2 (en) Capacity control device for multi-stage compressor
JP3286807B2 (en) Control device for vacuum valve
JPS6158326B2 (en)
JP2617330B2 (en) Compressor operation control method
JP3754552B2 (en) Compressor control circuit
JP3502698B2 (en) Vacuum valve abnormality detection method
JPH0261632B2 (en)
KR970004581Y1 (en) The auxiliary brake device combined with main brake device
JPH0925661A (en) Controller of pneumatic working valve
JPH0725564Y2 (en) Refrigerator oil return controller
JPS624660Y2 (en)
JP3286806B2 (en) Control device for vacuum valve
JPH0925662A (en) Controller of pneumatic working valve
JPH0240314Y2 (en)
JPH01210761A (en) Refrigerating device
JP2784553B2 (en) Fuel injection device for internal combustion engine
JPH01187317A (en) Intake controller for internal combustion engine with supercharger
JPS624659Y2 (en)
JPH0642624A (en) Automatic transmission controller
JPH047362Y2 (en)
JPH10110684A (en) Restart time shortening device for motor compressor
JPH07217536A (en) Failure return mechanism for vacuum valve