JPS59137396A - Synthetic method of p type semiconductor diamond - Google Patents

Synthetic method of p type semiconductor diamond

Info

Publication number
JPS59137396A
JPS59137396A JP58010225A JP1022583A JPS59137396A JP S59137396 A JPS59137396 A JP S59137396A JP 58010225 A JP58010225 A JP 58010225A JP 1022583 A JP1022583 A JP 1022583A JP S59137396 A JPS59137396 A JP S59137396A
Authority
JP
Japan
Prior art keywords
type semiconductor
volatile
plasma
hydrogen
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58010225A
Other languages
Japanese (ja)
Inventor
Mutsukazu Kamo
加茂 睦和
Seiichiro Matsumoto
精一郎 松本
Yoichiro Sato
洋一郎 佐藤
Nobuo Sedaka
瀬高 信雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP58010225A priority Critical patent/JPS59137396A/en
Publication of JPS59137396A publication Critical patent/JPS59137396A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Abstract

PURPOSE:To grow a uniform p type semiconductor film on a base substance by a vapor-phase depositing method by supplying volatile hydrocarbons, hydrogen, a volatile boric compd. to a plasma generating chamber, and making a high-frequency wave or a microwave incident thereto. CONSTITUTION:A base substance 5 is arranged on a supporter 6 in a plasma generating chamber 4, which is evacuated by operating an exhauster 7. From a reaction gas supplying apparatus 1 through controlling valves 9, 11, volatile hydrocarbons such as hydrogen, methane, and volatile boric compds. such as B2H6 are supplied by controlling the flow rate of the mixed gases at a prescribed pressure. Then, a microwave nonpolar discharge is induced by operating a microwave oscillator 2. In this manner, hydrocarbons and hydroborides in a excited state are formed and a p type semiconductor thin film of diamond containing boric ions is grown on the surface of the base substance. Instead of the microwave oscillator 2, a high-frequency oscillator is used, and a diamond thin film is grown by inducing the plasma.

Description

【発明の詳細な説明】 本発明はP型半導体ダイヤモンドの合成法に関する。[Detailed description of the invention] The present invention relates to a method for synthesizing P-type semiconductor diamond.

従来のP型半導体ダイヤモンドの2合成法としては、(
1)金属触媒を用いた高圧合成法、(2)ダイヤモンド
単結晶に硼素イオンを打込んで合成する方法が知られて
いる。
The conventional two-synthesis method for P-type semiconductor diamond is (
1) A high-pressure synthesis method using a metal catalyst, and (2) a synthesis method by implanting boron ions into a diamond single crystal are known.

前記(1)の方法は高圧装置を必要とするばかりでなく
、金属触媒、窒素が混入されたりする欠点がある。また
成長した結晶は多面体で硼素がドープされる量は各面に
よって異なり、均質に硼素がトープされたP型半導体ダ
イヤモンドが得難く、更に塊状の単結晶となり膜状の物
が得善い欠点がある。
The above method (1) not only requires a high-pressure device, but also has the disadvantage that a metal catalyst and nitrogen are mixed. In addition, the grown crystal is polyhedral and the amount of boron doped is different for each face, making it difficult to obtain a P-type semiconductor diamond that is homogeneously doped with boron.Furthermore, it becomes a lumpy single crystal, and a film-like product is better. .

前記(2)の方法は、20 k、eV以上のエネルギー
で硼素イオンを打込む必要がちるだめ、イオン注入で生
ずる放射線損傷による欠陥を生ずる。そのた成装置を必
要とし、その操作も面倒であると共に高度の技術を必要
とする欠点がある。
The method (2) requires implantation of boron ions with an energy of 20 k, eV or more, which causes defects due to radiation damage caused by ion implantation. The disadvantage is that it requires a construction device, is troublesome to operate, and requires a high level of skill.

本発明は従来法における欠点をなくすべくなされたもの
であり、その目的は、高価な合成装置を必要とせず、プ
ラズマ化学気相析出法により均質なP型半導体ダイヤモ
ンド薄膜の合成する方法を提供するにある。
The present invention has been made to eliminate the drawbacks of conventional methods, and its purpose is to provide a method for synthesizing a homogeneous P-type semiconductor diamond thin film by plasma chemical vapor deposition without requiring expensive synthesis equipment. It is in.

本発明の要旨は、基体を設置したプラズマ発生室に揮発
性炭化水素、水素及び揮発性硼素化合物算=を含んだダ
イヤモンド単結晶寸たは多結filH@、。
The gist of the present invention is to provide a diamond single crystal or polycrystalline filH containing volatile hydrocarbons, hydrogen, and volatile boron compounds in a plasma generation chamber in which a substrate is installed.

の薄膜を成長させることを峙徴とするP型半導体ダイヤ
モンドの合成法にある。
A method for synthesizing P-type semiconductor diamond is characterized by growing a thin film of P-type semiconductor.

これを図面に基いて説明すると、第1図はマイクロ波に
よって誘発したプラズマを用いる方法を4干、第2図は
高周波によって誘発したプラズマを一;ヤいる方法を示
す概要図である。
To explain this based on the drawings, Fig. 1 is a schematic diagram showing four methods using plasma induced by microwaves, and Fig. 2 is a schematic diagram showing one method using plasma induced by radio frequency waves.

′・1轡1図K > I″i・1は反応”′供0装5・
2+″1′マイクロ波発振機、3は導波管、4はプラズ
マ発生室、5は基体、6は支持台、7は排気装置、8゜
9.10.11は調整弁を示す。プラズマ発生室4内の
支持台6の上に基体5を置いた後、排気装置7を作動し
調整弁8を調整して、プラズマ発生室4内を減圧にする
と共に、反応ガス供給袋fil 1より調整弁9 、1
0 、11を通して水素ガス、揮発性炭化水素、揮発性
硼素化合物の流量を調整し、所定圧に保持する。次にマ
イクロ波発振機2を作動してマイクロ波無極放電を誘発
する。これにより励起状態の炭化水素、硼化水素が生成
し、基体の表面に硼素イオンを含んだダイヤモンドのP
型半導体薄膜が成長する。
'・1轡1Figure K >I"i・1 is the reaction"
2+"1' microwave oscillator, 3 is a waveguide, 4 is a plasma generation chamber, 5 is a base, 6 is a support, 7 is an exhaust device, 8゜9.10.11 is a regulating valve. Plasma generation After placing the substrate 5 on the support stand 6 in the chamber 4, the exhaust device 7 is activated and the regulating valve 8 is adjusted to reduce the pressure in the plasma generation chamber 4, and the pressure is adjusted from the reaction gas supply bag fil 1. Valve 9, 1
0 and 11 to adjust the flow rates of hydrogen gas, volatile hydrocarbons, and volatile boron compounds, and maintain them at a predetermined pressure. Next, the microwave oscillator 2 is activated to induce microwave non-polar discharge. As a result, excited state hydrocarbons and hydrogen borides are generated, and diamond P containing boron ions is formed on the surface of the substrate.
type semiconductor thin film is grown.

第2図は高周波プラズマによって誘発したプラズマを用
いる方法の概要図を示す。第1図のマイクロ波発振機2
に代え高周波発振機15を使用し、同軸ケーブル12を
通じて平行電極板13に出力ダイヤモンド薄膜が成長す
る。
FIG. 2 shows a schematic diagram of the method using plasma induced by radio frequency plasma. Microwave oscillator 2 in Figure 1
Instead, a high frequency oscillator 15 is used, and an output diamond thin film is grown on the parallel electrode plate 13 through the coaxial cable 12.

本発明に用いる揮発性炭化水素としては、例えばメタン
、エタン、アセチレン、ブタン等の炭化水素が挙げられ
る。メタンは高純度ガスが容易に得られる点で好ましい
。また揮発性硼素化合物としてはB2H6,BCl3等
が挙げられるが、B2H6が好ましい。揮発性炭化水素
と水素との割合は、1゜:100以下であることが好ま
しい。P型半導体の比抵抗値は硼素のドープする割合に
よって変化すくは50Torrである。100 Tor
r以上になると、粒状結晶、また黒鉛状炭素が析出する
ので好ましくない。
Examples of volatile hydrocarbons used in the present invention include hydrocarbons such as methane, ethane, acetylene, and butane. Methane is preferable since high purity gas can be easily obtained. Examples of volatile boron compounds include B2H6 and BCl3, with B2H6 being preferred. The ratio of volatile hydrocarbon to hydrogen is preferably 1°:100 or less. The specific resistance value of the P-type semiconductor varies depending on the boron doping ratio and is 50 Torr. 100 Tor
If it exceeds r, granular crystals and graphitic carbon will precipitate, which is not preferable.

ダイヤモンド単結晶の半導体膜を成長させるためにはダ
イヤモンドの単結晶の基体を用いることが望ましい。(
111)面、(100)面、 (110)面のいずれで
も良いが、(110)面が望ましい。
In order to grow a diamond single-crystal semiconductor film, it is desirable to use a diamond single-crystal substrate. (
111) plane, (100) plane, or (110) plane, but (110) plane is preferable.

これらの基体面に析出するダイヤモンドは基体結晶面に
配向しており、従ってドープされた硼素へ 、pip出層中に均質に分散している。また多結晶体の
半導体膜を形成するにはザファイヤ、シリコン。
The diamonds deposited on these substrate planes are oriented in the substrate crystal planes and are therefore homogeneously distributed in the pip layer to the doped boron. Also, zaphire and silicon are used to form polycrystalline semiconductor films.

タンタル、モリブデン等の基体が用いられる。Substrates such as tantalum and molybdenum are used.

実施例1゜ 第1図に示す装置を使用し、プラズマ発生室4の基体支
持台6上にダイヤモンド(11,0)面の研磨面を基体
5として置き、プラズマ発生室4内を排気装置7により
排気した後、水素にメタンを2容量%混合したガスと、
水素にジボランを11001)p混合したガスを各々5
 Q 、、z7 min 、 Q、5 ml /mj−
nのを通じてプラズマ発生室4に入射し、プラズマを誘
発させた。プラズマ空間で反応ガスの励起及びダイヤモ
ンド単結晶の基体の加熱が行われ、3時間析出を行った
ところ、厚さ3μmのP型半導体ダイヤモンド膜を得だ
。膜の抵抗は室温で2X10’第2図の装置において、
プラズマ発生室4の平行電極板13上にダイヤモンド単
結晶の基体5を置いた後、排気装置7で排気してプラズ
マ発生室4を減圧にすると共に、ヒーター14で基体5
を800℃に上昇させた。次に反応ガス供給装置1より
調整弁9 、10 、1’ 1を調製し、水素にメタン
を1容量%混合したガス、及び水素にジボラン100 
ppm混合したガスをそれぞれ、毎分50 cc、0、
]、ccの割合で流し、排気装置を作動すると共に、4
)1丼弁8,9,10.11を調整して、プラズマ発生
室を40 ’I’orrの減圧、混合ガスの流速毎分7
6cTILに保持した。次に高周波発振機15を作動し
、900Wの出力を同軸ケーブル12を通じて平行電極
板13に与え、プラズマを誘発させた。こ永、さ1 :   (□ て容易に均質な薄膜のエピタキシャル成長を行うことが
できる優れた作用効果を有している。
Example 1 Using the apparatus shown in FIG. 1, a diamond (11,0) polished surface is placed as the substrate 5 on the substrate support 6 of the plasma generation chamber 4, and the inside of the plasma generation chamber 4 is operated by an exhaust device 7. After exhausting the gas with hydrogen and methane at 2% by volume,
A mixture of hydrogen and diborane (11,001)p each
Q,, z7 min, Q, 5 ml/mj-
The plasma was introduced into the plasma generation chamber 4 through the ion beam, and plasma was induced. Excitation of the reactive gas and heating of the diamond single crystal substrate were performed in a plasma space, and after 3 hours of precipitation, a P-type semiconductor diamond film with a thickness of 3 μm was obtained. The resistance of the membrane is 2X10' at room temperature in the apparatus shown in Figure 2.
After placing the diamond single crystal substrate 5 on the parallel electrode plate 13 of the plasma generation chamber 4, the plasma generation chamber 4 is evacuated by the exhaust device 7 to reduce the pressure, and the substrate 5 is placed on the parallel electrode plate 13 of the plasma generation chamber 4.
was raised to 800°C. Next, the regulating valves 9, 10, 1' 1 were prepared from the reaction gas supply device 1, and a gas containing 1% by volume of methane in hydrogen and 100% diborane in hydrogen were added.
ppm mixed gas at 50 cc/min, 0,
], cc at a rate of 4 cc, operating the exhaust system,
) 1 Adjust the bowl valves 8, 9, 10.11 to reduce the pressure of the plasma generation chamber to 40'I'orr and the flow rate of the mixed gas to 7/min.
Retained at 6cTIL. Next, the high frequency oscillator 15 was activated, and an output of 900 W was applied to the parallel electrode plate 13 through the coaxial cable 12 to induce plasma. Konaga, Sa1: (□) It has an excellent function and effect that allows epitaxial growth of a homogeneous thin film to be easily performed.

実施例3゜ 第1図に示す装置を使用し、プラズマ発生室4の基体支
持台6上にサファイア板を基体5として置き、−プラズ
マ発生室4内を排気装置7により排気した後、水素にメ
タンを0.3容量%混合したガスと、水素にジボランを
100 ppm混合したガスを各々80 vl / m
in 、 0.5 ml / minの割合で流し、プ
ラズマ発生室4を4 Q Torrに保持した。次にマ
イクロ波発振機2を作動し、400Wの出力を導波管3
を通じてプラズマ発生室4に入射し、プラズマを誘発さ
せた。プラズマ空間でガスの励起。
Example 3 Using the apparatus shown in FIG. 1, a sapphire plate was placed as the substrate 5 on the substrate support 6 of the plasma generation chamber 4, and after the inside of the plasma generation chamber 4 was evacuated by the exhaust device 7, it was replaced with hydrogen. 80 vl/m of a gas containing 0.3% by volume of methane and a gas containing 100 ppm of hydrogen and diborane.
in, at a rate of 0.5 ml/min, and the plasma generation chamber 4 was maintained at 4 Q Torr. Next, the microwave oscillator 2 is activated, and the output of 400W is transmitted to the waveguide 3.
It entered the plasma generation chamber 4 through the plasma and induced plasma. Excitation of gas in plasma space.

解離及びサファイア板の加熱が行われ6時間析出図面は
本発明方法の実施態様を示すものであシ、第1図はマイ
クロ波によって誘発したプラズマを用いる方法の概要図
、第2図は高周波によって誘発したプラズマを用いる方
法の概要図である。
Dissociation and heating of the sapphire plate were carried out for 6 hours. 1 is a schematic diagram of a method using induced plasma; FIG.

1:反応ガス供給装置、2:マイクロ波発振機、3:導
波管、     4:プラズマ発生室、5:基体、  
    6:支持台、 7:排気装置、    12:同軸ケーブル、13:平
行電極板、   14:ヒーター、8 、9 、10 
、11 :調整弁。
1: Reaction gas supply device, 2: Microwave oscillator, 3: Waveguide, 4: Plasma generation chamber, 5: Substrate,
6: Support stand, 7: Exhaust device, 12: Coaxial cable, 13: Parallel electrode plate, 14: Heater, 8, 9, 10
, 11: Regulating valve.

円:満圃浅焚脹儀。Circle: Manpaku shallow burning ceremony.

Claims (1)

【特許請求の範囲】 基体を設置したプラズマ発生室に揮発性炭化水素、水素
及び揮発性硼素化合物を供給し、該混合カスに高周波捷
だはマイクロ波を入射し、プラズマを誘発して励起状態
の炭化水素、靜1化水素を生成せしめ、基体の表面にダ
イヤモンドのP型半導体榊膜を成長させることを特徴と
するP型半導体ダイヤモンドの合成法。 ・13)゛
[Claims] Volatile hydrocarbons, hydrogen, and volatile boron compounds are supplied to a plasma generation chamber in which a substrate is installed, and high-frequency waves or microwaves are applied to the mixed residue to induce plasma and bring it into an excited state. 1. A method for synthesizing P-type semiconductor diamond, which is characterized in that a hydrocarbon, hydrogen chloride, is generated, and a P-type semiconductor sakaki film of diamond is grown on the surface of a substrate.・13)゛
JP58010225A 1983-01-25 1983-01-25 Synthetic method of p type semiconductor diamond Pending JPS59137396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58010225A JPS59137396A (en) 1983-01-25 1983-01-25 Synthetic method of p type semiconductor diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58010225A JPS59137396A (en) 1983-01-25 1983-01-25 Synthetic method of p type semiconductor diamond

Publications (1)

Publication Number Publication Date
JPS59137396A true JPS59137396A (en) 1984-08-07

Family

ID=11744334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58010225A Pending JPS59137396A (en) 1983-01-25 1983-01-25 Synthetic method of p type semiconductor diamond

Country Status (1)

Country Link
JP (1) JPS59137396A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246867A (en) * 1988-03-28 1989-10-02 Sumitomo Electric Ind Ltd Schottky junction
JPH01246115A (en) * 1988-03-26 1989-10-02 Semiconductor Energy Lab Co Ltd Method for forming coating film of carbon or material composed mainly of carbon
US5250149A (en) * 1990-03-06 1993-10-05 Sumitomo Electric Industries, Ltd. Method of growing thin film
US5270028A (en) * 1988-02-01 1993-12-14 Sumitomo Electric Industries, Ltd. Diamond and its preparation by chemical vapor deposition method
US5371383A (en) * 1993-05-14 1994-12-06 Kobe Steel Usa Inc. Highly oriented diamond film field-effect transistor
US5424561A (en) * 1993-05-14 1995-06-13 Kobe Steel Usa Inc. Magnetic sensor element using highly-oriented diamond film and magnetic detector
US5442199A (en) * 1993-05-14 1995-08-15 Kobe Steel Usa, Inc. Diamond hetero-junction rectifying element
EP0691413A2 (en) 1993-04-06 1996-01-10 Sumitomo Electric Industries, Ltd. Diamond reinforced composite material and method of preparing the same
US5491348A (en) * 1993-05-14 1996-02-13 Kobe Steel Usa, Inc. Highly-oriented diamond film field-effect transistor
US5493131A (en) * 1993-05-14 1996-02-20 Kobe Steel Usa, Inc. Diamond rectifying element
US5512873A (en) * 1993-05-04 1996-04-30 Saito; Kimitsugu Highly-oriented diamond film thermistor
US5523160A (en) * 1993-05-14 1996-06-04 Kobe Steel Usa, Inc. Highly-oriented diamond film
US5677372A (en) * 1993-04-06 1997-10-14 Sumitomo Electric Industries, Ltd. Diamond reinforced composite material
US5803967A (en) * 1995-05-31 1998-09-08 Kobe Steel Usa Inc. Method of forming diamond devices having textured and highly oriented diamond layers therein
US8916125B2 (en) 2001-12-28 2014-12-23 Toyo Tanso Co., Ltd. Graphite material for synthesizing semiconductor diamond and semiconductor diamond produced by using the same
WO2019059123A1 (en) * 2017-09-19 2019-03-28 住友電気工業株式会社 Monocrystal diamond and production method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963732A (en) * 1982-10-04 1984-04-11 Hitachi Ltd Thin film forming device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963732A (en) * 1982-10-04 1984-04-11 Hitachi Ltd Thin film forming device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270028A (en) * 1988-02-01 1993-12-14 Sumitomo Electric Industries, Ltd. Diamond and its preparation by chemical vapor deposition method
JPH01246115A (en) * 1988-03-26 1989-10-02 Semiconductor Energy Lab Co Ltd Method for forming coating film of carbon or material composed mainly of carbon
JPH01246867A (en) * 1988-03-28 1989-10-02 Sumitomo Electric Ind Ltd Schottky junction
US5250149A (en) * 1990-03-06 1993-10-05 Sumitomo Electric Industries, Ltd. Method of growing thin film
EP0691413A2 (en) 1993-04-06 1996-01-10 Sumitomo Electric Industries, Ltd. Diamond reinforced composite material and method of preparing the same
US5677372A (en) * 1993-04-06 1997-10-14 Sumitomo Electric Industries, Ltd. Diamond reinforced composite material
US5512873A (en) * 1993-05-04 1996-04-30 Saito; Kimitsugu Highly-oriented diamond film thermistor
US5424561A (en) * 1993-05-14 1995-06-13 Kobe Steel Usa Inc. Magnetic sensor element using highly-oriented diamond film and magnetic detector
US5491348A (en) * 1993-05-14 1996-02-13 Kobe Steel Usa, Inc. Highly-oriented diamond film field-effect transistor
US5493131A (en) * 1993-05-14 1996-02-20 Kobe Steel Usa, Inc. Diamond rectifying element
US5442199A (en) * 1993-05-14 1995-08-15 Kobe Steel Usa, Inc. Diamond hetero-junction rectifying element
US5523160A (en) * 1993-05-14 1996-06-04 Kobe Steel Usa, Inc. Highly-oriented diamond film
US5371383A (en) * 1993-05-14 1994-12-06 Kobe Steel Usa Inc. Highly oriented diamond film field-effect transistor
US5803967A (en) * 1995-05-31 1998-09-08 Kobe Steel Usa Inc. Method of forming diamond devices having textured and highly oriented diamond layers therein
US8916125B2 (en) 2001-12-28 2014-12-23 Toyo Tanso Co., Ltd. Graphite material for synthesizing semiconductor diamond and semiconductor diamond produced by using the same
WO2019059123A1 (en) * 2017-09-19 2019-03-28 住友電気工業株式会社 Monocrystal diamond and production method therefor
CN111133134A (en) * 2017-09-19 2020-05-08 住友电气工业株式会社 Single crystal diamond and method for producing same
JPWO2019059123A1 (en) * 2017-09-19 2020-10-15 住友電気工業株式会社 Single crystal diamond and its manufacturing method
EP3686321A4 (en) * 2017-09-19 2021-07-28 Sumitomo Electric Industries, Ltd. Monocrystal diamond and production method therefor
CN111133134B (en) * 2017-09-19 2022-06-14 住友电气工业株式会社 Single crystal diamond and method for producing same

Similar Documents

Publication Publication Date Title
JPS59137396A (en) Synthetic method of p type semiconductor diamond
JP3728465B2 (en) Method for forming single crystal diamond film
US4434188A (en) Method for synthesizing diamond
JPS5927754B2 (en) Diamond synthesis method
JPS58135117A (en) Preparation of diamond
JP2015518088A (en) Microwave plasma chemical vapor deposition system
JPH0259493A (en) Method for growing diamond
JPH0650730B2 (en) Method for manufacturing semiconductor thin film
JP5822259B2 (en) Diamond crystal growth method and diamond crystal growth apparatus
JPS6086096A (en) Precipitation of filmy diamond
JPS63224225A (en) Substrate of thin film single crystal diamond
JPS6054996A (en) Synthesis of diamond
JPS63117993A (en) Device for synthesizing diamond in vapor phase
JP3728466B2 (en) Method for producing single crystal diamond film
JPS6115150B2 (en)
JPH0419197B2 (en)
JPH0532489A (en) Synthesis of diamond using plasma
JPH0481556B2 (en)
JPH0323295A (en) Method for synthesizing semiconductor diamond
JPS63156009A (en) Synthesis of fine diamond powder
JPS63117995A (en) Device for synthesizing diamond in vapor phase
JPH02263796A (en) Vapor hetero epitaxial growth method for silicon carbide
JPH06321688A (en) Forming method of highly oriented diamond thin film
JPH06236851A (en) Manufacture of n-type cubic boron nitride semiconductor
JPS60127292A (en) Production of diamond