JPS58135117A - Preparation of diamond - Google Patents

Preparation of diamond

Info

Publication number
JPS58135117A
JPS58135117A JP57012966A JP1296682A JPS58135117A JP S58135117 A JPS58135117 A JP S58135117A JP 57012966 A JP57012966 A JP 57012966A JP 1296682 A JP1296682 A JP 1296682A JP S58135117 A JPS58135117 A JP S58135117A
Authority
JP
Japan
Prior art keywords
diamond
hydrogen
plasma
gas
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57012966A
Other languages
Japanese (ja)
Other versions
JPS612632B2 (en
Inventor
Seiichiro Matsumoto
精一郎 松本
Kazutomo Kijima
木島 弌倫
Nobuo Sedaka
瀬高 信雄
Yoichiro Sato
洋一郎 佐藤
Mutsukazu Kamo
加茂 睦和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP57012966A priority Critical patent/JPS58135117A/en
Publication of JPS58135117A publication Critical patent/JPS58135117A/en
Publication of JPS612632B2 publication Critical patent/JPS612632B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To synthesize a diamond having desired structure from amorphous to perfect crystal, by the vapor-phase reaction of a gaseous mixture of hydrocarbon and hydrogen in the atmosphere of reducing gas or a mixture of reducing gas and a neutral gas in hydrogen plasma under fluidized conditions. CONSTITUTION:1mol of a hydrocarbon is diluted with 1-2,000mol of hydrogen and introduced into a plasma furnace. The atmosphere in the furnace is a reducing gas such as hydrogen gas or a mixture of a reducing gas and a neutral gas such as Ar. The state of the hydrogen plasma is properly controlled from the high-frequency glow of equilibrium plasma to non-equilibrium plasma according to the kind of the hydrocarbon, conditions of the electrical source, pressure of the atmosphere, flow rate of the gas, molar ratio of the raw material gases, etc. The density and the color of the plasma are also changed thereby. It is necessary to heat the zone of the vapor-phase reaction to obtain a diamond having a perfect crystal structure. The type of the plasma generator is arbitrary.

Description

【発明の詳細な説明】 逮法に関する。[Detailed description of the invention] Regarding the arrest law.

ダイヤモンドは共有結合物質の代表的なものであり、硬
度が高いので切削.研磨剤として使用され、また光学的
に優れた性質を有するため宝石としては勿論光学用材料
として、またボロン等を゛固溶し九ダイヤモンドはP型
半導体としての特性を示すので電子材料として、その値
化学的耐食性を有するため化学工業の材料等広く利用さ
れている。
Diamond is a typical covalently bonded substance, and its high hardness makes it difficult to cut. It is used as an abrasive, and because it has excellent optical properties, it is used not only as jewelry but also as an optical material.Diamond has the characteristics of a P-type semiconductor, so it is used as an electronic material. It is widely used as a material in the chemical industry due to its chemical corrosion resistance.

従来、ダイヤモンドの製造法としては、黒鉛等の炭素粉
末を超高温高圧下で処理する方法が行われているが、高
価な装置を必要とし、その操業も困■であるため高価と
なる欠点がある。これに代わり、前記のような超高温高
圧装置を使用せず、炭化水素からダイヤモンドを製造す
る方法が開発され九。
Conventionally, diamond manufacturing methods involve processing carbon powder such as graphite at extremely high temperatures and high pressures, but this method requires expensive equipment and is difficult to operate, making it expensive. be. Instead, a method has been developed to produce diamonds from hydrocarbons without using the ultra-high-temperature, high-pressure equipment described above.

例えば、放電中の高エネルギーを持った電子を利用して
、炭化水素の化学結合を解き放すと同時法によると、得
られるダイヤモンドは非晶質であるか、まえはダイヤモ
ンドに近い結晶構造のものであるが、完全なダイヤモン
ド結晶構造のものは得られ表<、例えdlこれらのダイ
ヤモンドは電子線反射回折において禁制反射が現われた
り、これを#60℃に加熱すると、水素ガスが遊離発生
して気泡を作9、7jO℃で加熱すると黒鉛になる郷の
欠点を持ったものであった。また生成するダイヤモンド
の結晶性を制御することができない欠点もあった。
For example, if high-energy electrons in a discharge are used to release chemical bonds in hydrocarbons, the resulting diamond is either amorphous or has a crystalline structure close to that of diamond. However, diamonds with a complete diamond crystal structure can be obtained. For example, these diamonds exhibit forbidden reflections in electron beam reflection diffraction, and when heated to #60°C, hydrogen gas is liberated and bubbles form. It had the disadvantage of becoming graphite when heated at 9.7°C. Another drawback was that the crystallinity of the diamond produced could not be controlled.

本発明の目的は、従来のプラズマ法の欠点をなくシ、生
成するダイヤモンドの結晶性を制御することができ、非
晶質から完全表結晶構造を有するダイヤモンドを容易に
製造する方゛法を提供するにある。
The purpose of the present invention is to provide a method that eliminates the drawbacks of conventional plasma methods, can control the crystallinity of the produced diamond, and easily produces diamond with a perfectly crystalline structure from an amorphous state. There is something to do.

本発明署らはプラズマの化学反応性について鋭意研究の
結果、炭化水素からダイヤモンドが生成する反応におい
て、水素プラズマによる水素原子又は水素イオン電子あ
るいは紫外線が生成反応を促進する有力な作用があるこ
とを見出し、また水素プラズマを利用することによりダ
イヤモンドだけが固相として成長し、他の物質はガス状
態が安定である条件を見出し得た。
As a result of extensive research into the chemical reactivity of plasma, the present invention office has found that in the reaction that produces diamond from hydrocarbons, hydrogen atoms, hydrogen ions, electrons, and ultraviolet rays from hydrogen plasma have a powerful effect in promoting the production reaction. Furthermore, by using hydrogen plasma, we were able to find conditions under which only diamond grows as a solid phase, while other substances remain stable in the gaseous state.

また、水素プラズマを使用し、炭化水素と水素とを気相
反応させると、生成するダイヤモンドの結晶性が容易に
制御し得られ、反応析出部の温度。
In addition, when hydrogen plasma is used to cause a gas phase reaction between hydrocarbon and hydrogen, the crystallinity of the resulting diamond can be easily controlled and the temperature of the reaction precipitation area can be controlled.

プラズマ状態、ガスの流速1モル比、ガス圧等の条件を
調整することにより、非晶質から完全な結晶構造を持つ
ダイヤモンドを合成し得られることを見出し九。これら
の知見に基づいて本発明を完成したものである。
It was discovered that by adjusting conditions such as plasma state, gas flow rate per molar ratio, and gas pressure, it was possible to synthesize diamond with a perfectly crystalline structure from an amorphous state.9. The present invention was completed based on these findings.

本発明の要旨は、炭化水素に対する水素のモル比が/−
2000となるように混合したガスを、中性または還元
性雰囲気下の水素プラズマ気相中で流動状態で気相反応
させるととを特徴とするダイヤモンドの製造法にある。
The gist of the invention is that the molar ratio of hydrogen to hydrocarbon is /-
The present invention is directed to a method for producing diamond, characterized in that gases mixed so as to have a concentration of 2,000% are subjected to a gas phase reaction in a fluidized state in a hydrogen plasma gas phase in a neutral or reducing atmosphere.

パラフィン系飽和鎖状炭化水素、エチレン、プロピレン
、ブチレン等のオレフィン系不飽和鎖状炭化水素、アセ
チレン、アリレン等のアセチレン系不飽和鎖状炭化水素
、アレン、ブタジェンなどのジオレフィン系不飽和炭化
水素、シクロプロパン。
Paraffinic saturated chain hydrocarbons, olefinically unsaturated chain hydrocarbons such as ethylene, propylene, and butylene, acetylenically unsaturated chain hydrocarbons such as acetylene and arylene, diolefinically unsaturated hydrocarbons such as arene and butadiene. , cyclopropane.

シクロブタン、シクロペンタン、シクロヘキサン勢の脂
環式炭化水素、シクロブタジェン、ベンゼン、トルエン
、キシレン、ナフタレンおよびシフの混合物でもよい。
Mixtures of cycloaliphatic hydrocarbons such as cyclobutane, cyclopentane, cyclohexane, cyclobutadiene, benzene, toluene, xylene, naphthalene and Schiff may also be used.

要は気体状で水素プラズマ中で常温または加熱状態で、
炭素と水素に分解するものであればよい。また、これら
と水素ガスの混合物であってもよい。沸点の高い炭化水
素は加熱。
In short, it is in a gaseous state in hydrogen plasma at room temperature or in a heated state.
Any material that decomposes into carbon and hydrogen may be used. Alternatively, a mixture of these and hydrogen gas may be used. Hydrocarbons with high boiling points are heated.

または電子ビーム照射などにより気化させ、キャリヤー
ガス(水素などの還元性ガス、tたはアルゴン、ヘリウ
ム轡の中性ガス)★用いてプラズマ炉内へ導入する。
Alternatively, it is vaporized by electron beam irradiation, etc., and introduced into a plasma furnace using a carrier gas (reducing gas such as hydrogen, or neutral gas such as argon or helium).

ダイヤモンド中に%B、ムj、Ga、In、N、P。%B, Muj, Ga, In, N, P in diamond.

ムs 、 Sb 、 Biなどの第3成分を固溶させる
場合は、炭化水素に前記第3成分含有化合物、例えばB
F、 。
When a third component such as S, Sb, Bi, etc. is dissolved in solid solution, the third component-containing compound, for example, B, is added to the hydrocarbon.
F.

82H6,Bなどのハロゲン化合物、水素化物、金属な
どを予めガス状で導入すればよい。
Halogen compounds such as 82H6, B, hydrides, metals, etc. may be introduced in gaseous form in advance.

炭化水素は水素ガスで希釈して反応領域へ送ることが必
要である。そ゛の希釈割合は炭化水素に対する水素のモ
ル比が7−−〇〇〇である。モル比が7より小さいとグ
ラファイトが析出するようにな9、ま九モル比が一〇〇
〇を超えると、ダイヤモンドの成長の速度がおそくなる
ので、特に好ましい軸回はtoo付近である。
Hydrocarbons need to be diluted with hydrogen gas before being sent to the reaction zone. The dilution ratio is such that the molar ratio of hydrogen to hydrocarbon is 7. If the molar ratio is less than 7, graphite will precipitate, and if the molar ratio exceeds 1,000, the growth rate of diamond will be slow, so the particularly preferred axis is around too.

反応雰囲気は還元性雰囲気例えば水素、ガス雰囲気が好
ましいが、水素ガスに中性ガス例えばアルゴンガス、ヘ
リウムガスを混和し、て中性雰囲気としてもよい。
The reaction atmosphere is preferably a reducing atmosphere such as a hydrogen or gas atmosphere, but a neutral atmosphere may be created by mixing hydrogen gas with a neutral gas such as argon gas or helium gas.

水素プラズマ状態は炭化水素の種類、電源条件(高周波
陽極電圧、陽極電流、グリッド電流)。
The hydrogen plasma state depends on the type of hydrocarbon and power supply conditions (high-frequency anode voltage, anode current, grid current).

雰囲気ガス圧は数気圧〜10  Torrであることが
好ましい。このガス圧は高真空になればがる程反応析出
達度はおそくな抄、逆にガス圧が高くな9すぎるとプラ
ズマが止ってしまう。最適条件は0、/ N10 To
rrである。
The atmospheric gas pressure is preferably several atmospheres to 10 Torr. The higher the vacuum, the slower the rate of reaction and precipitation, and conversely, if the gas pressure is too high, the plasma will stop. The optimal condition is 0, / N10 To
It is rr.

ガス流量は原料ガスのモル比、ガス圧力はどダイヤモン
ドの生成に影響を与え々いが、フィルム状ダイヤモンド
、粉末状ダイヤモンドの生成速度に影響を与える。例え
ばrlllφの石英管を使用した場合は、炭化水素o、
t −to d/min 、水素/d/min ”” 
101 / Winの範闘が好ましい。
The gas flow rate, the molar ratio of the raw material gas, and the gas pressure have an effect on the production of diamond, but they also affect the production rate of film diamond and powder diamond. For example, when using a rllllφ quartz tube, hydrocarbons o,
t-to d/min, hydrogen/d/min ""
101/Win range is preferred.

高周波水素プラズマだけで、他の加熱を行わない場合に
は、非晶質ダイヤモンドまたは結晶化の程度の低いダイ
ヤモンドが生、成する。
When high-frequency hydrogen plasma alone is used without any other heating, amorphous diamond or diamond with a low degree of crystallization is produced.

完全な結晶構造を有するダイヤモンドを作るためには気
相反応部分を加熱することが必要である。
Heating of the gas phase reaction part is necessary to create diamond with a perfectly crystalline structure.

その加熱温度は600− /コ00℃、好ましくは70
0〜/100℃である。1200℃を超えるとグラファ
イトが混入あるいはグラファイトとなる。この加熱は高
周波のワークコイル附近に高周波のサセプターを置き加
熱することもできるが、外部に加熱装置を置けは均熱部
分、温度勾配などを制御した加熱ができるので好ましい
The heating temperature is 600-/00℃, preferably 70℃
0~/100°C. When the temperature exceeds 1200°C, graphite is mixed in or becomes graphite. This heating can be done by placing a high-frequency susceptor near the high-frequency work coil, but it is preferable to place a heating device outside because heating can be performed while controlling the soaking area, temperature gradient, etc.

プラズマ発生装置としては、第1図〜第11図に示すよ
うな装置が使用し得られる。図においてl第1図はアー
スなしの無極プラズマ装置。
As the plasma generator, devices such as those shown in FIGS. 1 to 11 can be used. In the figure, Figure 1 is a non-polar plasma device without grounding.

第2図は基板アースプラズマ装置、 第3図は基板に直流電圧を印加(+/−)したプラズマ
装置、 第参図は上部電極アースプラズマ装置、第3図は上部電
極直流電圧印加(+/−3基板アースプラズマ装置、 第4図は基板直流電圧印加(+/−)上部電極を印加プ
ラズマ装置、 第を図は第7図のものに基板をアースし九プラズマ装置
、 第10図は電極を2つ設は九コンデンサー型有極プラズ
マ装置、 第11図はプラズマに加熱炉を付属させたプラズマ装置
、 第12図は生成したダイヤモンド粉末を集めるための高
電圧電極を付属させたプラズマ装置、第13図は内部プ
ラズマ電極型(コンデンサー型)プラズマ装置、 第11図は外部プラス1電極加熱型プラズマ装置が挙げ
られる。
Figure 2 shows a substrate earth plasma device, Figure 3 shows a plasma device with a DC voltage applied (+/-) to the substrate, Figure 3 shows an upper electrode earth plasma device, and Figure 3 shows an upper electrode DC voltage applied (+/-). - 3-substrate ground plasma device, Figure 4 is a plasma device that applies DC voltage to the substrate (+/-) and the upper electrode; Figure 11 shows a plasma equipment with a heating furnace attached to the plasma, and Figure 12 shows a plasma equipment with a high voltage electrode attached to collect the generated diamond powder. FIG. 13 shows an internal plasma electrode type (condenser type) plasma device, and FIG. 11 shows an external plus one electrode heating type plasma device.

第7図に示すように、サセプターまたは支持台3上に基
板ダを置くと、基板参上にダイヤモンドを析出させるこ
とができる。基板としては、シリコン、タングステン、
モリブデン等の金属、ステンレス勢の合金、アルミナ、
ダイヤモンド、スピネル、炭化珪素等の無機セラミック
ス、石英ガラス等のガラス、 Na0l、 KCI等の
無機化合物の結晶、プラスチック等が挙げられる。これ
らはその使用目的に応じて選ぶことができる。
As shown in FIG. 7, when the substrate is placed on a susceptor or support 3, diamond can be deposited on the substrate. As a substrate, silicon, tungsten,
Metals such as molybdenum, stainless steel alloys, alumina,
Examples include inorganic ceramics such as diamond, spinel, and silicon carbide, glasses such as quartz glass, crystals of inorganic compounds such as Na0l and KCI, and plastics. These can be selected depending on the purpose of use.

基板を使用する場合、炭化水素と水素との混合ガスを導
入する前に、水素プラズマだけで処理すると、基板はエ
ツチングされるので、基板とダイヤモンドとを強固に結
合させることができる。
When using a substrate, if the substrate is treated with only hydrogen plasma before introducing a mixed gas of hydrocarbon and hydrogen, the substrate will be etched and the diamond can be firmly bonded to the substrate.

また、ダイヤモンド析出部を設けないときは、気相中で
析出して微粉末のダイヤモンドが得られせることかでき
る。
Further, when a diamond precipitation section is not provided, fine powder diamond can be obtained by precipitation in the gas phase.

本発明の方法は次のような優れた作用効果を奏する。The method of the present invention has the following excellent effects.

(1)  本発明の方法は気相反応によりダイヤモンド
を合成するので、従来の超高温高圧下での合成に比べて
簡単な装置で、容易且安価にダイヤモを利用する方法に
比べて、ダイヤモンドの合成が極めて容易である。
(1) Since the method of the present invention synthesizes diamond by a gas phase reaction, it is easier and cheaper to synthesize diamond with simpler equipment than the conventional synthesis under ultra-high temperature and high pressure. It is extremely easy to synthesize.

即ち、炭化水素の結合を切断し、炭素と炭素とをspa
の共有結合により結びつける反応を、水素プラズマ中の
遊離水素原子および水素イ、オンが大きく促進し、ダイ
ヤモンドの合成が容易に々つたものと考えられる。
That is, the bonds of hydrocarbons are cut and the carbons are separated by spa treatment.
It is thought that the free hydrogen atoms and hydrogen ions and ions in the hydrogen plasma greatly facilitated the reaction in which diamonds are bonded together through covalent bonds, facilitating the synthesis of diamond.

(3)  水素プラズマを利用するため、プラズマの平
衡状態に近づけられ、これにより気相中のガス温度を上
げることができ、ダイヤモンドの結晶化が促進させられ
る。
(3) Since hydrogen plasma is used, the equilibrium state of the plasma can be approached, thereby increasing the gas temperature in the gas phase and promoting diamond crystallization.

(4)  ダイヤモンドの生成反応部における温度の調
整により、非晶質ダイヤモンド、結晶化度の低いダイヤ
モンド、完全な結晶構造のダイヤモンドを任意に作るこ
とができる。
(4) By adjusting the temperature in the diamond production reaction section, amorphous diamond, diamond with low crystallinity, and diamond with a perfect crystal structure can be produced as desired.

本発明の方法で得られる完全に結晶させたダイヤモンド
は電子線反射回折に禁制反射が現われず、参60℃に加
熱しても水素ガスが遊離発生して気泡を作ることがなく
、また加熱による黒鉛化の温度は1200℃と高いもの
である。
The completely crystallized diamond obtained by the method of the present invention does not exhibit any forbidden reflection in electron beam reflection diffraction, and even when heated to 60°C, hydrogen gas is not liberated and bubbles are not formed. The graphitization temperature is as high as 1200°C.

(5)  ダイヤモンドの生成反応部に基体を設ければ
基体上に析出したダイヤモンドが得られ、また基体を設
けないときは粉末状のダイヤモンドが得られ、所望のダ
イヤモンドが容易に得られる。
(5) Diamond Production If a substrate is provided in the reaction zone, diamond precipitated on the substrate will be obtained, and if the substrate is not provided, powdered diamond will be obtained, making it easy to obtain the desired diamond.

また基板の選定により、各種用途に利用し得られるダイ
ヤモンド析出板またはフィルム状が得られる。
Depending on the selection of the substrate, a diamond deposited plate or film can be obtained that can be used for various purposes.

(6)  炭化水素と水素との混合ガス中に金属化合物
蒸気例え[BH,を混合導入して反応させることにより
、例えばBを固溶し九P!jII半導体ダイヤモンドを
容易に製造することができる。
(6) By introducing a metal compound vapor, such as BH, into a mixed gas of hydrocarbon and hydrogen and causing a reaction, for example, B is dissolved as a solid solution, and 9P! jII semiconductor diamond can be easily manufactured.

実施例1゜ 高周波誘導発振器(陽極電圧t、1skv、陽極電流/
、亭3ム、グリッド電流IJmムとじた。)の、ワーク
コイルの一端と上部電極をアースレベルにし、基板は電
気的に浮かした第参図に示す装置を使用した。基板には
シリコン単結晶ウェハー(ioo )7 −を使用し、高周波サセプター兼用の黒船ルツボ昌 一コイルとサセプターの位置関係を調節して黒鉛ルツボ
の温度が約94O℃になるように設定した。
Example 1 High frequency induction oscillator (anode voltage t, 1 skv, anode current/
, the grid current IJm was stopped. ), one end of the work coil and the upper electrode were set at ground level, and the device shown in Figure 1 was used, with the board electrically floating. A silicon single crystal wafer (IOO) 7- was used as the substrate, and the temperature of the graphite crucible was set to about 940° C. by adjusting the positional relationship between the Kurofune crucible Shoichi coil, which also served as a high-frequency susceptor, and the susceptor.

反応石英管の内径は約#JIIIIφで%towxφの
ワークコイル5回巻とした。ガスは反応石英管の上部よ
り炭化水素に対する水素のモル比が100になるように
s 12 / 00 ’/In1n % (ili4 
/ ”/ l1llHの流量で導入し、全圧力が釣りT
orrになるように設定し基板上には均一な光沢のある
フィルムがコーティングされた。色はほぼ透明で鏡面状
態てあった。
The inner diameter of the reaction quartz tube was approximately #JIIIφ and a work coil of %towxφ was wound five times. The gas was supplied from the top of the reaction quartz tube at a rate of s 12 / 00 '/In1n % (ili4
/ ”/ Introduced at a flow rate of 11llH, and the total pressure was
A uniform glossy film was coated on the substrate. The color was almost transparent and had a mirror finish.

これを電子線反射回折で調べた結果、ダイヤモンドを示
すシャープなピークが低角から、(///)コ、/  
X  、  (λコ0 )  /、J X  、(J/
/)、/、/ X  、(4!00)0.191 (こ
れは弱く明瞭でない)、<33/)0.tコに、(ダ2
コ)o、qz l 、<3ss)o、tqlと各面間隔
のdが観測された。
As a result of examining this by electron beam reflection diffraction, sharp peaks indicating diamond were observed from low angles.
X , (λko0) /, J X , (J/
/), /, / X , (4!00) 0.191 (this is weak and unclear), <33/) 0. To tko, (da 2
h) o, qz l , <3ss) o, tql and d of each surface spacing were observed.

実施例2゜ 高周波誘導コイルの陽極と同電位になるように上部電極
を設けた第7図の装置を使用し、さらに基板をアース電
位につないだ。装置的な条件はグラファイトサセプター
上部にタングステン基板を置いた点以外は実施例1と同
様にした。
Example 2 The apparatus shown in FIG. 7 was used, in which the upper electrode was provided to have the same potential as the anode of the high-frequency induction coil, and the substrate was connected to ground potential. The equipment conditions were the same as in Example 1 except that a tungsten substrate was placed on top of the graphite susceptor.

炭化水素に対する水素のモル比が200に彦るようにC
sHe J Ilj/win 、水素600wJ/li
nノ流量で石英反応管内に導入し、全ガス圧が0.5 
Torrになるように設定した。高周波の陽極電圧j 
kW 。
C so that the molar ratio of hydrogen to hydrocarbon is 200.
sHe J Ilj/win, hydrogen 600wJ/li
The gas was introduced into the quartz reaction tube at a flow rate of n, and the total gas pressure was 0.5.
I set it to Torr. High frequency anode voltage j
kW.

陽極電流0.9コム、グリッド電流63 mムとじた。The anode current was 0.9 mm, and the grid current was 63 mm.

グラファイトサセプターとワークコイルとの距離をエツ
チングした。実施例1より少し赤味を帯びた水素プラズ
マ中で反応させた。基板上に表面がつやけしされた均一
なフィルムがコーチインフサれた。これを・電子線反射
回折で調べたとζろ、実施例1と同様であった。
The distance between the graphite susceptor and work coil was etched. The reaction was carried out in a slightly reddish hydrogen plasma compared to Example 1. A uniform film with a polished surface was coated onto the substrate. When this was examined by electron beam reflection diffraction, it was found to be the same as in Example 1.

実施例五 0!)第3図に示す装置を使用し、基板に+4 kVの
亨流高電圧を印加した。基板K Si (100)を用
い、φ1lla / Ill/ min 、 H210
0su/win 、の混合ガスを使用し、サセプターの
温度qzo”c、@I[[4、tkW、陽極電流/、0
7ム、グリッド電流/IQ @Aで水素プラズマを作っ
た。全ガス圧をλOTorrとした。
Example 50! ) A supercurrent high voltage of +4 kV was applied to the substrate using the apparatus shown in FIG. Using the substrate K Si (100), φ1lla/Ill/min, H210
Using a mixed gas of 0su/win, the susceptor temperature qzo”c, @I [[4, tkW, anode current/,0
7m, hydrogen plasma was created with grid current/IQ @A. The total gas pressure was set to λOTorr.

基板上に結晶化度の低いダイヤモンドが生成した。電子
、■−イオンのエネルギーを高くすると結晶化度を低く
おさえることができる。
Diamond with low crystallinity was formed on the substrate. By increasing the energy of electrons and -ions, the degree of crystallinity can be kept low.

実施例屯 第2図に示す装置を使用し、高周波陽極電圧。Examples Using the apparatus shown in Figure 2, high-frequency anode voltage.

陽極電流、グリッド電流をそれぞれ、7.OkW 。7. Anode current and grid current, respectively. OKW.

/、/ム、 //j mA K設定し、エチレyzm/
win。
/, /mu, //j mA K setting, Echire yzm/
Win.

水素too 11j/ win 、全ガス圧を10TO
rrにし、サセプタ一温度を1100℃に保って他は実
施例1と同様にしてダイヤモンドを合成した。実施例1
と同じダイヤモンドが合成された。エチレンに代え、ア
セチレン、ベンゼンを使用した場合も同様にダイヤモン
ドが得られた。
Hydrogen too 11j/win, total gas pressure 10TO
Diamond was synthesized in the same manner as in Example 1 except that the temperature of the susceptor was maintained at 1100°C. Example 1
The same diamond was synthesized. Diamonds were similarly obtained when acetylene and benzene were used instead of ethylene.

実施例& 第12図に示す装置を使用し、反応部を1ooo℃に加
熱し九。高周波陽極電圧、陽極電流、グリッド電流を、
それぞれ、 #、J kV 、へダム、 iso mA
とし、エチレンJll’/min 、水素へtj/m1
n1全ガス圧を100 Torrにして反応させた。ダ
イヤモンド粒子が得られた。電子線反射回折によりlI
べも たところ、結晶化の低くおさえられ各ダイヤモンドであ
った。
Example & Using the apparatus shown in Figure 12, the reaction section was heated to 100°C. High frequency anode voltage, anode current, grid current,
#, J kV, Hedam, iso mA, respectively.
Then, ethylene Jll'/min, hydrogen tj/m1
The reaction was carried out at a total n1 gas pressure of 100 Torr. Diamond particles were obtained. II by electron beam reflection diffraction
As it turned out, each diamond had a low level of crystallization.

【図面の簡単な説明】 図面の第1図〜第1#図は、本発明の方法で使用する水
素プラズマの発生装置の実施態様を示す。 /:石英反応管、    、2:高周波誘導用コイル。 3:サセプターまたは支持台、 参:基板、      jll、 ≦;高周波電極、   7:加熱装置。 第1困     第2m 第3図      箒企図 手続補正書 昭和57年12月20日 特許庁長官 若 杉 和 夫 殿 1、事件の表示 昭和57年特許願第12966号 2、発明の名称 ダイヤモンドの製造法 3、補正をする者 事件との関係 特許出願人 住所 茨城業新治郡桜村並本1丁目1番氏名 科学技術
庁無機材質研究所長 1) 中  廣  冑 4、補正命令の日付 自発補正 5、補正により増加する発明の数 なし6、補正の対象 明細書の発明の詳細な説明の欄並びに図面(1)  明
細、書第1貞下から2行「利用されている。」を「利用
されうる。」と訂正する。 (2)同第2頁下から5行「得られなく、」を「得られ
ず」と訂正する。 (3)  同第1O頁終行〜第11頁3行を次の通シ訂
正する。 「(5)  プラズマを平衡状態に近づけて、気相中の
ガス温度を上げても水素プラズマを利用しているため、
グラファイト化を抑制しダイヤモンドの結晶化を促進さ
せることができる。」(4)  図面の第1図、第8図
、第9図、第12図。 第13図及び第14図を別紙の通り訂正する。 第1図      第’sT!l 第9図     第12図 第13図     第+4I!1
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 1# of the drawings show an embodiment of a hydrogen plasma generator used in the method of the present invention. /: Quartz reaction tube, 2: High frequency induction coil. 3: Susceptor or support base, Reference: Substrate, jll, ≦; High frequency electrode, 7: Heating device. No. 1, No. 2m, No. 3, Amendment to the Broom Proposal Procedure December 20, 1980 Director-General of the Patent Office Kazuo Wakasugi 1, Indication of the Case 1982 Patent Application No. 12966 2, Name of the Invention Method for Manufacturing Diamonds 3. Relationship with the case of the person making the amendment Patent Applicant Address: 1-1 Namimoto, Sakuramura, Niiharu-gun, Ibaraki Name: Director, Institute of Inorganic Materials, Science and Technology Agency 1) Nakahiro Kame 4, Date of amendment order Voluntary amendment 5, Due to the amendment Increasing number of inventions None 6. Detailed description of the invention and drawings in the specification subject to amendment (1) In the second line from the first text of the specification, "Used" is replaced with "Can be utilized." I am corrected. (2) On the second page of the same page, in the fifth line from the bottom, ``not obtained'' is corrected to ``not obtained.'' (3) The last line on page 10 to line 3 on page 11 are corrected as follows. (5) Since hydrogen plasma is used even if the plasma is brought close to an equilibrium state and the gas temperature in the gas phase is increased,
It is possible to suppress graphitization and promote diamond crystallization. (4) Figures 1, 8, 9, and 12 of the drawings. Figures 13 and 14 are corrected as shown in the attached sheet. Figure 1 No.'sT! l Fig. 9 Fig. 12 Fig. 13 Fig. +4I! 1

Claims (1)

【特許請求の範囲】[Claims] 炭化水素に対する水素のモル比が7−2000となるよ
うに混合し九ガスを、還元性ガスまたはこれに中性ガス
を混和した雰囲気)の水素プラズマ気相中で流動状態で
気相反・応させることを特徴とするダイヤモンドの製造
法。
The nine gases are mixed so that the molar ratio of hydrogen to hydrocarbon is 7-2000, and are allowed to react in a gas phase in a fluidized state in a hydrogen plasma gas phase of a reducing gas or an atmosphere in which a neutral gas is mixed therewith. A diamond manufacturing method characterized by:
JP57012966A 1982-01-29 1982-01-29 Preparation of diamond Granted JPS58135117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57012966A JPS58135117A (en) 1982-01-29 1982-01-29 Preparation of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012966A JPS58135117A (en) 1982-01-29 1982-01-29 Preparation of diamond

Publications (2)

Publication Number Publication Date
JPS58135117A true JPS58135117A (en) 1983-08-11
JPS612632B2 JPS612632B2 (en) 1986-01-27

Family

ID=11819980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012966A Granted JPS58135117A (en) 1982-01-29 1982-01-29 Preparation of diamond

Country Status (1)

Country Link
JP (1) JPS58135117A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935093A (en) * 1982-08-23 1984-02-25 Sumitomo Electric Ind Ltd Vapor-phase synthesis of diamond
JPS60124258A (en) * 1983-12-08 1985-07-03 Mitsubishi Metal Corp Surface-covered printing dot pin
JPS60127298A (en) * 1983-12-09 1985-07-06 Sumitomo Electric Ind Ltd Gas-phase synthesis of diamond
JPS60201878A (en) * 1984-03-26 1985-10-12 Mitsubishi Metal Corp Diamond grinding wheel composed of deposited artificial diamond particles
JPS60201877A (en) * 1984-03-28 1985-10-12 Mitsubishi Metal Corp Diamond grinding wheel composed of deposited artificial diamond particles
JPS60201879A (en) * 1984-03-26 1985-10-12 Mitsubishi Metal Corp Diamond grinding wheel composed of deposited diamond particles
JPS60204695A (en) * 1984-03-28 1985-10-16 Mitsubishi Metal Corp Method of precipitation and formation of artificial diamond film
JPS60221395A (en) * 1984-04-19 1985-11-06 Yoshio Imai Manufacture of diamond thin film and its use
JPS6136199A (en) * 1984-07-25 1986-02-20 Sumitomo Electric Ind Ltd Precious stone having diamond film
JPS61101493A (en) * 1984-10-23 1986-05-20 ジヨ−ジ ガ−ゲリ− マ−クル Cubic carbide
JPS61158899A (en) * 1985-07-31 1986-07-18 Kyocera Corp Production of diamond film
JPS61183198A (en) * 1984-12-29 1986-08-15 Kyocera Corp Production of diamond film
JPS6270295A (en) * 1985-09-24 1987-03-31 Sumitomo Electric Ind Ltd Production of n-type semiconductive diamond film
JPS62158195A (en) * 1985-12-27 1987-07-14 Natl Inst For Res In Inorg Mater Synthesizing method of diamond
US4734339A (en) * 1984-06-27 1988-03-29 Santrade Limited Body with superhard coating
US4816286A (en) * 1985-11-25 1989-03-28 Showa Denko Kabushiki Kaisha Process for synthesis of diamond by CVD
JPH01501142A (en) * 1986-10-15 1989-04-20 ヒユーズ・エアクラフト・カンパニー Diamond layer deposition method
US4869924A (en) * 1987-09-01 1989-09-26 Idemitsu Petrochemical Company Limited Method for synthesis of diamond and apparatus therefor
US4985227A (en) * 1987-04-22 1991-01-15 Indemitsu Petrochemical Co., Ltd. Method for synthesis or diamond
US5015528A (en) * 1987-03-30 1991-05-14 Crystallume Fluidized bed diamond particle growth
US5066515A (en) * 1989-11-21 1991-11-19 Mitsubishi Materials Corporation Artificial diamond forming method
US5110579A (en) * 1989-09-14 1992-05-05 General Electric Company Transparent diamond films and method for making
JPH04318369A (en) * 1991-04-17 1992-11-09 Akai Electric Co Ltd Cassette loading device
US5329208A (en) * 1991-06-05 1994-07-12 Sumitomo Electric Industries, Ltd. Surface acoustic wave device and method for producing the same
US5372799A (en) * 1988-10-20 1994-12-13 Sumitomo Electric Industries, Ltd. Process for the synthesis of granular diamond
US5426340A (en) * 1993-01-29 1995-06-20 Sumitomo Electric Industries, Ltd. Surface acoustic wave device and method of manufacturing the same
US5446329A (en) * 1992-09-14 1995-08-29 Sumitomo Electric Industries, Ltd. Surface acoustic wave element
EP0691413A2 (en) 1993-04-06 1996-01-10 Sumitomo Electric Industries, Ltd. Diamond reinforced composite material and method of preparing the same
US5672382A (en) * 1985-12-24 1997-09-30 Sumitomo Electric Industries, Ltd. Composite powder particle, composite body and method of preparation
US5677372A (en) * 1993-04-06 1997-10-14 Sumitomo Electric Industries, Ltd. Diamond reinforced composite material
US5704976A (en) * 1990-07-06 1998-01-06 The United States Of America As Represented By The Secretary Of The Navy High temperature, high rate, epitaxial synthesis of diamond in a laminar plasma
US5783335A (en) * 1992-04-07 1998-07-21 The Regents Of The University Of California, Office Of Technology Transfer Fluidized bed deposition of diamond
JP2011162877A (en) * 2010-02-08 2011-08-25 Sungkyunkwan Univ Foundation For Corporate Collaboration Graphene roll-to-roll coating apparatus and graphene roll-to-roll coating method using the same

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058197B2 (en) * 1982-08-23 1985-12-18 住友電気工業株式会社 Diamond vapor phase synthesis method
JPS5935093A (en) * 1982-08-23 1984-02-25 Sumitomo Electric Ind Ltd Vapor-phase synthesis of diamond
JPS60124258A (en) * 1983-12-08 1985-07-03 Mitsubishi Metal Corp Surface-covered printing dot pin
JPH0459148B2 (en) * 1983-12-08 1992-09-21 Mitsubishi Materials Corp
JPS60127298A (en) * 1983-12-09 1985-07-06 Sumitomo Electric Ind Ltd Gas-phase synthesis of diamond
JPS60201878A (en) * 1984-03-26 1985-10-12 Mitsubishi Metal Corp Diamond grinding wheel composed of deposited artificial diamond particles
JPS60201879A (en) * 1984-03-26 1985-10-12 Mitsubishi Metal Corp Diamond grinding wheel composed of deposited diamond particles
JPH0116624B2 (en) * 1984-03-26 1989-03-27 Mitsubishi Metal Corp
JPH0116625B2 (en) * 1984-03-26 1989-03-27 Mitsubishi Metal Corp
JPS60204695A (en) * 1984-03-28 1985-10-16 Mitsubishi Metal Corp Method of precipitation and formation of artificial diamond film
JPS60201877A (en) * 1984-03-28 1985-10-12 Mitsubishi Metal Corp Diamond grinding wheel composed of deposited artificial diamond particles
JPH0474145B2 (en) * 1984-03-28 1992-11-25
JPS60221395A (en) * 1984-04-19 1985-11-06 Yoshio Imai Manufacture of diamond thin film and its use
JPH049757B2 (en) * 1984-04-19 1992-02-21
US4734339A (en) * 1984-06-27 1988-03-29 Santrade Limited Body with superhard coating
JPH0547517B2 (en) * 1984-07-25 1993-07-16 Sumitomo Electric Industries
JPS6136199A (en) * 1984-07-25 1986-02-20 Sumitomo Electric Ind Ltd Precious stone having diamond film
JPS61101493A (en) * 1984-10-23 1986-05-20 ジヨ−ジ ガ−ゲリ− マ−クル Cubic carbide
JPS61183198A (en) * 1984-12-29 1986-08-15 Kyocera Corp Production of diamond film
JPH0566359B2 (en) * 1984-12-29 1993-09-21 Kyocera Corp
JPH0566360B2 (en) * 1985-07-31 1993-09-21 Kyocera Corp
JPS61158899A (en) * 1985-07-31 1986-07-18 Kyocera Corp Production of diamond film
JPH0371397B2 (en) * 1985-09-24 1991-11-13 Sumitomo Electric Industries
JPS6270295A (en) * 1985-09-24 1987-03-31 Sumitomo Electric Ind Ltd Production of n-type semiconductive diamond film
US4816286A (en) * 1985-11-25 1989-03-28 Showa Denko Kabushiki Kaisha Process for synthesis of diamond by CVD
US5672382A (en) * 1985-12-24 1997-09-30 Sumitomo Electric Industries, Ltd. Composite powder particle, composite body and method of preparation
JPS62158195A (en) * 1985-12-27 1987-07-14 Natl Inst For Res In Inorg Mater Synthesizing method of diamond
JPH0372038B2 (en) * 1985-12-27 1991-11-15 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho
JPH01501142A (en) * 1986-10-15 1989-04-20 ヒユーズ・エアクラフト・カンパニー Diamond layer deposition method
US5015528A (en) * 1987-03-30 1991-05-14 Crystallume Fluidized bed diamond particle growth
US4984534A (en) * 1987-04-22 1991-01-15 Idemitsu Petrochemical Co., Ltd. Method for synthesis of diamond
US4985227A (en) * 1987-04-22 1991-01-15 Indemitsu Petrochemical Co., Ltd. Method for synthesis or diamond
US4869924A (en) * 1987-09-01 1989-09-26 Idemitsu Petrochemical Company Limited Method for synthesis of diamond and apparatus therefor
US5372799A (en) * 1988-10-20 1994-12-13 Sumitomo Electric Industries, Ltd. Process for the synthesis of granular diamond
US5110579A (en) * 1989-09-14 1992-05-05 General Electric Company Transparent diamond films and method for making
US5066515A (en) * 1989-11-21 1991-11-19 Mitsubishi Materials Corporation Artificial diamond forming method
US5704976A (en) * 1990-07-06 1998-01-06 The United States Of America As Represented By The Secretary Of The Navy High temperature, high rate, epitaxial synthesis of diamond in a laminar plasma
JPH04318369A (en) * 1991-04-17 1992-11-09 Akai Electric Co Ltd Cassette loading device
US5329208A (en) * 1991-06-05 1994-07-12 Sumitomo Electric Industries, Ltd. Surface acoustic wave device and method for producing the same
US5355568A (en) * 1991-06-05 1994-10-18 Sumitomo Electric Industries, Ltd. Method of making a surface acoustic wave device
US5783335A (en) * 1992-04-07 1998-07-21 The Regents Of The University Of California, Office Of Technology Transfer Fluidized bed deposition of diamond
US5446329A (en) * 1992-09-14 1995-08-29 Sumitomo Electric Industries, Ltd. Surface acoustic wave element
US5426340A (en) * 1993-01-29 1995-06-20 Sumitomo Electric Industries, Ltd. Surface acoustic wave device and method of manufacturing the same
US5677372A (en) * 1993-04-06 1997-10-14 Sumitomo Electric Industries, Ltd. Diamond reinforced composite material
EP0691413A2 (en) 1993-04-06 1996-01-10 Sumitomo Electric Industries, Ltd. Diamond reinforced composite material and method of preparing the same
JP2011162877A (en) * 2010-02-08 2011-08-25 Sungkyunkwan Univ Foundation For Corporate Collaboration Graphene roll-to-roll coating apparatus and graphene roll-to-roll coating method using the same

Also Published As

Publication number Publication date
JPS612632B2 (en) 1986-01-27

Similar Documents

Publication Publication Date Title
JPS58135117A (en) Preparation of diamond
US4740263A (en) Process for preparing thin film and p-type diamond semiconductor
JP3728465B2 (en) Method for forming single crystal diamond film
JPS5927753B2 (en) Diamond synthesis method
JPH0346436B2 (en)
JPH08504479A (en) Heteroepitaxially deposited diamond
US5863324A (en) Process for producing single crystal diamond film
JP3728464B2 (en) Method for manufacturing substrate for vapor phase synthesis of single crystal diamond film
JPS6136200A (en) Method for vapor-phase synthesis of diamond
JPS60127293A (en) Production of diamond
JPH01103993A (en) Method for growing diamond single crystal
JPH10167888A (en) Synthesizing method of diamond
JPS62158195A (en) Synthesizing method of diamond
JPS61201698A (en) Diamond film and its production
JP3124422B2 (en) Method of forming highly oriented diamond thin film
JP2625840B2 (en) Method for producing coarse artificial diamond crystals
JPH0448757B2 (en)
JP2608957B2 (en) Method for manufacturing substrate for diamond thin film deposition
JP3176086B2 (en) Diamond crystal and substrate for diamond formation
JPH0481552B2 (en)
JPH01201098A (en) Synthesis of diamond
JPS593098A (en) Synthesizing method of diamond
JPH0481556B2 (en)
JPH03141199A (en) Production of single crystal cvd diamond
JPH085748B2 (en) Gas phase synthesis of diamond