JPH0693316A - Production of extremely fine copper powder - Google Patents

Production of extremely fine copper powder

Info

Publication number
JPH0693316A
JPH0693316A JP10316591A JP10316591A JPH0693316A JP H0693316 A JPH0693316 A JP H0693316A JP 10316591 A JP10316591 A JP 10316591A JP 10316591 A JP10316591 A JP 10316591A JP H0693316 A JPH0693316 A JP H0693316A
Authority
JP
Japan
Prior art keywords
copper
palladium
formate
copper powder
copper formate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10316591A
Other languages
Japanese (ja)
Inventor
Toshio Hidaka
敏雄 日高
Takamasa Kawakami
殷正 川上
Akira Makinose
暁 牧之瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP10316591A priority Critical patent/JPH0693316A/en
Priority to US07/862,218 priority patent/US5250101A/en
Priority to EP92303131A priority patent/EP0508757A1/en
Publication of JPH0693316A publication Critical patent/JPH0693316A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce an extremely fine copper powder having an extremely small primary grain diameter at a low temp. at the time of thermally decomposing copper formate in a nonoxidizing atmosphere to form copper powder by thermally decomposing the copper formate in the presence of palladium. CONSTITUTION:Copper formate (anhydrous copper formate, etc.) is thermally decomposed under reduced pressure or in a nonoxidizing atmosphere to produce copper powder. In this case, 100-6000ppm by weight of a palladium salt (palladium acetate, etc.) is incorporated into the copper formate crystal as palladium. The thermal decomposition is carried out at 100-190 deg.C, preferably at 100-160 deg.C, and the heating time is controlled to <=3hr, preferably to about 1-60min. An extremely fine copper powder having <= about 0.1mum primary grain diameter and about 5-80m<2>/g specific surface is obtained in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蟻酸銅を熱分解して銅
粉を製造する方法の改良に関し、より低温で銅粉の製造
を可能として一次粒子径が 0.1μm未満の極微細銅粉を
製造するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for producing copper powder by thermally decomposing copper formate, which is capable of producing copper powder at a lower temperature and has an ultrafine copper powder having a primary particle size of less than 0.1 μm. Is manufactured.

【0002】[0002]

【従来の技術】従来、銅粉の製造法としては、電解法、
アトマイズ法、機械的粉砕などが知られ、主に粉末冶金
などの用途に用いられている。これら方法による銅粉
は、粒子径が大きく、製造条件の制御や分別によってよ
り微細な銅粉も得られるように成ってきているが、生産
性が悪く、微細化にも自ずと限度があるものであった。
これに対して本発明者は先に、蟻酸銅を固相で熱分解す
ることにより一次粒子径が 0.2〜1 μmという微細な銅
粉を製造する方法 (特願平1-234735) を見い出した。
2. Description of the Related Art Conventionally, as a method for producing copper powder, an electrolytic method,
Atomization method and mechanical pulverization are known, and they are mainly used for powder metallurgy and other applications. The copper powder produced by these methods has a large particle size, and finer copper powder can be obtained by controlling and separating production conditions, but the productivity is poor and there is a limit to the miniaturization. there were.
On the other hand, the present inventors have previously found a method (Japanese Patent Application No. 1-234735) for producing fine copper powder having a primary particle size of 0.2 to 1 μm by thermally decomposing copper formate in a solid phase. .

【0003】[0003]

【発明が解決しようとする課題】この特願平の方法は、
蟻酸銅の熱分解温度以上の加熱を必要とするために、一
次粒子径をサブミクロンオーダー未満とすることはでき
ないものであった。そこで、より低温で、熱分解する方
法について鋭意検討した結果、パラジウムを蟻酸銅と併
用すると蟻酸銅がより低温で熱分解を開始することを見
出した。
The method of this Japanese Patent Application is
Since the heating above the thermal decomposition temperature of copper formate is required, the primary particle size cannot be set to less than the submicron order. Therefore, as a result of diligent studies on a method of thermally decomposing at a lower temperature, it was found that copper formate starts thermal decomposition at a lower temperature when palladium is used in combination with copper formate.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明は、減
圧下又は非酸化性雰囲気中で蟻酸銅を熱分解して銅粉を
製造する方法において、パラジウムを共存させてなる蟻
酸銅の熱分解を行うことを特徴とする極微細銅粉の製造
法であり、該パラジウムが、蟻酸銅結晶中に混入させて
なるものであること、蟻酸銅結晶中の重量が 100〜6,00
0ppmの範囲であること、さらに該熱分解温度が 100〜19
0 ℃の範囲である。
That is, the present invention provides a method for producing copper powder by thermally decomposing copper formate under reduced pressure or in a non-oxidizing atmosphere, wherein copper formate is pyrolyzed in the presence of palladium. Is a method for producing an ultrafine copper powder characterized in that the palladium is mixed in the copper formate crystal, the weight of the copper formate crystal is 100 ~ 6,00
It is in the range of 0 ppm, and the thermal decomposition temperature is 100 to 19
It is in the range of 0 ° C.

【0005】以下、本発明について説明する。本発明の
蟻酸銅とは無水蟻酸銅、蟻酸銅四水和物或いはこれらの
混合物などの蟻酸第二銅化合物であり、いずれも使用可
能であるが、特に無水蟻酸銅の粉末が好ましい。また、
この蟻酸銅はパラジウムが共存しないとき、試料 10mg
を窒素ガス又は水素ガス雰囲気、昇温速度 3℃/minの条
件下で昇温したときに、温度 160〜200 ℃の範囲でその
90%以上が熱分解する無水蟻酸銅粉末が好ましく、この
熱分解挙動は、より高純度の微細銅粉を得る面から好ま
しい。また、粉末は20メッシュ以下、特に 100メッシュ
以下の粉末であることが生成した銅粉の凝集粒子径の小
さいものを得る面から好ましく、蟻酸銅水和物を 130℃
以下の温度で脱水した後、粉砕したもの、又は蟻酸銅水
溶液より直接無水蟻酸銅の結晶を生成させ、これを粉砕
したもの或いは直接20メッシュ以下の無水蟻酸銅結晶粉
末として生成させてなるものである。また、製造した微
細銅粉中の不純物の低減下を図る上から、特に Na, Kな
どのアルカリ金属、硫黄、Clなどのハロゲンなどの不純
物元素の少ないものが好適である。
The present invention will be described below. The copper formate of the present invention is a cupric formate compound such as anhydrous copper formate, copper formate tetrahydrate or a mixture thereof, and any of them can be used, but anhydrous copper formate powder is particularly preferable. Also,
This copper formate is 10 mg when palladium is not present.
When the temperature is raised in a nitrogen gas or hydrogen gas atmosphere at a heating rate of 3 ° C / min, the temperature within the range of 160 to 200 ° C
Anhydrous copper formate powder in which 90% or more is thermally decomposed is preferable, and this thermal decomposition behavior is preferable from the viewpoint of obtaining finer fine copper powder. In addition, the powder is preferably 20 mesh or less, particularly 100 mesh or less from the viewpoint of obtaining a copper powder having a small aggregate particle size.
After dehydration at the following temperature, crushed ones or directly produced crystals of anhydrous copper formate from a copper formate aqueous solution, crushed or directly produced as 20-mesh or less anhydrous copper formate crystal powders. is there. Further, in order to reduce impurities in the produced fine copper powder, it is particularly preferable to use a small amount of impurity elements such as alkali metals such as Na and K and halogens such as sulfur and Cl.

【0006】上記に説明した蟻酸銅は、銅原料としては
炭酸銅、水酸化銅又は酸化銅を用い、これと蟻酸或いは
蟻酸メチルを反応させる方法によって製造されるものが
工業的に実施する場合の原料として好適である。炭酸
銅、水酸化銅又は酸化銅は、いずれも実質的に水不溶性
であることから、工業的にはより安価な銅塩類や銅の廃
材などより得られ、又、製造後、乾燥する前に洗浄など
して、上記のような不純物元素の低減化を図ることが容
易である。また、上記銅化合物の蟻酸との反応性序列
は、水酸化銅>炭酸銅>>酸化第1銅、酸化第2銅であ
り、その種類に応じてこれら銅化合物と当量以上の蟻酸
或いは蟻酸メチルとを通常、水溶媒中で混合し、室温〜
100 ℃、30分〜24時間の範囲で液相で反応させて蟻酸銅
水溶液とする。
The copper formate described above uses copper carbonate, copper hydroxide or copper oxide as a copper raw material, and is produced by a method of reacting this with formic acid or methyl formate when industrially carried out. It is suitable as a raw material. Copper carbonate, copper hydroxide, or copper oxide are all substantially water-insoluble, and thus are industrially obtained from cheaper copper salts or copper scraps, etc., or after production and before drying. It is easy to reduce the impurity elements as described above by washing. Further, the order of reactivity of the above copper compounds with formic acid is copper hydroxide> copper carbonate >> cuprous oxide, cupric oxide, and formic acid or methyl formate in an amount equal to or more than these copper compounds depending on the type. And are usually mixed in a water solvent, at room temperature to
The reaction is carried out in the liquid phase at 100 ° C for 30 minutes to 24 hours to give a copper formate aqueous solution.

【0007】例えば、硫酸銅を用い、これと炭酸ナトリ
ウム或いは炭酸水素ナトリウムを反応させて炭酸銅を製
造する場合、硫酸銅水溶液に炭酸ナトリウム或いは炭酸
水素ナトリウムを加え、温度60〜85℃で反応させて沈澱
を生成させ、この沈澱を乾燥することなく水で洗浄する
ことによって Na, Sなどの原料化合物に基づく不純物元
素を低減させる。
For example, when copper sulfate is used to produce copper carbonate by reacting it with sodium carbonate or sodium hydrogen carbonate, sodium carbonate or sodium hydrogen carbonate is added to an aqueous solution of copper sulfate and the reaction is carried out at a temperature of 60 to 85 ° C. To form a precipitate, and the precipitate is washed with water without drying to reduce impurity elements based on the raw material compounds such as Na and S.

【0008】本発明のパラジウムは、通常、パラジウム
塩の形で使用する。パラジウム塩としては、塩化パラジ
ウム、酢酸パラジウム、硝酸パラジウム、硫酸パラジウ
ムなどが挙げられ、ハロゲン、硫黄、その他の不純物を
残留させない面からは酢酸パラジウムなどの比較的低温
で分解する有機酸塩が好適である。
The palladium of the present invention is usually used in the form of a palladium salt. Examples of the palladium salt include palladium chloride, palladium acetate, palladium nitrate, palladium sulfate, and the like. From the viewpoint of not leaving halogen, sulfur, and other impurities, an organic acid salt such as palladium acetate that decomposes at a relatively low temperature is preferable. is there.

【0009】上記に説明した蟻酸銅に、パラジウムを共
存させる方法は、蟻酸銅粉末にパラジウム塩を添加し、
機械的に混合して分散させる方法と蟻酸銅の製造工程で
パラジウム塩などを添加し、蟻酸銅の結晶中にパラジウ
ムが内包された蟻酸銅として用いる方法とがある。より
少量のパラジウムでより良好な熱分解特性、より微細な
銅粉を得るためには、蟻酸銅の結晶中にパラジウムが含
有されたパラジウム含有蟻酸銅が好ましく、好適にはパ
ラジウムを重量で 100〜6,000 ppm の範囲で含む蟻酸銅
結晶が好ましい。
The method of allowing palladium to coexist in the above-described copper formate is performed by adding a palladium salt to copper formate powder,
There are a method of mechanically mixing and dispersing, and a method of adding a palladium salt or the like in the production process of copper formate and using it as copper formate in which palladium is encapsulated in crystals of copper formate. In order to obtain better thermal decomposition characteristics with a smaller amount of palladium and finer copper powder, palladium-containing copper formate containing palladium in the crystal of copper formate is preferable, and preferably 100 to 100% by weight of palladium is used. Copper formate crystals containing in the range of 6,000 ppm are preferred.

【0010】本発明で好適に使用できるパラジウム含有
蟻酸銅は、上記した蟻酸銅の製造工程において、上記し
たパラジウム塩を所定量添加し、蟻酸銅を晶析させるこ
とにより製造する。例えば、塩基性炭酸銅にメタノール
を加えスラリー状とする。88%蟻酸に所定量の酢酸パラ
ジウムを含むアセトン/メタノール(80/20容量比) を加
え全体を均一にした蟻酸溶液を上記スラリーに滴下した
後、65℃で30分間反応させた溶液から無水蟻酸銅を晶析
させ回収する方法が一例として例示される。
Palladium-containing copper formate which can be preferably used in the present invention is produced by adding a predetermined amount of the above-mentioned palladium salt and crystallizing copper formate in the above-mentioned production step of copper formate. For example, methanol is added to basic copper carbonate to form a slurry. Acetone / methanol (80/20 volume ratio) containing a certain amount of palladium acetate to 88% formic acid was added to the above slurry to form a uniform solution, and the mixture was reacted at 65 ° C for 30 minutes. A method of crystallizing and recovering copper is exemplified as an example.

【0011】上記に説明した酢酸パラジウムを用いて得
たパラジウムを含有する無水蟻酸銅の熱分解特性を TG/
DTA にて昇温速度 5deg/min 、温度範囲 30〜300 ℃に
ついて測定した結果を下記に示した。 試料番号 パラジウム含有量 熱分解温度(℃) (重量ppm) 開 始 ピーク 終 了 1 4000 120 157 165 2 3400 123 163 172 3 1400 133 166 177 4 600 147 173 183 5 270 153 178 185 6 160 160 180 187 7 0 175 210 225 上記から明瞭なように、パラジウムを含まない試料7に
比較して、分解開始温度、ピーク温度(主分解温度)、
分解終了温度において、パラジウムを含むもののが低温
側に移動したものであることが明瞭である。
The thermal decomposition characteristics of the palladium-containing anhydrous copper formate obtained by using the above-described palladium acetate were measured with TG /
The following shows the results of measurement by DTA at a heating rate of 5 deg / min and a temperature range of 30 to 300 ° C. Sample number Palladium content Pyrolysis temperature (℃) (Ppm by weight) Start peak end 1 4000 120 120 157 165 2 3400 123 123 163 172 3 1400 133 166 166 177 4 600 147 173 183 5 5 270 153 178 185 6 160 160 160 180 187 7 0 175 From the above clear 210 2 25 , Decomposition start temperature, peak temperature (main decomposition temperature), as compared to sample 7 containing no palladium,
At the decomposition end temperature, it is clear that the one containing palladium moved to the low temperature side.

【0012】本発明の熱分解は、通常、固相、非酸化性
雰囲気中、常圧下、設定する熱分解温度を 100〜190 ℃
の範囲、好ましくは 100〜160 ℃の範囲で、箱、缶、そ
の他に無水蟻酸銅を充填し、昇温し、所定温度に加熱保
持するようなバッチ式、或いは所定温度の加熱領域に連
続的に移動し、取り出されるベルトなどの上に、無水蟻
酸銅を積載し連続的に加熱領域に導入して熱分解し、取
り出すような連続式にて行うのが、簡便であり、生産性
にも優れるので好ましい。
The thermal decomposition of the present invention is usually carried out in a solid-phase, non-oxidizing atmosphere under normal pressure at a thermal decomposition temperature of 100 to 190 ° C.
, Preferably in the range of 100 to 160 ° C, in a box, can or the like, filled with anhydrous copper formate, heated to a predetermined temperature and kept batchwise, or continuously heated to a predetermined temperature. It is easy and convenient to carry out the continuous process of loading anhydrous copper formate on the belt that is taken out and taking it out and continuously introducing it into the heating area for thermal decomposition and taking it out. It is preferable because it is excellent.

【0013】ここに、固相とは、加熱温度に耐え、蟻酸
蒸気によって侵されない箱状物などに粉末を充填したも
の、或いはこのような材質の連続ベルト上に蟻酸銅を載
せたものなどであり、充填或いは積載量と得られる微細
銅粉の凝集性との関連は小さいので特に限定はないが、
所望の時間、例えば数分〜数時間の範囲内の時間で内部
の無水蟻酸銅が完全に分解できる量とする。また、非酸
化性雰囲気とは、 N2,H2, CO2, CO, Arその他のガス
や、蟻酸銅が分解して生じるガス雰囲気であり、特に、
蟻酸銅分解ガスで分解雰囲気が充分に充満されるように
バッチ法では例えば加熱系の容積を小さくして完全に蟻
酸銅粉分解ガス雰囲気で充満されるようにすること、連
続法では、加熱領域への出入り口の解放空間面積を小さ
くして同様にするなどの工夫をすることは、N2, H2その
他の非酸化性ガス雰囲気を予め設定する必要がないので
好ましい。
Here, the solid phase means a box-shaped material which is resistant to a heating temperature and is not attacked by formic acid vapor, and which is filled with powder, or one in which copper formate is placed on a continuous belt made of such a material. There is no particular limitation because the relation between the filling or loading amount and the cohesiveness of the obtained fine copper powder is small,
The amount is such that the internal copper formate can be completely decomposed within a desired time, for example, a time within the range of several minutes to several hours. Further, the non-oxidizing atmosphere is a gas atmosphere produced by decomposing N 2 , H 2, CO 2 , CO, Ar or other gas or copper formate,
In the batch method, for example, the volume of the heating system is made small so that the decomposition atmosphere is sufficiently filled with the decomposition gas of copper formate so that it is completely filled with the decomposition gas atmosphere of copper formate powder. It is preferable to reduce the open space area of the entrance and exit to the same way so that it is not necessary to preset N 2 , H 2 and other non-oxidizing gas atmospheres.

【0014】パラジウムを共存させてなる蟻酸銅の熱分
解を行うための加熱は、遠赤外線、赤外線、電子線、マ
イクロ波などの放射加熱、電気炉、オーブン、オイル加
熱、加圧蒸気加熱、ニクロム線、その他の加熱盤を用い
た加熱手段が挙げられる。加熱温度は、 100〜190 ℃の
範囲、好ましくは 100〜160 ℃の範囲であり、加熱時間
は 3時間以下、好ましくは 1〜60分間である。
The heating for the thermal decomposition of copper formate in the presence of palladium is radiant heating such as far infrared rays, infrared rays, electron beams, microwaves, electric furnaces, ovens, oil heating, pressurized steam heating, nichrome. Examples of the heating means include a wire and other heating plates. The heating temperature is in the range of 100 to 190 ° C, preferably 100 to 160 ° C, and the heating time is 3 hours or less, preferably 1 to 60 minutes.

【0015】以上の方法による本発明の銅粉は、通常、
一次粒子径 0.1μm未満、比表面積5〜80m2/gの範囲の
極微細銅粉である。この極微細銅粉は、サブミクロンオ
ーダー程度の微細銅粉に比較して極めて活性に富んだも
のである。例えば、焼結体を製造する場合、パラジウム
を含有しない無水蟻酸銅から得た微細銅粉に比較して 2
00℃以上も低い焼結温度となる。また、製造したものを
そのまま空気中に取り出すと直ちに発火燃焼する。従っ
て、空気中での安定的な取扱いのためには予め粒子表面
を極薄の酸化皮膜で被覆しておくことが不可欠である。
このためには、通常、酸素を微量(1,000〜2,000 ppm)含
む窒素気流を室温下、 1〜2 時間程度通じる等の徐酸化
処理を施すこと等を行うことが好ましい。
The copper powder of the present invention produced by the above method is usually
An ultrafine copper powder having a primary particle size of less than 0.1 μm and a specific surface area of 5 to 80 m 2 / g. This ultrafine copper powder is extremely active as compared with the fine copper powder of submicron order. For example, when producing a sintered body, compared to fine copper powder obtained from anhydrous copper formate containing no palladium,
The sintering temperature is lower than 00 ° C. Also, if the manufactured product is taken out into the air as it is, it will ignite and burn immediately. Therefore, for stable handling in air, it is indispensable to coat the particle surface with an ultrathin oxide film in advance.
For this purpose, it is usually preferable to carry out a gradual oxidation treatment such that a nitrogen stream containing a small amount of oxygen (1,000 to 2,000 ppm) is passed at room temperature for about 1 to 2 hours.

【0017】[0017]

【実施例】以下, 実施例などによって本発明をさらに具
体的に説明する。 実施例1 塩基性炭酸銅 50gに 200ミリリットルのメタノールを加えスラ
リー状とした。88%蟻酸 120g に、0.1gの酢酸パラジウ
ムを含むアセトン/メタノール(容量比80/20)溶液 200
ミリリットルを加え均一な蟻酸溶液とした。上記の塩基性炭酸
銅のスラリーに、上記の蟻酸溶液を室温下に加えた後、
温度65℃、30分間の反応を行った。反応終了後、温度を
65℃に保った状態で濾過し、得られたケーキを50ミリリットル
のメタノールで3回洗浄した後、温度 80 ℃で 2時間減
圧乾燥してパラジウムを含有する無水蟻酸銅 60gを得
た。 IPC分析法によるパラジウムの含有量は 600ppmで
あった。
EXAMPLES The present invention will be described in more detail with reference to the following examples. Example 1 To 50 g of basic copper carbonate, 200 ml of methanol was added to form a slurry. Acetone / methanol (volume ratio 80/20) solution containing 0.1 g of palladium acetate in 120 g of 88% formic acid 200
A uniform formic acid solution was prepared by adding milliliter. After adding the above formic acid solution to the basic copper carbonate slurry at room temperature,
The reaction was carried out at a temperature of 65 ° C for 30 minutes. After the reaction is completed, change the temperature
After filtering at 65 ° C., the obtained cake was washed 3 times with 50 ml of methanol and then dried under reduced pressure at a temperature of 80 ° C. for 2 hours to obtain 60 g of palladium-containing anhydrous copper formate. The palladium content by IPC analysis was 600 ppm.

【0018】減圧乾燥機中に上記で得たパラジウムを含
有する無水蟻酸銅 5gを入れ、内部を窒素ガスで2回置
換して窒素雰囲気とした後、温度 150℃に速度 3℃/min
で昇温し、150 ℃で 0.5時間保持して熱分解をさせた。
室温まで冷却した後、銅粉 2.1gを得た。この銅粉は、
一次粒子径が 0.1μm未満であり、比表面積 10 m2/gで
あった。この銅粉を 3T/cm2 で成形し、水素雰囲気中で
焼結させたところ、 350℃で理論密度の98%の焼結体が
得られた。
5 g of palladium-containing anhydrous copper formate obtained above was placed in a vacuum dryer, and the inside was replaced with nitrogen gas twice to create a nitrogen atmosphere, and then the temperature was changed to 150 ° C. and the speed was changed to 3 ° C./min.
The temperature was raised at 150 ° C., and the temperature was maintained at 150 ° C. for 0.5 hours for thermal decomposition.
After cooling to room temperature, 2.1 g of copper powder was obtained. This copper powder is
The primary particle size was less than 0.1 μm and the specific surface area was 10 m 2 / g. When this copper powder was molded at 3 T / cm 2 and sintered in a hydrogen atmosphere, a sintered body having a theoretical density of 98% was obtained at 350 ° C.

【0019】実施例2 実施例1において、温度を 130℃、保持時間を 1時間と
する他は同様とした。得られた銅粉は一次粒子径が 0.1
μm未満であり、比表面積 80 m2/gであった。
Example 2 Same as Example 1 except that the temperature was 130 ° C. and the holding time was 1 hour. The obtained copper powder has a primary particle size of 0.1.
It was less than μm and the specific surface area was 80 m 2 / g.

【0020】比較例1 実施例1において、パラジウムを含有しない無水蟻酸銅
を用い、温度を 200℃、保持時間を 1.5時間とする他は
同様とした。得られた銅粉は一次粒子径が 0.3μmの球
状に近い粒の揃ったものであり、比表面積 3 m2/g であ
った。この銅粉を 3T/cm2 で成形し、水素雰囲気中で焼
結させたところ、理論密度の98%の焼結体を得るために
は、550 ℃の温度が必要であった。
Comparative Example 1 The same procedure as in Example 1 was carried out except that palladium-free anhydrous copper formate was used, the temperature was 200 ° C., and the holding time was 1.5 hours. The obtained copper powder had primary particles with a diameter of 0.3 μm and had almost spherical particles and a specific surface area of 3 m 2 / g. When this copper powder was molded at 3 T / cm 2 and sintered in a hydrogen atmosphere, a temperature of 550 ° C. was required to obtain a sintered body having a theoretical density of 98%.

【0021】[0021]

【発明の効果】以上、発明の詳細な説明、実施例、比較
例から明瞭なように、本発明のパラジウムを共存させた
蟻酸銅の熱分解による極微細銅粉の製造法は、一次粒子
径が極めて小さいものを提供することが可能である。こ
の銅粉中に含まれるパラジウムも通常は、ナトリウム、
硫黄その他の元素のような害はないものである。以上に
より、本願発明は、極微細銅粉を工業的に生産する実用
的な新規方法を提供するものでありその意義は極めて大
きいものである。
As is clear from the detailed description of the invention, Examples and Comparative Examples, the method for producing ultrafine copper powder by the thermal decomposition of copper formate in the presence of palladium according to the present invention has a primary particle diameter of It is possible to provide an extremely small one. Palladium contained in this copper powder is also usually sodium,
It is not as harmful as sulfur and other elements. As described above, the present invention provides a practical new method for industrially producing ultrafine copper powder, and its significance is extremely great.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 減圧下又は非酸化性雰囲気中で蟻酸銅を
熱分解して銅粉を製造する方法において、パラジウムを
共存させてなる蟻酸銅の熱分解を行うことを特徴とする
極微細銅粉の製造法
1. A method for producing a copper powder by thermally decomposing copper formate under reduced pressure or in a non-oxidizing atmosphere, wherein copper formate formed by coexisting palladium is thermally decomposed. Powder manufacturing method
【請求項2】 該パラジウムが、蟻酸銅結晶中に混入さ
せてなるものである請求項1記載の極微細銅粉の製造法
2. The method for producing an ultrafine copper powder according to claim 1, wherein the palladium is mixed in a copper formate crystal.
【請求項3】 該パラジウムの蟻酸銅結晶中の重量が 1
00〜6,000ppmの範囲である請求項2記載の極微細銅粉の
製造法
3. The weight of said palladium in the copper formate crystal is 1.
The method for producing ultrafine copper powder according to claim 2, which is in the range of 00 to 6,000 ppm.
【請求項4】 該熱分解温度が 100〜190 ℃の範囲であ
る請求項1記載の極微細銅粉の製造法
4. The method for producing ultrafine copper powder according to claim 1, wherein the thermal decomposition temperature is in the range of 100 to 190 ° C.
JP10316591A 1991-04-08 1991-04-08 Production of extremely fine copper powder Pending JPH0693316A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10316591A JPH0693316A (en) 1991-04-08 1991-04-08 Production of extremely fine copper powder
US07/862,218 US5250101A (en) 1991-04-08 1992-04-02 Process for the production of fine powder
EP92303131A EP0508757A1 (en) 1991-04-08 1992-04-08 Process for the production of fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10316591A JPH0693316A (en) 1991-04-08 1991-04-08 Production of extremely fine copper powder

Publications (1)

Publication Number Publication Date
JPH0693316A true JPH0693316A (en) 1994-04-05

Family

ID=14346899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10316591A Pending JPH0693316A (en) 1991-04-08 1991-04-08 Production of extremely fine copper powder

Country Status (1)

Country Link
JP (1) JPH0693316A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032841A1 (en) * 2008-09-19 2010-03-25 旭硝子株式会社 Conductive filler, conductive paste and article having conductive film
WO2010055944A1 (en) * 2008-11-17 2010-05-20 東洋製罐株式会社 Method for producing ultrafine copper particles and resin composition containing ultrafine copper particles
WO2015025837A1 (en) * 2013-08-21 2015-02-26 ダイソー株式会社 Method for continuously producing metal nanoparticles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032841A1 (en) * 2008-09-19 2010-03-25 旭硝子株式会社 Conductive filler, conductive paste and article having conductive film
WO2010055944A1 (en) * 2008-11-17 2010-05-20 東洋製罐株式会社 Method for producing ultrafine copper particles and resin composition containing ultrafine copper particles
WO2015025837A1 (en) * 2013-08-21 2015-02-26 ダイソー株式会社 Method for continuously producing metal nanoparticles
TWI635511B (en) * 2013-08-21 2018-09-11 日商大阪曹達股份有限公司 Method for continuously making metallic nano particles, metallic nano particles, and manufacturing device

Similar Documents

Publication Publication Date Title
US5250101A (en) Process for the production of fine powder
KR100427005B1 (en) Spheroidally Agglomerated Basic Cobalt(II) Carbonate and Spheroidally Agglomerated Cobalt(II) Hydroxide, Process for Their Production and Their Use
US4122155A (en) Preparation of silicon nitride powder
US20170095793A1 (en) Method for producing conductive mayenite compound power
CN104891448B (en) Transition metal oxide nano material, preparation method and application thereof
CN111215032B (en) Rapid preparation method of MOF material
KR100981413B1 (en) Method for manufacturing spherical high purity nickel powder
JP2003126695A (en) Potassium niobate photocatalyst and manufacturing method therefor
US5094686A (en) Process for producing copper fine powder
US4409193A (en) Process for preparing cubic boron nitride
CN111686756B (en) Porous alumina shell assembled single-atom metal magnetic catalyst, preparation and application thereof in liquid-phase methanol catalytic reaction
JPH0693316A (en) Production of extremely fine copper powder
US2678259A (en) Chlorine production by oxidizing hydrogen chloride employing unglowed chromic oxide catalyst material
US3850851A (en) Process for the production of a catalyst for oxidation of ammonia
JPS5857368B2 (en) Manufacturing method of boron trichloride
Wiley et al. Rapid solid state metathesis reactions for the synthesis of copper oxide and other metal oxides
US3352632A (en) Production of lead titanate and lead zirconate for ceramic bodies
Chupakhina et al. New ways to synthesize multifunctional ceramics La 2-x Sr x NiO 4
JPS62108871A (en) Production of oxazoles
US3846117A (en) Method for producing high-purity nickel powder with predetermined physical characteristics
CN114669307A (en) Monodisperse metal-loaded tungsten oxide nanowire and preparation method and application thereof
RU2569535C1 (en) Production of superdispersed powders of various oxides with narrow separation of particles by sizes
JPH01122964A (en) Zirconia stabilized by yttrium and its production
JPH05156324A (en) Production of superfine nickel aggregated powder
JPH05156326A (en) Production of fine silver powder