JPH0261632B2 - - Google Patents

Info

Publication number
JPH0261632B2
JPH0261632B2 JP56178657A JP17865781A JPH0261632B2 JP H0261632 B2 JPH0261632 B2 JP H0261632B2 JP 56178657 A JP56178657 A JP 56178657A JP 17865781 A JP17865781 A JP 17865781A JP H0261632 B2 JPH0261632 B2 JP H0261632B2
Authority
JP
Japan
Prior art keywords
pressure
engine
valve
compressor
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56178657A
Other languages
Japanese (ja)
Other versions
JPS5879641A (en
Inventor
Masami Shinno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denyo Co Ltd
Original Assignee
Denyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denyo Co Ltd filed Critical Denyo Co Ltd
Priority to JP56178657A priority Critical patent/JPS5879641A/en
Publication of JPS5879641A publication Critical patent/JPS5879641A/en
Publication of JPH0261632B2 publication Critical patent/JPH0261632B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はエンジンコンプレツサの並行運転装置
に関するもので、特に1基で駆動し切れない負荷
の駆動を可能とし、又、1基で供給可能な場合は
別段の操作を要することなく、他の1基を実質的
に切り離し、待機運転状態とすることによつて、
燃料の浪費を防止できるエンジンコンプレツサの
並行運転装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a parallel operation device for engine compressors, and is particularly capable of driving loads that cannot be driven by one unit, and can be supplied by one unit. In such cases, the other unit can be virtually disconnected and put into standby operation without requiring any special operation.
This invention relates to a parallel operation device for engine compressors that can prevent wastage of fuel.

「従来の技術並びに発明が解決しようとする課
題」 近年、土木建設工事の大型化、機械化及び合理
化に伴つて圧縮空気を使用する装置が多様化、大
型化しつつある。一方において、その圧縮空気を
供給すべき可搬型のエンジンコンプレツサの大型
化も強いられているが、大型のエンジンコンプレ
ツサは可搬性に乏しく工事現場に搬入できない場
合があり、また大型のエンジンコンプレツサのみ
では、小型の圧縮空気工具の使用に際しては甚だ
不経済である、等の理由によつて、比較的小型の
エンジンコンプレツサを並行運転することが有効
となつてくる。
"Prior Art and Problems to be Solved by the Invention" In recent years, as civil engineering construction work has become larger, mechanized, and rationalized, equipment that uses compressed air has become more diverse and larger. On the other hand, there is a trend toward increasing the size of portable engine compressors that supply compressed air. For reasons such as the fact that using a compressor alone is extremely uneconomical when using a small compressed air tool, it has become effective to operate a relatively small engine compressor in parallel.

このような場合は、複数基のエンジンコンプレ
ツサの圧縮空気吐出口を、逆止弁を介して接続す
れば可能なものの如くであるが、単に逆止弁を介
して接続するだけでは、1基のコンプレツサで充
分供給可能な負荷のみの使用時にあつても、複数
基のコンプレツサが稼動することとなり、1基の
みの運転に比し、燃料消費量の総和が大きくなる
欠点があつた。
In such a case, it may be possible to connect the compressed air outlets of multiple engine compressors via check valves, but simply connecting them via check valves does not Even when only a load that can be sufficiently supplied by one compressor is used, multiple compressors are operated, which has the disadvantage that the total amount of fuel consumption becomes larger than when only one compressor is operated.

そこで、本発明は、上記事情に鑑み、圧縮空気
の使用量が少なく1基のエンジンコンプレツサの
供給能力で済む場合には主機のエンジンコンプレ
ツサで圧縮空気を供給すると共に、従機のエンジ
ンコンプレツサを低速運転させて燃料消費量の節
減を図り、又圧縮空気の使用量が1台のエンジン
コンプレツサの供給能力を超えた場合には主従の
エンジンコンプレツサの両者を自動的に稼動し得
るエンジンコンプレツサの並行運転装置を提供せ
んとするものである。
Therefore, in view of the above circumstances, the present invention aims to supply compressed air with the engine compressor of the main engine and to supply the compressed air with the engine compressor of the slave engine when the amount of compressed air used is small and the supply capacity of one engine compressor is sufficient. The compressor is operated at low speed to reduce fuel consumption, and if the amount of compressed air used exceeds the supply capacity of one engine compressor, both the master and slave engine compressors can be operated automatically. The present invention aims to provide a parallel operation device for engine compressors.

「課題を解決しようとする手段並びに作用」 本発明は、上記目的を達成すべくなされたもの
で、コンプレツサ本体で圧縮された圧縮空気が導
入されるレシーバタンクの圧力値が、圧力調整弁
による設定圧以下でエンジンの回転数を高速側に
制御する回転速度調整器を備えたエンジンコンプ
レツサにおいて、主機と従機のエンジンコンプレ
ツサをそれぞれ逆止弁を介して接続し、圧縮空気
の使用量が少なくて吐出弁側の圧力値が高く圧力
スイツチがONとしている状態では主機のエンジ
ンコンプレツサが吐出弁側の圧縮空気の圧力値と
圧力調整弁による設定圧との対比により回転速度
調整器でエンジンの回転数を制御しながら該主機
のエンジンコンプレツサから圧縮空気を供給す
る。この時、圧力スイツチはONしているので、
従機の放出弁が開放して保圧弁で規制されるかな
り低い圧力値までレシーバタンクの圧力が低下し
て保圧弁が閉じる。そして、このレシーバタンク
の低圧が、上記圧力スイツチのONで開路する側
流弁を介して回転速度調整器に供与してエンジン
を低速運転にする。この時は、従機の圧力調整弁
は閉じている。圧縮空気の使用量が増えて吐出弁
での圧縮空気の圧力値が低下し、上記圧力スイツ
チがOFFすると、放出弁はもとより側流弁が閉
じるので、回転速度調整器には圧縮空気が供給さ
れずに高速側に切換わつてエンジンが高速運転に
なつて、主従両者のエンジンコンプレツサから圧
縮空気が吐出されるものである。
"Means and operations for solving the problem" The present invention has been made to achieve the above object, and the pressure value of the receiver tank into which the compressed air compressed by the compressor body is introduced is set by the pressure regulating valve. In an engine compressor equipped with a rotation speed regulator that controls the engine rotation speed to a high speed side below the pressure, the main and slave engine compressors are connected via check valves to reduce the amount of compressed air used. If the pressure value on the discharge valve side is high and the pressure switch is turned on, the engine compressor of the main engine controls the engine speed using the rotation speed regulator by comparing the pressure value of the compressed air on the discharge valve side and the set pressure by the pressure regulating valve. Compressed air is supplied from the engine compressor of the main engine while controlling the rotation speed of the main engine. At this time, the pressure switch is on, so
The discharge valve of the slave unit opens, the pressure in the receiver tank decreases to a fairly low pressure value regulated by the pressure holding valve, and the pressure holding valve closes. Then, the low pressure in the receiver tank is supplied to the rotational speed regulator via the side flow valve, which opens when the pressure switch is turned on, thereby causing the engine to operate at a low speed. At this time, the pressure regulating valve of the slave unit is closed. When the amount of compressed air used increases and the pressure value of the compressed air at the discharge valve decreases, and the pressure switch is turned off, not only the discharge valve but also the side flow valve closes, so compressed air is not supplied to the rotation speed regulator. In this case, the engine switches to the high speed side without stopping, and the engine operates at high speed, and compressed air is discharged from both the main and slave engine compressors.

「実施例」 以下本発明の一実施例を図面に基づき説明す
る。尚、本発明は数基の並行運転においても使用
可能であるが、説明の便宜上主機と従基2基のエ
ンジンコンプレツサの並行運転について説明す
る。
``Example'' An example of the present invention will be described below based on the drawings. Although the present invention can be used in parallel operation of several engine compressors, for convenience of explanation, parallel operation of a main engine and two slave engine compressors will be described.

第1図は本発明の構成を示すブロツク図であ
り、負荷の圧縮空気使用量を検出して、主機の稼
動のみで足りる場合にあつては、逆止弁を介して
並行接続されている従機のレシーバタンク内圧を
低圧にすると共に、エンジンの回転数(回転速
度)を低速の待機運転状態に制御し、主機のみの
稼動では供給不足となる場合にあつては、主機と
従機を共に稼動するようにしたものである。
Fig. 1 is a block diagram showing the configuration of the present invention, and when it is sufficient to detect the amount of compressed air used by the load and operate the main engine, the secondary engine is connected in parallel via a check valve. In addition to lowering the internal pressure of the receiver tank of the machine, the engine speed (rotation speed) is controlled to a low-speed standby operating state, and if operating the main engine alone results in insufficient supply, both the main engine and slave engine can be operated. It was made to work.

即ち、複数基のエンジンコンプレツサを単に並
行運転するものではなく、負荷の圧縮空気使用量
を検出して従機の稼動を自動制御するものであ
る。以下に実施例装置を説明すると、第2図に示
した実施例は同一機種から成るエンジンコンプレ
ツサ1,1′の2基を並設したもので、2,2′は
コンプレツサ本体であり該コンプレツサ本体の吸
気量を調整する容量調整器3,3′を有する。4,
4′はレシーバタンク、5,5′は圧力調整弁で、
レシーバタンク4,4′の内圧が7Kg/cm2で開き
始め、7.8Kg/cm2で全開するものである。6,
6′はエンジン回転数を制御する回転速度調整器
で、ダイヤフラム室6a,6a′内圧力の変動によ
り揺動杆6b,6b′が揺動し、該揺動杆6b,6
b′に連結された図示しないエンジン調速器が制御
され、これによりエンジンの回転速度が調整され
る。7,7′はレシーバタンク4,4′に接続され
た保圧弁で、レシーバタンク内圧が3Kg/cm2程度
以下で全閉する弁である。以上は従来より公知の
エンジンコンプレツサと同一の構成である。
That is, rather than simply operating a plurality of engine compressors in parallel, the system detects the amount of compressed air used by the load and automatically controls the operation of the slave units. The embodiment shown in FIG. 2 is an embodiment in which two engine compressors 1 and 1' of the same model are installed in parallel, and 2 and 2' are compressor bodies. It has capacity regulators 3, 3' for adjusting the intake air amount of the main body. 4,
4' is the receiver tank, 5 and 5' are the pressure regulating valves,
The receiver tanks 4, 4' begin to open at an internal pressure of 7 kg/cm 2 and fully open at 7.8 kg/cm 2 . 6,
Reference numeral 6' denotes a rotational speed regulator for controlling the engine rotational speed, and the swinging rods 6b, 6b' swing due to fluctuations in the pressure inside the diaphragm chambers 6a, 6a'.
An engine speed governor (not shown) connected to b' is controlled, thereby adjusting the rotational speed of the engine. Reference numerals 7 and 7' denote pressure holding valves connected to the receiver tanks 4 and 4', which are fully closed when the receiver tank internal pressure is about 3 kg/cm 2 or less. The above configuration is the same as that of a conventionally known engine compressor.

8,8′は前記圧力調整弁5,5′の両端に接続
された側流弁で、電磁ソレノイドに通電すること
によつて開放し、電流遮断によつて閉塞される。
Reference numerals 8 and 8' denote side flow valves connected to both ends of the pressure regulating valves 5 and 5', which are opened by energizing an electromagnetic solenoid and closed by cutting off the current.

一方、保圧弁7,7′のレシーバタンク4,
4′側他端には逆止弁9,9′が接続され、保圧弁
側への空気流入は皆無となる。又、上記保圧弁
7,7′と逆止弁9,9′を接続する管路の途中に
は前記側流弁8,8′と同一構造の放出弁10,
10′を設け、レシーバタンク4,4′内の圧縮空
気を大気中に開放できるように構成し、逆止弁
9,9′の保圧弁7,7′側他端を管路で接続し、
吐出弁11,11…を設ける。該管路に圧縮空気
使用量検出器としての圧力スイツチ12を備える
と共に、主機と従機を切換える切換スイツチ13
を設け、該圧力スイツチ12の作動によつて前記
放出弁10及び側流弁8又は切換スイツチ13の
切換状態に応じて放出弁10′及び側流弁8′が開
放される構成にする。
On the other hand, the receiver tank 4 of the pressure holding valve 7, 7'
Check valves 9 and 9' are connected to the other end on the 4' side, so that no air flows into the pressure holding valve side. Also, in the middle of the pipe connecting the pressure holding valves 7, 7' and the check valves 9, 9', there are discharge valves 10, which have the same structure as the side flow valves 8, 8'.
10' is provided so that the compressed air in the receiver tanks 4, 4' can be released to the atmosphere, and the other ends of the check valves 9, 9' on the pressure holding valves 7, 7' side are connected by a pipe,
Discharge valves 11, 11... are provided. The pipeline is equipped with a pressure switch 12 as a compressed air usage amount detector, and a changeover switch 13 for switching between the main engine and the slave engine.
is provided, and the discharge valve 10' and the side flow valve 8' are opened according to the switching state of the discharge valve 10 and the side flow valve 8 or the changeover switch 13 by the operation of the pressure switch 12.

以上の如く構成であるから、吐出弁11,11
……を全て閉止した状態で主機1及び従機1′の
エンジンを始動すれば、コンプレツサ本体2,
2′が容量調整器3,3′を介して吸気し、圧力調
整弁5,5′が開放し、回転速度調整器6,6′の
ダイヤフラム室6a,6a′及び容量調整器3,
3′のダイヤフラム室3a,3a′の内圧が上昇し、
エンジン回転を低速にすると共に、容量調整器
3,3′内の弁を閉止し、吸気できなくする。こ
のことによつてレシーバタンクの内圧は、圧力調
整弁5,5′が全開する7.8Kg/cm2まで上昇しよう
とする。
Since the configuration is as described above, the discharge valves 11, 11
If you start the engines of main engine 1 and slave engine 1' with all... closed, compressor main body 2,
2' takes in air through the capacity regulators 3, 3', the pressure regulating valves 5, 5' open, and the diaphragm chambers 6a, 6a' of the rotational speed regulators 6, 6' and the capacity regulators 3,
The internal pressure of the diaphragm chambers 3a and 3a' increases,
The engine rotation speed is reduced and the valves in the capacity regulators 3 and 3' are closed to prevent air intake. As a result, the internal pressure of the receiver tank attempts to rise to 7.8 kg/cm 2 at which the pressure regulating valves 5 and 5' are fully opened.

一方、吐出弁11,11……と逆止弁9,9′
の接続点に設けた圧力スイツチ12を、圧力が上
昇する場合にあつては、7.4Kg/cm2以上でONし、
逆に圧力が降下する場合にあつては7Kg/cm2以下
までOFFとならないような、所謂ヒステリシス
特性を具備する圧力スイツチとすれば、前記両エ
ンジンの始動後従機は7.4Kg/cm2まで空気圧が上
昇した時点で圧力スイツチ12の作動で従機1′
の具有する側流弁8′及び放出弁10′が開放され
る。そのため、レシーバタンク4′内の圧縮空気
が放出弁10′を介して大気中に放出され、主機
1側からの圧縮空気の流入は逆止弁9′によつて
阻止されていることから、レシーバタンク4′内
圧は保圧弁7′が閉塞する3Kg/cm2まで降下する
ので軽負荷となる。しかも保圧弁7′で3Kg/cm2
の如く圧力値が規制されたレシーバタンク4′の
圧縮空気は、圧力調整弁5′の閉塞に拘らず開放
された側流弁8′を介して容量調整器3′に供給さ
れてこれを全閉し、又回転速度調整器6′に供給
されてエンジンを低速運転させる。
On the other hand, the discharge valves 11, 11... and the check valves 9, 9'
If the pressure increases, turn on the pressure switch 12 installed at the connection point of 7.4Kg/cm 2 or more,
On the other hand, if the pressure switch is equipped with a so-called hysteresis characteristic that will not turn off until the pressure drops below 7Kg/cm 2 , then after starting both of the engines, the slave unit will be able to switch off up to 7.4Kg/cm 2 . When the air pressure rises, the pressure switch 12 is activated and the slave unit 1'
The side flow valve 8' and the discharge valve 10' comprising are opened. Therefore, the compressed air in the receiver tank 4' is released into the atmosphere via the release valve 10', and since the inflow of compressed air from the main engine 1 side is blocked by the check valve 9', the receiver The internal pressure of the tank 4' drops to 3 kg/cm 2 at which the pressure holding valve 7' is closed, resulting in a light load. Moreover, the pressure retention valve 7' is 3Kg/cm 2
The compressed air in the receiver tank 4' whose pressure value is regulated as shown in FIG. The engine is closed and supplied to the rotational speed regulator 6' to operate the engine at a low speed.

その後、吐出弁11,11……後方に負荷を接
続し、該吐出弁11,11……を開放させて負荷
装置に圧縮空気を供給する。この時吐出弁11,
11…に供与されている圧縮空気は主機1のエン
ジンコンプレツサからのものであり、吐出弁1
1,11…の開放直前まで圧力調整弁5で規制さ
れている。7.8Kg/cm2程度の圧力値を呈しており、
吐出弁11,11…から圧縮空気を吐出させるに
従つて、この圧力値は低下する。この圧力値が
7.8Kg/cm2から低下するにつれて圧力調整弁5が
徐々に閉じ始め、この閉じ状態に応じて回転速度
調整器6がエンジンを高速側に向つて制御すると
共に、容量調整器3の開度を増やして吸気量、つ
まり圧縮量の増大化を図る、吐出弁11,11…
側の圧力値が7.0Kg/cm2まで降下すると、圧力調
整弁5が全閉するので回転速度調整器6がエンジ
ンを定格の最高速度まで制御し、かつ容量調整器
3が全開となり、主機1による圧縮空気の供給能
力が限界となる。この限界を超える7.0Kg/cm2
下で上記圧力スイツチ12がOFFするために、
側流弁8′及び放出弁10′が閉じ、ダイヤフラム
室6a′,3a′に加わつていた3Kg/cm2の圧力は、
通気孔a′から逃げて圧力が低下し、回転速度調整
器6′が高速側へ切換わり、容量調整器3′が全開
する。このためエンジンの高速運転と容量調整器
3′の全開とで従機1′からも圧縮空気を供給す
る。従つて、この状態では主機1と従機1′との
両者から圧縮空気を負荷に向けて供給する。この
状態は、吐出弁11,11…側の圧力が7.4Kg/
cm2を超えるまで、つまり圧力スイツチ12がON
するまで両者から圧縮空気が供給されるが、7.0
Kg/cm2から7.4Kg/cm2までの間では、各圧力調整
弁5,5′の開度が変化し、この変化に伴い回転
速度調整器6,6′によるエンジンの回転速度が
制御され、又容量調整器3,3′の開度も制御さ
れる。吐出弁11,11…側の圧力が7.4Kg/cm2
より上昇すると圧力スイツチ12がONして従機
1の側流弁5′及び放出弁10′が開いて、上記と
同様に軽負荷で低速運転をする。上記動作におい
て圧力スイツチ7.0Kg/cm2以下でOFFし、7.4Kg/
cm2を超えるとONするように動作圧に差を持たせ
たことから、チヤツタリングの如き動作を防止し
得るようになつている。
Thereafter, a load is connected to the rear of the discharge valves 11, 11, . . ., and the discharge valves 11, 11, . . . are opened to supply compressed air to the load device. At this time, the discharge valve 11,
The compressed air supplied to 11... is from the engine compressor of the main engine 1, and the compressed air is supplied to the discharge valve 1.
The pressure is regulated by the pressure regulating valve 5 until immediately before the valves 1, 11... are opened. It exhibits a pressure value of about 7.8Kg/cm2,
As the compressed air is discharged from the discharge valves 11, 11..., this pressure value decreases. This pressure value
As the pressure decreases from 7.8 Kg/cm 2 , the pressure regulating valve 5 gradually begins to close, and depending on this closed state, the rotational speed regulator 6 controls the engine toward high speed, and also controls the opening degree of the capacity regulator 3. The discharge valves 11, 11, which increase the amount of intake air, that is, the amount of compression,...
When the side pressure value drops to 7.0Kg/cm 2 , the pressure regulating valve 5 is fully closed, the rotational speed regulator 6 controls the engine to the maximum rated speed, and the capacity regulator 3 is fully opened, causing the main engine 1 The compressed air supply capacity is at its limit. In order to turn off the pressure switch 12 at 7.0Kg/cm 2 or less, which exceeds this limit,
When the side flow valve 8' and the discharge valve 10' are closed, the pressure of 3 Kg/cm 2 applied to the diaphragm chambers 6a' and 3a' is:
The pressure is reduced by escaping through the vent hole a', the rotational speed regulator 6' is switched to the high speed side, and the capacity regulator 3' is fully opened. Therefore, by operating the engine at high speed and fully opening the capacity regulator 3', compressed air is also supplied from the slave unit 1'. Therefore, in this state, compressed air is supplied to the load from both the main engine 1 and the slave engine 1'. In this state, the pressure on the discharge valves 11, 11... side is 7.4Kg/
cm 2 , that is, pressure switch 12 is ON.
Compressed air is supplied from both until 7.0
Between Kg/cm 2 and 7.4 Kg/cm 2 , the opening degree of each pressure regulating valve 5, 5' changes, and the rotational speed of the engine is controlled by the rotational speed regulator 6, 6' in accordance with this change. , the opening degrees of the capacity regulators 3, 3' are also controlled. The pressure on the discharge valve 11, 11... side is 7.4Kg/cm 2
When the pressure rises further, the pressure switch 12 is turned on and the side flow valve 5' and discharge valve 10' of the slave unit 1 are opened, and the same low load and low speed operation as described above is performed. In the above operation, the pressure switch turns OFF at 7.0Kg/cm 2 or less, and the pressure switch turns OFF at 7.4Kg/cm 2 or less.
By creating a difference in operating pressure so that it turns on when the pressure exceeds cm 2 , it is possible to prevent operations such as chattering.

又、主機1、従機1′ともに同一の構成となつ
ている故、切換スイツチ13の切換によつて主従
関係を極めて容易に変更できる。このことから、
切換スイツチ13を手動あるいは自動で切換える
ことが可能である。即ち、上記構成上主機の燃料
消費量は従機のそれに比し大きいので、燃料の残
量が所定値以下となつた場合、液位センサー等の
作動で自動的に切換えたり、或いはタイマーにて
切換えるなどして、交互に主従を変更してもよ
い。
Furthermore, since both the main machine 1 and the slave machine 1' have the same configuration, the master-slave relationship can be changed very easily by switching the changeover switch 13. From this,
The changeover switch 13 can be changed manually or automatically. In other words, because the fuel consumption of the main engine is larger than that of the slave engine due to the above configuration, when the remaining amount of fuel falls below a predetermined value, it is automatically switched by the operation of a liquid level sensor, etc., or by a timer. The master and slave may be changed alternately by switching.

以上の記載において主機と従機は同一機種の2
基のエンジンコンプレツサについて説明したが、
本発明の技術思想に基づけば、異機種の複数基で
あつてもよい。また、圧縮空気使用量検出器とし
て本実施例では圧力スイツチ12を用いたが、何
らこれに限るものではなく、従機1′の回転速度
調整器の揺動杆6b′の変位を電気的に検出しその
検出信号を利用しても同じ効果を達成することが
できる。
In the above description, the main machine and slave machine are two of the same model.
I explained about the original engine compressor,
Based on the technical idea of the present invention, a plurality of units of different models may be used. Furthermore, although the pressure switch 12 is used as the compressed air usage amount detector in this embodiment, it is not limited to this in any way, and the displacement of the swinging rod 6b' of the rotational speed regulator of the slave unit 1' can be electrically detected. The same effect can be achieved by detecting and using the detection signal.

「発明の効果」 以上の如く、本発明に係るエンジンコンプレツ
サの並行運転装置によれば、圧力スイツチ、側流
弁及び放出弁の少ない部品で周知構成の野外で利
用可能なエンジンコンプレツサを必要に応じて適
時並設し、1基で賄い切れない圧縮空気量を隋意
に供給可能に並行運転でき、しかも1基で充分に
賄い得る場合には主機から負荷に圧縮空気を供給
し、また圧縮空気の使用量が増えた時に主機と従
機との両者から負荷に圧縮空気を供給するが、こ
の切換が上記圧力スイツチ、側流弁及び放出弁の
少ない部品で自動的にかつ効果的に行うことがで
きる。又、圧力スイツチのチヤツタリングによる
誤動作もない。このため圧縮空気の使用量に応じ
て主機に対し従機を相加えて稼働させるので稼働
効率が良好であり、特に使用量が少ない時に従機
を自動的に待機させて低速運転させておくことか
ら、燃料消費量が少くて経済的なランニングコス
トを得ることができる。従つて、圧縮空気の使用
量の如何に拘らず単に同一機種のエンジンコンプ
レツサを複数基独立させて同時に並行稼働させる
場合に比較して極めて経済的である。又上記の如
く並行運転に必要とする部品が少ないことから主
機と従機とを分離して独立に稼働させ、又適時接
続して並行運転することも極めて容易であり、用
途の拡充を図ることができる。
"Effects of the Invention" As described above, according to the engine compressor parallel operation device according to the present invention, it is necessary to provide an engine compressor that can be used outdoors and has a well-known configuration with fewer parts such as a pressure switch, a side flow valve, and a discharge valve. Depending on the situation, they can be installed in parallel and operated in parallel to supply the amount of compressed air that cannot be covered by one unit, and if it can be sufficiently covered by one unit, compressed air can be supplied from the main engine to the load, and When the amount of compressed air used increases, compressed air is supplied to the load from both the main engine and the slave engine, and this switching can be done automatically and effectively using only a few components such as the pressure switch, side flow valve, and release valve. It can be carried out. Furthermore, there is no malfunction caused by chattering of the pressure switch. For this reason, the slave machine is operated in addition to the main machine depending on the amount of compressed air used, resulting in good operating efficiency, and especially when the amount of compressed air used is low, the slave machine is automatically placed on standby and operated at low speed. As a result, fuel consumption is low and economical running costs can be achieved. Therefore, it is extremely economical compared to simply operating a plurality of engine compressors of the same model independently and in parallel, regardless of the amount of compressed air used. In addition, as mentioned above, since there are few parts required for parallel operation, it is extremely easy to separate the main engine and slave engine and operate them independently, or to connect them at the appropriate time for parallel operation, thereby expanding the range of applications. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロツク図、第2
図は本発明に係るエンジンコンプレツサの並行運
転装置を示す構成概要図である。 1……主機、1′……従機、2,2′……コンプ
レツサ本体、3,3′……容量調整器、4,4′…
…レシーバタンク、5,5……圧力調整弁、6,
6′……回転速度調整器、7,7′……保圧弁、
8,8′……側流弁、9,9′……逆止弁、10,
10′……放出弁、11,11……吐出弁、12,
12′……圧力スイツチ(圧縮空気使用検出器)、
13……切換スイツチ。
Figure 1 is a block diagram showing the configuration of the present invention, Figure 2 is a block diagram showing the configuration of the present invention.
The figure is a schematic configuration diagram showing a parallel operation device for an engine compressor according to the present invention. 1... Main engine, 1'... Slave machine, 2, 2'... Compressor main body, 3, 3'... Capacity regulator, 4, 4'...
... Receiver tank, 5, 5 ... Pressure regulating valve, 6,
6'...Rotation speed regulator, 7,7'...Pressure valve,
8, 8'... Side flow valve, 9, 9'... Check valve, 10,
10'...Discharge valve, 11, 11...Discharge valve, 12,
12'...Pressure switch (compressed air usage detector),
13... Changeover switch.

Claims (1)

【特許請求の範囲】[Claims] 1 コンプレツサ本体で圧縮された圧縮空気が導
入されるレシーバタンクの圧力値が、圧力調整弁
による設定圧以下でエンジンの回転数を高速側に
制御する回転速度調整器を備えたエンジンコンプ
レツサにおいて、主機のエンジンコンプレツサと
従機のエンジンコンプレツサとを有し、主従のエ
ンジンコンプレツサの吐出口を、それぞれ逆止弁
を介在させて吐出弁に共通に接続し、各エンジン
コンプレツサの吐出口が共通に接続された吐出弁
の入力部には、主従のエンジンコンプレツサの圧
力調整弁の設定値より低い圧力値でON,OFF
し、かつONする圧力値よりOFFする圧力値を低
く設定した動作圧に差を持つ圧力スイツチを設
け、該圧力スイツチのONで開路する側流弁を従
機のエンジンコンプレツサの圧力調整弁に、回転
速度調整器が低速側に切換わる方向に圧縮空気で
作動可能なバイパス路として並列に接続し、又上
記圧力スイツチのONで大気と連通するように開
放する放出弁とを従機のエンジンコンプレツサの
レシーバタンクに、上記圧力調整弁及び圧力スイ
ツチの設定値よりかなり低い圧力値以下で閉じる
保圧弁を介して接続したことを特徴とするエンジ
ンコンプレツサの並行運転装置。
1. In an engine compressor equipped with a rotation speed regulator that controls the engine rotation speed to a high speed side when the pressure value of the receiver tank into which the compressed air compressed by the compressor body is introduced is below the set pressure by the pressure regulating valve. It has a main engine compressor and a slave engine compressor, and the discharge ports of the main and slave engine compressors are commonly connected to the discharge valve through a check valve, and the discharge ports of each engine compressor are connected in common to the discharge valve through a check valve. The input section of the discharge valve that is connected in common is turned ON and OFF at a pressure value lower than the set value of the pressure regulating valve of the master and slave engine compressors.
In addition, a pressure switch with a difference in operating pressure is set, with the pressure value for turning off lower than the pressure value for turning on, and a side flow valve that opens when the pressure switch is turned on is connected to the pressure regulating valve of the slave engine compressor. , the rotation speed regulator is connected in parallel as a bypass path that can be operated with compressed air in the direction of switching to the low speed side, and a discharge valve that opens to communicate with the atmosphere when the pressure switch is turned on is connected to the slave engine. A parallel operation device for an engine compressor, characterized in that it is connected to a receiver tank of the compressor via a pressure holding valve that closes below a pressure value considerably lower than the set values of the pressure regulating valve and pressure switch.
JP56178657A 1981-11-07 1981-11-07 Parallel running method and device of engine compressor Granted JPS5879641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56178657A JPS5879641A (en) 1981-11-07 1981-11-07 Parallel running method and device of engine compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56178657A JPS5879641A (en) 1981-11-07 1981-11-07 Parallel running method and device of engine compressor

Publications (2)

Publication Number Publication Date
JPS5879641A JPS5879641A (en) 1983-05-13
JPH0261632B2 true JPH0261632B2 (en) 1990-12-20

Family

ID=16052285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56178657A Granted JPS5879641A (en) 1981-11-07 1981-11-07 Parallel running method and device of engine compressor

Country Status (1)

Country Link
JP (1) JPS5879641A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053633A (en) * 1983-09-01 1985-03-27 Osaka Gas Co Ltd Control method for water pump device driven by engine
JPH0335857Y2 (en) * 1985-02-18 1991-07-30
JP2005330900A (en) * 2004-05-20 2005-12-02 Hitachi Industrial Equipment Systems Co Ltd Compressor unit
JP4650120B2 (en) * 2005-06-24 2011-03-16 日立工機株式会社 Check valve with air plug and compressed air supply system using the same
CN103883504A (en) * 2014-03-07 2014-06-25 中盐安徽红四方股份有限公司 DSC double pump hot standby control method for air separation unit liquid oxygen pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137406A (en) * 1977-05-07 1978-11-30 Taisei Corp Device for automatically starting engineedriven compressor
JPS5519974A (en) * 1978-07-31 1980-02-13 Ishikawajima Harima Heavy Ind Co Ltd Device for controlling discharge pressure of common discharge port of parallel-operated compressors or the like

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137406A (en) * 1977-05-07 1978-11-30 Taisei Corp Device for automatically starting engineedriven compressor
JPS5519974A (en) * 1978-07-31 1980-02-13 Ishikawajima Harima Heavy Ind Co Ltd Device for controlling discharge pressure of common discharge port of parallel-operated compressors or the like

Also Published As

Publication number Publication date
JPS5879641A (en) 1983-05-13

Similar Documents

Publication Publication Date Title
US4068980A (en) Compressor startup control
JPH01249509A (en) Hydraulic pressure supply device for hydraulic suspension
JPH0261632B2 (en)
JPH0148399B2 (en)
JPH09264255A (en) Air compressor
CN206785638U (en) A kind of bavin moves screw compressor control system
JPS63106404A (en) Hydraulic device for driving inertial body
JPS6081502A (en) Driving device of closed circuit of hydraulic actuator
JPS5954803A (en) Hydraulic system
JPS58140498A (en) Operation control of screw compressor
JP2638203B2 (en) Variable speed water supply device and its operation method
JPH077592Y2 (en) Compressor capacity control device
EP1108874A3 (en) Engine idling control device
JPH0437911A (en) Water supply controller
JP2617330B2 (en) Compressor operation control method
JPS5469676A (en) Oil pressure control system
JP2529118B2 (en) Operation control method for engine-driven compressor
JPH0126426Y2 (en)
JPH0914202A (en) Negative control circuit of construction equipment
JPH057478Y2 (en)
JPH0435616B2 (en)
JPS6357634B2 (en)
JPH0725441Y2 (en) Pressure regulator
JPH03511Y2 (en)
JPH0134316B2 (en)