JPH0481556B2 - - Google Patents

Info

Publication number
JPH0481556B2
JPH0481556B2 JP61264721A JP26472186A JPH0481556B2 JP H0481556 B2 JPH0481556 B2 JP H0481556B2 JP 61264721 A JP61264721 A JP 61264721A JP 26472186 A JP26472186 A JP 26472186A JP H0481556 B2 JPH0481556 B2 JP H0481556B2
Authority
JP
Japan
Prior art keywords
diamond
gas
phase synthesis
substrate
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61264721A
Other languages
Japanese (ja)
Other versions
JPS63117996A (en
Inventor
Koji Kobashi
Kozo Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61264721A priority Critical patent/JPS63117996A/en
Publication of JPS63117996A publication Critical patent/JPS63117996A/en
Publication of JPH0481556B2 publication Critical patent/JPH0481556B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はダイヤモンドの気相合成法に関し、詳
細には結晶性の良いダイヤモンドの粒子や薄膜を
より迅速に形成できる気相合成法に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for vapor phase synthesis of diamond, and more particularly, to a method for vapor phase synthesis that enables the rapid formation of diamond particles and thin films with good crystallinity. be.

〔従来の技術〕[Conventional technology]

ダイヤモンドは、高硬度であることを利用して
古くは切削工具用途を中心に広く使用されてき
た。一方近年では、熱伝導度が大きいこと、不純
物ドーピングにより半導体として利用可能性があ
ること等に着目され、前者の特性を利用するもの
としてIC(集積回路)を基板のヒートシンク(冷
却用放熱器)への適用が検討され、また後者の特
性を利用するものとして半導体素子等の電子技術
分野にも応用されるに至り、ダイヤモンドを形成
する為の技術が急速に開発されつつある。
Diamond has long been widely used mainly in cutting tools due to its high hardness. On the other hand, in recent years, attention has been focused on the high thermal conductivity and the possibility of using it as a semiconductor by doping with impurities. The latter characteristic has also been applied to the field of electronic technology such as semiconductor devices, and techniques for forming diamond are being rapidly developed.

ダイヤモンドの合成法としては、黒鉛を炭素原
料とし、Ni,Cr,Mn等を触媒として4〜7万気
圧,1000〜2000℃の高温・高圧で行なう高圧法が
知られているが、その他気体状炭化水素を炭素原
料として低圧条件下で行なう気相合成法も開発さ
れている。気相合成法によるダイヤモンドの合成
は、高圧法と比べてダイヤモンドの結晶が小さく
なるという欠点が従来より指摘されてきたが、上
述した様な電子技術分野への応用が進められる
と、却つて薄膜の形成が容易であるという利点が
着目され、有用な技術であると位置付けられてい
る。
As a method for synthesizing diamond, a high-pressure method is known in which graphite is used as a carbon raw material and Ni, Cr, Mn, etc. are used as catalysts at high temperatures and pressures of 40,000 to 70,000 atm and 1000 to 2000°C, but other gaseous A gas phase synthesis method using hydrocarbons as a carbon feedstock under low pressure conditions has also been developed. It has been pointed out that the disadvantage of diamond synthesis using the vapor phase synthesis method is that the diamond crystals are smaller compared to the high-pressure method. The advantage of easy formation has attracted attention, and it has been positioned as a useful technology.

第1図はダイヤモンド気相合成装置の一例を示
す概略説明図である。当該装置はマイクロ波を応
用した技術であり、その概略は下記の如くであ
る。
FIG. 1 is a schematic diagram showing an example of a diamond vapor phase synthesis apparatus. The device is a technology that applies microwaves, and its outline is as follows.

第1図において、マクネトロン発振機1から発
振されたマイクロ波(2.45GHz)は、アイソレー
タ2、パワーモニタ3、チユーナ4及び導波管5
をこの記載順序で導かれ、前記導波管5を貫通し
て設けられる石英製の反応管6内に設置された基
板7に照射される。前記基板7としてはTa,
Co,W,Mo等の金属材料が用いられる場合もあ
るが、一般的にはSiウエハが用いられ、該基板7
は石英製の支持台9によつて所定位置に配置され
ている。そして反応管6内には反応管入口11側
から、H2ガスとCH4ガスを所定割合に混合(例
えばCH41%−H299%)した場合ガスが約
100SCCM(Standard Cubic Centimeters per
Minute)の流量で導入される。導入された混合
ガスは排気口13側から所定量吸引排気され、反
応管6内は予め定めた圧力(例えば40〜50Torr)
とされる。
In FIG. 1, microwaves (2.45 GHz) oscillated from a McNetron oscillator 1 are transmitted through an isolator 2, a power monitor 3, a tuner 4, and a waveguide 5.
are guided in this order and irradiated onto a substrate 7 placed in a quartz reaction tube 6 provided through the waveguide 5. The substrate 7 is Ta,
Metal materials such as Co, W, and Mo may be used, but generally a Si wafer is used, and the substrate 7
is placed at a predetermined position by a support base 9 made of quartz. In the reaction tube 6, from the reaction tube inlet 11 side, when H 2 gas and CH 4 gas are mixed at a predetermined ratio (for example, CH 4 1% - H 2 99%), approximately
100SCCM (Standard Cubic Centimeters per
It is introduced at a flow rate of 1 minute). A predetermined amount of the introduced mixed gas is sucked and exhausted from the exhaust port 13 side, and the pressure inside the reaction tube 6 is maintained at a predetermined pressure (for example, 40 to 50 Torr).
It is said that

この様にして混合ガスが供給された反応管6内
にマイクロ波の様な振動電波(約300W)が導入
されると、高エネルギー電子によつて混合ガス成
分分子が原子・イオン・ラジカルに分解され、反
応管6内には定常的なプラズマが発生する。前記
基板7はプラズマ発生領域14中に配置されてお
り、当該基板7上には混合ガス中の炭素を原料と
してダイヤモンド結晶が析出する。そして基板7
の種類や処理条件に応じて微結晶又は薄膜等の様
に異なつた形態のダイヤモンドが得られる。
When oscillating radio waves (approximately 300 W) such as microwaves are introduced into the reaction tube 6 into which the mixed gas is supplied in this way, the mixed gas component molecules are decomposed into atoms, ions, and radicals by high-energy electrons. As a result, a steady plasma is generated within the reaction tube 6. The substrate 7 is placed in the plasma generation region 14, and diamond crystals are deposited on the substrate 7 using carbon in the mixed gas as a raw material. and board 7
Diamonds can be obtained in different forms, such as microcrystals or thin films, depending on the type of diamond and processing conditions.

第1図に示したダイヤモンド気相合成装置にお
いて、例えば基板7としてSiウエハを用いた場合
には、上述した処理条件で基板温度が約850℃と
なり、基板7上に約0.3μm/時間の成長速度で結
晶性ダイヤモンドが析出する。尚第1図中の参照
符号15はプランジヤーであり、基板7が正確に
プラズマ発生領域14の中央に位置する様にマイ
クロ波の反射を調整する為のものである。又参照
符号20で示されている部材はアプリケーターで
あり、冷却水を供給管21から供給しつつ排出管
22から排出して反応管6が過度に加熱されるの
を防ぐ機能を果たす。
In the diamond vapor phase synthesis apparatus shown in FIG. 1, if a Si wafer is used as the substrate 7, the substrate temperature will be approximately 850°C under the above-mentioned processing conditions, and the growth rate on the substrate 7 will be approximately 0.3 μm/hour. Crystalline diamond precipitates at a rapid rate. Reference numeral 15 in FIG. 1 is a plunger, which is used to adjust the reflection of microwaves so that the substrate 7 is accurately located at the center of the plasma generation region 14. A member designated by reference numeral 20 is an applicator, which functions to prevent the reaction tube 6 from being excessively heated by supplying cooling water from the supply pipe 21 and discharging it from the discharge pipe 22.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第1図に示した気相合成装置における炭素原料
としては、上述したメタン(CH4)の他、アセチ
レン,エチレン,エタン,ベンゼン等の様な気体
状炭化水素が一般的に用いられていた。これは、
上記の様な炭化水素を用いた場合に反応室内で進
行するプラズマ反応による副生成物が、水素,炭
素,炭化水素等に限定され、且つこれらは強い毒
性や腐食性がなく、廃ガス処理が容易であるとい
う消極的理由からである。
In addition to the above-mentioned methane (CH 4 ), gaseous hydrocarbons such as acetylene, ethylene, ethane, and benzene have generally been used as carbon raw materials in the gas phase synthesis apparatus shown in FIG. this is,
When the above hydrocarbons are used, the by-products from the plasma reaction that progresses in the reaction chamber are limited to hydrogen, carbon, hydrocarbons, etc., and these are not highly toxic or corrosive and cannot be treated as waste gas. This is for the negative reason that it is easy.

しかしながら上述した様な炭化水素及び水素の
混合ガスを用いてダイヤモンドを合成した場合に
は、ダイヤモンドの結晶性を良くするために炭化
水素濃度を下げると成長速度も低下するといつた
問題点があつた。そこで成長速度の増大を図る為
に炭化水素の濃度を増加するという手段も検討さ
れたが、この場合にはダイヤモンドが非常に微粒
子化され、グラフアイトや非結晶質炭素等の非ダ
イヤモンド性物質が大量に発生することが分かつ
た。
However, when diamond is synthesized using a mixed gas of hydrocarbon and hydrogen as described above, there is a problem in that lowering the hydrocarbon concentration in order to improve diamond crystallinity also reduces the growth rate. . In order to increase the growth rate, a method of increasing the concentration of hydrocarbons was also considered, but in this case the diamond would become extremely fine particles and non-diamond materials such as graphite and amorphous carbon would become It was found that this occurs in large quantities.

本発明はこの様な状況のもとでなされたもので
あつて、その目的とするところは、ダイヤモンド
の成長速度を低下させることなく非ダイヤモンド
性物質を極力発生させることなく、結晶性の良い
ダイヤモンドを得る為の気相合成法を提供するこ
とにある。
The present invention was made under these circumstances, and its purpose is to produce diamond with good crystallinity without reducing the growth rate of diamond and without generating non-diamond substances as much as possible. The purpose of this invention is to provide a gas phase synthesis method for obtaining .

〔問題点を解決する為の手段〕[Means for solving problems]

上記目的を達成し得た本発明とは、ダイヤモン
ドの気相合成に当たり、炭化水素、二酸化炭素及
び水素を含んだ混合ガスを気相合成装置に導入し
つつ気相合成を行なう点に要旨を有するダイヤモ
ンドの気相合成法である。
The gist of the present invention, which has achieved the above object, is that during the vapor phase synthesis of diamond, gas phase synthesis is carried out while introducing a mixed gas containing hydrocarbons, carbon dioxide, and hydrogen into a vapor phase synthesis apparatus. This is a vapor phase synthesis method for diamond.

〔作 用〕[Effect]

本発明は上述の如く構成されるが、要は従来用
いられていた炭化水素及び水素の混合ガスに加
え、更に二酸化炭素を混合した混ガスを用いて気
相合成を行なう点に最大の特徴を有するものであ
る。即ち本発明者らは、気相合成の反応ガスとし
て、炭化水素及び水素からなる混合ガスに更に所
定量のCO2を混合した場合には、CO2を混合しな
い場合に比べてダイヤモンドの成長速度が低下す
ることなく、良好な結晶性をもつダイヤモンドが
得られることを見出し、本発明を完成したもので
ある。
The present invention is constructed as described above, but the main feature is that gas phase synthesis is performed using a mixed gas of carbon dioxide in addition to the conventionally used mixed gas of hydrocarbon and hydrogen. It is something that you have. That is, the present inventors found that when a predetermined amount of CO 2 is further mixed with a mixed gas consisting of hydrocarbons and hydrogen as a reaction gas for vapor phase synthesis, the diamond growth rate is faster than when CO 2 is not mixed. The present invention was completed based on the discovery that diamond with good crystallinity can be obtained without a decrease in crystallinity.

一方従来技術の説明として述べた様に、気相合
成装置には炭化水素と共に大量のH2ガスが導入
されるのであるが、そのH2ガスは、気相合成の
際にダイヤモンドと同時に発生する非ダイヤモン
ド性物質を除去する作用を発揮するものである。
即ち、ダイヤモンドの気相合成の際にはダイヤモ
ンド以外にグラフアイトやアモルフアスカーボン
等の非ダイヤモンド性物質が同時に析出すること
が避けられないのであるが、H2ガスがプラズマ
中で分解して生じる原子状水素はダイヤモンド物
質よりもこれらの非ダイヤモンド性物質と反応し
易く、前記非ダイヤモンド性物質は前記原子状水
素によつてエツチング除去されるのである。
On the other hand, as mentioned in the explanation of the prior art, a large amount of H 2 gas is introduced into the vapor phase synthesis apparatus along with hydrocarbons, and the H 2 gas is generated simultaneously with diamond during vapor phase synthesis. It exhibits the effect of removing non-diamond substances.
In other words, during the vapor phase synthesis of diamond, it is inevitable that non-diamond materials such as graphite and amorphous carbon are precipitated at the same time as well as diamond, but these are produced when H 2 gas decomposes in the plasma. Atomic hydrogen reacts more easily with these non-diamond materials than with diamond materials, and the non-diamond materials are etched away by the atomic hydrogen.

本発明者らは、原子状水素よりもエツチング作
用の強い元素を導入すれば、相対的に炭素導入量
を増大できるとの知見のもとで種々検討した。そ
して原子状酸素(酸素イオンや酸素分子において
も同様)は、原子状水素に比べて非ダイヤモンド
性物質との反応速度が大きいことに注目し、プラ
ズマ中に何らかの形で酸素を混入させれば非ダイ
ヤモンド性物質を有効に除去できるとの着想を得
た。次に、本発明者らは、酸素源となり且つ炭素
源ともなり得る物質として、比較的安価で大量に
得られるCO2を選び、CO2を気相合成装置に導入
すれば、従来よりも相対的に炭素量をも増大する
ことができ、ダイヤモンドの成長速度を増大する
ことができるとの確証が得られた。即ち気相合成
装置に導入されたCO2はプラズマ雰囲気中で原子
状酸素と炭素に分解し、生じた原子状酸素は非ダ
イヤモンド性物質の除去に寄与すると共に、炭素
はダイヤモンドの成長に寄与するのである。
The present inventors conducted various studies based on the knowledge that the amount of carbon introduced can be relatively increased by introducing an element having a stronger etching effect than atomic hydrogen. He also noted that atomic oxygen (the same applies to oxygen ions and oxygen molecules) has a higher reaction rate with non-diamond materials than atomic hydrogen, and that if oxygen is somehow mixed into the plasma, it will The idea was that diamond-like substances could be effectively removed. Next, the present inventors selected CO 2 , which is relatively inexpensive and can be obtained in large quantities, as a substance that can serve as both an oxygen source and a carbon source, and by introducing CO 2 into a gas phase synthesis apparatus, the amount of CO 2 could be compared to that of the conventional method. It was confirmed that it is possible to increase the amount of carbon and increase the growth rate of diamond. In other words, the CO 2 introduced into the vapor phase synthesis apparatus decomposes into atomic oxygen and carbon in the plasma atmosphere, and the resulting atomic oxygen contributes to the removal of non-diamond materials, and the carbon contributes to the growth of diamond. It is.

この様に本発明ではダイヤモンドの気相合成の
為の反応ガスとしてCO2を含む混合ガスを用いる
のであるが、従来必要とされてきたH2ガスは本
発明においても必要である。これは基板温度やガ
ス圧等の気相合成条件に応じて非ダイヤモンド性
物質の除去速度を制御する為である。
As described above, in the present invention, a mixed gas containing CO 2 is used as a reaction gas for the gas phase synthesis of diamond, but H 2 gas, which has conventionally been required, is also required in the present invention. This is to control the removal rate of the non-diamond material according to vapor phase synthesis conditions such as substrate temperature and gas pressure.

いずれにしても、本発明で用いられる混合ガス
は、炭化水素をH2ガス単独で希釈する代りにH2
ガス+CO2ガスの混合ガスで希釈したものと考え
ることができる。そしてこの場合における混合ガ
ス全体に対する炭化水素の最適混合割合は、何ら
限定されるものではないが、0.1〜5%程度が好
ましい。又CO2及びH2の混合比(CO2/H2)に
ついても前記気相合成条件によつて調整すべきも
のであり、何ら限定されるものではないが、0.01
〜20程度が適切である。
In any case, the gas mixture used in the present invention can be used to dilute hydrocarbons with H2 gas instead of diluting them with H2 gas alone.
It can be thought of as diluted with a mixed gas of gas + CO 2 gas. In this case, the optimum mixing ratio of hydrocarbons to the entire mixed gas is not limited at all, but is preferably about 0.1 to 5%. The mixing ratio of CO 2 and H 2 (CO 2 /H 2 ) should also be adjusted according to the above gas phase synthesis conditions, and is not limited to 0.01.
~20 is appropriate.

本発明で用いられる混合ガスとしては上述した
通り、少なくとも炭化水素、CO2及びH2を含む
ものであるが、その他酸素や窒素或はハロゲン元
素等もある程度含むことは許容できる。又使用す
る炭化水素としては、上述した気体状炭化水素に
限らず、常温・常圧で液体であつても低温でガス
化したり、H2やCO2ガス或はH2+CO混合ガス中
に蒸気として避溶け込む様なものをも含む趣旨で
ある。
As mentioned above, the mixed gas used in the present invention contains at least hydrocarbons, CO 2 and H 2 , but it is permissible that it also contains some amount of oxygen, nitrogen, halogen elements, etc. In addition, the hydrocarbons used are not limited to the gaseous hydrocarbons mentioned above, but also those that are liquid at room temperature and pressure but gasified at low temperatures, or those that are vaporized in H 2 or CO 2 gas or H 2 + CO mixed gas. The purpose is to include things that can be avoided and blended in.

尚本発明方法を実施するに当たつては、格別の
装置を別途設ける必要はなく、基本的には前記第
1図に示した装置を用いればよい。即ち第1図に
示した様な気相合成装置において、炭化水素(例
えばCH4)+H2の混合ガスの代りに所定の割合に
混合した(炭化水素+CO2+H2)混合ガスを用
い、該混合ガスを反応管6に導入しつつ気相合成
を行なう様にすればよい。
In carrying out the method of the present invention, there is no need to separately provide any special equipment, and basically the equipment shown in FIG. 1 may be used. That is, in a gas phase synthesis apparatus as shown in Fig. 1, instead of a mixed gas of hydrocarbons (for example, CH 4 ) + H 2 , a mixed gas of (hydrocarbons + CO 2 + H 2 ) mixed at a predetermined ratio is used. Gas phase synthesis may be performed while introducing the mixed gas into the reaction tube 6.

〔実施例〕〔Example〕

第1図に示した装置を用い、本発明方法を実施
した。
The method of the present invention was carried out using the apparatus shown in FIG.

CH41.2%−CO28.8%−H290%(いずれも容量
%)となる様に混合した混合ガスを用い、第1図
に示した反応管6に供給して気相合成に供した。
混合ガスの流量は100SCCMとし、反応管6のガ
ス圧は30Torrに保ち、マイクロ波の出力は350W
とした。基板7としては、Si(111)ウエハを1/4
μmのダイヤモンドペーストでバフ研摩したもの
を用い(20×10mm)、プランジヤー15の調節に
よつて基板7がプラズマ発生領域14のほぼ中央
になる様にした。尚装置運転中の基板温度は800
℃であつた。
A mixed gas of 1.2% CH 4 - 8.8% CO 2 - 90% H 2 (both by volume) was used and supplied to the reaction tube 6 shown in Figure 1 for gas phase synthesis. .
The flow rate of the mixed gas was 100 SCCM, the gas pressure in the reaction tube 6 was maintained at 30 Torr, and the microwave output was 350 W.
And so. As the substrate 7, 1/4 Si (111) wafer is used.
A substrate (20×10 mm) buffed with μm diamond paste was used, and the plunger 15 was adjusted so that the substrate 7 was located approximately at the center of the plasma generation region 14. The board temperature during equipment operation is 800℃.
It was warm at ℃.

この様にして合成反応を7時間行なつた後に、
Si基板表面を走査型電子顕微鏡(SEM)で観察
したところ、基板7上に約2μm厚の結晶性の良い
ダイヤモンド薄膜が成長しているのが確認され
た。
After carrying out the synthesis reaction in this way for 7 hours,
When the surface of the Si substrate was observed using a scanning electron microscope (SEM), it was confirmed that a diamond thin film with good crystallinity with a thickness of about 2 μm had grown on the substrate 7.

次に比較の為に従来の方法によつてダイヤモン
ドの気相合成を行なつた。即ちCH4ガスが1.2容
量%となる様にH2ガスで希釈した混合ガスを用
い、第1図に示した反応管6に供給して気相合成
に供した。尚混合ガス流量、ガス圧、マイクロ波
出力、基板7等の気相条件は上記実施例と同様と
した。そして実施例と同様に、合成反応を7時間
行なつた後に、Si基板表面をSEMで観察したと
ころ、基板7上に約2μm厚のグラフアイトや非晶
質カーボンを含む微結晶ダイヤモンド薄膜が成長
しているのが確認された。
Next, for comparison, diamond was vapor-phase synthesized using a conventional method. That is, a mixed gas in which CH 4 gas was diluted with H 2 gas to 1.2% by volume was supplied to the reaction tube 6 shown in FIG. 1 for gas phase synthesis. The gas phase conditions such as mixed gas flow rate, gas pressure, microwave output, and substrate 7 were the same as in the above embodiment. Similarly to the example, after performing the synthesis reaction for 7 hours, the surface of the Si substrate was observed using a SEM, and it was found that a microcrystalline diamond thin film containing graphite and amorphous carbon with a thickness of about 2 μm had grown on the substrate 7. It has been confirmed that this is the case.

この様に本発明方法は従来法と比べて結晶性の
良いダイヤモンド薄膜が得られるのは明らかであ
る。これは従来法ではプラズマ化した原子状水素
の非ダイヤモンド性物質に対する除去速度が遅
く、結晶性の良いダイヤモンドの成長が妨げられ
ていたのに対し、本発明方法ではCO2ガスがプラ
ズマ化して活性な酸素が供給され、この酸素によ
つて非ダイヤモンド性物質が速やかに除去され、
ダイヤモンドの成長が妨げられないからである。
As described above, it is clear that the method of the present invention provides a diamond thin film with better crystallinity than the conventional method. This is because in the conventional method, the rate of removal of non-diamond materials by atomic hydrogen that turned into plasma was slow, which hindered the growth of diamond with good crystallinity, whereas in the method of the present invention, CO 2 gas turns into plasma and becomes active. This oxygen quickly removes non-diamond materials.
This is because diamond growth is not hindered.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く本発明によれば、既述の構成を
採用して気相合成を行なうことにより、ダイヤモ
ンドの成長速度を低下させることなく、且つ非ダ
イヤモンド性物質を極力発生させることなく、結
晶性の良いダイヤモンドを得る為の改良された気
相合成方法が実現できた。
As described above, according to the present invention, by employing the above-mentioned configuration and performing vapor phase synthesis, crystallinity can be achieved without reducing the growth rate of diamond and without generating as much non-diamond material as possible. An improved vapor phase synthesis method for obtaining diamonds with good quality was realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はダイヤモンド気相合成装置の例を示す
概略説明図である。 1…マグネトロン発振機、5…導波管、6…反
応管、7…基板、14…プラズマ発生領域、15
…プランジヤー。
FIG. 1 is a schematic explanatory diagram showing an example of a diamond vapor phase synthesis apparatus. DESCRIPTION OF SYMBOLS 1... Magnetron oscillator, 5... Waveguide, 6... Reaction tube, 7... Substrate, 14... Plasma generation region, 15
...Plunger.

Claims (1)

【特許請求の範囲】[Claims] 1 ダイヤモンドの気相合成に当たり、炭化水
素、二酸化炭素及び水素を含んだ混合ガスを気相
合成装置に導入しつつ気相合成を行なうことを特
徴とするダイヤモンドの気相合成法。
1. A method for vapor phase synthesis of diamond, which is characterized in that the gas phase synthesis of diamond is carried out while introducing a mixed gas containing hydrocarbons, carbon dioxide, and hydrogen into a vapor phase synthesis apparatus.
JP61264721A 1986-11-05 1986-11-05 Device for synthesizing diamond in vapor phase Granted JPS63117996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61264721A JPS63117996A (en) 1986-11-05 1986-11-05 Device for synthesizing diamond in vapor phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61264721A JPS63117996A (en) 1986-11-05 1986-11-05 Device for synthesizing diamond in vapor phase

Publications (2)

Publication Number Publication Date
JPS63117996A JPS63117996A (en) 1988-05-21
JPH0481556B2 true JPH0481556B2 (en) 1992-12-24

Family

ID=17407258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61264721A Granted JPS63117996A (en) 1986-11-05 1986-11-05 Device for synthesizing diamond in vapor phase

Country Status (1)

Country Link
JP (1) JPS63117996A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259492A (en) * 1988-08-25 1990-02-28 Ishizuka Kenkyusho:Kk Method for synthesizing diamond by vapor phase reaction
JP4744118B2 (en) * 2004-09-30 2011-08-10 株式会社神戸製鋼所 Single crystal diamond synthesis substrate and method for producing single crystal diamond film
CN109537051A (en) * 2018-11-27 2019-03-29 西安碳星半导体科技有限公司 A kind of method of high-speed growth single-crystal diamond

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158899A (en) * 1985-07-31 1986-07-18 Kyocera Corp Production of diamond film

Also Published As

Publication number Publication date
JPS63117996A (en) 1988-05-21

Similar Documents

Publication Publication Date Title
Mitsuda et al. Development of a new microwave plasma torch and its application to diamond synthesis
JPH0346436B2 (en)
JPS58135117A (en) Preparation of diamond
US5863324A (en) Process for producing single crystal diamond film
JPS59137396A (en) Synthetic method of p type semiconductor diamond
JPS6136200A (en) Method for vapor-phase synthesis of diamond
JPH0481556B2 (en)
JPH0481552B2 (en)
JPS62158195A (en) Synthesizing method of diamond
JPH03240959A (en) Method for synthesizing carbon nitride thin film
JPH0772119B2 (en) Gas phase synthesis of diamond
JPS63117995A (en) Device for synthesizing diamond in vapor phase
Nakamura et al. High quality chemical vapor deposition diamond growth on iron and stainless steel substrates
JP3176086B2 (en) Diamond crystal and substrate for diamond formation
JPH0524114B2 (en)
JPH0542398B2 (en)
JPH0542397B2 (en)
JPS593098A (en) Synthesizing method of diamond
JPS62171995A (en) Production of diamond
JPH0532489A (en) Synthesis of diamond using plasma
JP2975971B2 (en) Carbon film formation method
JPS63117992A (en) Device for synthesizing diamond in vapor phase
JPH085748B2 (en) Gas phase synthesis of diamond
JPS63117991A (en) Method for synthesizing diamond in vapor phase
JPH03153599A (en) Production of thin film of cubic boron nitride