JPH0473289B2 - - Google Patents

Info

Publication number
JPH0473289B2
JPH0473289B2 JP58153258A JP15325883A JPH0473289B2 JP H0473289 B2 JPH0473289 B2 JP H0473289B2 JP 58153258 A JP58153258 A JP 58153258A JP 15325883 A JP15325883 A JP 15325883A JP H0473289 B2 JPH0473289 B2 JP H0473289B2
Authority
JP
Japan
Prior art keywords
dispersion plate
holes
cavity
gas
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58153258A
Other languages
Japanese (ja)
Other versions
JPS6046029A (en
Inventor
Norio Nakazato
Ryoji Fukuyama
Yutaka Kakehi
Makoto Nawata
Fumio Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15325883A priority Critical patent/JPS6046029A/en
Publication of JPS6046029A publication Critical patent/JPS6046029A/en
Publication of JPH0473289B2 publication Critical patent/JPH0473289B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体製造装置に係り、特にウエハ処
理の均一性に優れたプラズマ利用の半導体製造装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor manufacturing apparatus, and more particularly to a semiconductor manufacturing apparatus using plasma that has excellent uniformity in wafer processing.

〔発明の背景〕[Background of the invention]

真空室内にガスを供給し、上下一対の平行平板
形の電極間に高周波電力を印加し、グロー放電に
よつて供給したガスをプラズマ化してウエハを処
理するドライエツチング装置、薄膜形成装置等の
半導体製造装置においては、均一なエツチング
性,均一な膜形成性が強く望まれている。特にウ
エハの大径化の傾向が強い最近では、均一処理性
は益々重要な装置性能となつている。業界で複数
のウエハを同時に処理する装置から1枚のウエハ
を処理する装置(1枚処理装置)への転換の傾向
が強いのは後者が均一処理性に優れているためで
ある。
Semiconductors such as dry etching equipment, thin film forming equipment, etc. that process wafers by supplying gas into a vacuum chamber, applying high frequency power between a pair of upper and lower parallel plate electrodes, and turning the supplied gas into plasma through glow discharge. In manufacturing equipment, uniform etching properties and uniform film formation properties are strongly desired. Particularly in recent years, where there is a strong tendency for wafers to become larger in diameter, uniform processing performance has become an increasingly important device performance. The reason why there is a strong trend in the industry to switch from equipment that processes multiple wafers at the same time to equipment that processes one wafer (single-wafer processing equipment) is that the latter is superior in uniform processing performance.

処理の均一性はプラズマの分布状況にも影響さ
れるが、ガスの流れ状況に強い影響を受ける。特
に1枚処理装置においては対向電極から供給され
るガスをウエハ面上の全ての位置で等量かつ等速
度で供給することが重要である。
Although the uniformity of processing is affected by the distribution of plasma, it is strongly affected by the flow of gas. Particularly in a single-wafer processing apparatus, it is important to supply the gas supplied from the counter electrode in the same amount and at the same speed to all positions on the wafer surface.

さらに、対向電極からのガス供給線速度(以
下、ガス速度と略)は次の理由により音速を越え
ない範囲にとどめることが重要である。すなわ
ち、ガス速度が音速を越えると圧力,密度,温度
等の状態量が不連続となり、これらが周囲に伝播
し、プラズマ状態を乱し、この結果、ウエハ処理
の一様性に悪影響を及ぼす。
Furthermore, it is important to keep the gas supply linear velocity (hereinafter abbreviated as gas velocity) from the counter electrode within a range that does not exceed the sonic velocity for the following reason. That is, when the gas velocity exceeds the sonic velocity, state quantities such as pressure, density, temperature, etc. become discontinuous, propagate to the surroundings, disturb the plasma state, and as a result, adversely affect the uniformity of wafer processing.

従来の技術は対向電極からのガスの供給を1枚
の分散板を通して行つた。すなわち、対向電極を
電極の軸を中空に、かつ電極のケーシングと多数
の孔を有する分散板の間に空室を設けて構成し
た。ガスは軸の中空部から空室を半径方向へ流
れ、分散板の孔から真空室へ供給された。かかる
従来技術ではガス速度を音速以下で、かつ等しく
することが困難であつた。分散板の孔からのガス
速度は孔の上下、すなわち、対向電極の空室と真
空室との圧力差の関数であり、この圧力差が分散
板の孔の位置によつて変らなければ概ね等しいガ
ス速度が得られる。しかしガスが軸の中空部から
空室を半径方向へ流れる際に圧力損失を生じ空室
の圧力は中心部が高く、周辺部が小さい分布とな
り、この結果、ガス速度は中心部が大きく、周辺
部が小さくなつていた。空室の圧力が高く、した
がつて空室と真空室の圧力差が大きくとれれば、
分散板の孔からのガス速度を均一となすことがで
きるが、音速に対する臨界圧力のため、空室の圧
力を高くできない、すなわち真空室圧力に対する
空室の臨界圧力の比はガスの比熱比で定まり、比
熱比が1.3〜1.6の半導体用ガスで、その比は1.8〜
2.0となることは周知の事柄である。換言すれば、
分散板からのガス速度を音速以下となすために
は、空室と真空室との圧力差を真空室圧力の80〜
100%以下に維持せねばならない。この圧力差は
真空室圧力がおおよそ1torr以下の半導体製造装
置においては非常に小さい圧力差である。さらに
半導体製造装置の操作においては供給ガスの流量
は相当広い範囲に変化させられるのが普通であり
最小流量に対する最大流量の比で5〜10程度が要
求される。最大流量においても音速以下に維持す
る必要があり、最大流量で分散板の孔の総面積が
決定される。したがつて真空室の圧力が小さいこ
ととあいまつて、ガス流量が小さい操作条件で
は、空室の圧力は均一分布から大きく逸脱し、軸
に近い中心部から大部分のガスが流れ、分散板の
機能が損われ、ウエハ処理の均一性が悪くなつ
た。
In the prior art, gas was supplied from the counter electrode through a single dispersion plate. That is, the counter electrode was configured such that the axis of the electrode was hollow and a cavity was provided between the casing of the electrode and the dispersion plate having a large number of holes. Gas flowed radially through the cavity from the hollow part of the shaft and was supplied to the vacuum chamber through the holes in the distribution plate. In such conventional techniques, it has been difficult to make the gas velocity equal to or less than the sonic velocity. The gas velocity from the holes in the distribution plate is a function of the pressure difference between the top and bottom of the holes, that is, the empty space of the counter electrode and the vacuum chamber, and is approximately equal if this pressure difference does not change depending on the position of the holes in the distribution plate. Gas velocity is obtained. However, when the gas flows radially from the hollow part of the shaft through the cavity, a pressure loss occurs, and the pressure in the cavity is high in the center and small in the periphery.As a result, the gas velocity is high in the center and small in the periphery. The department was getting smaller. If the pressure in the empty chamber is high and therefore the pressure difference between the empty chamber and the vacuum chamber is large,
Although the gas velocity from the holes in the dispersion plate can be made uniform, the pressure in the cavity cannot be increased due to the critical pressure relative to the speed of sound.In other words, the ratio of the critical pressure in the cavity to the vacuum chamber pressure is the specific heat ratio of the gas. It is a semiconductor gas with a specific heat ratio of 1.3 to 1.6, and the ratio is 1.8 to 1.6.
2.0 is a well-known fact. In other words,
In order to keep the gas velocity from the dispersion plate below the speed of sound, the pressure difference between the empty chamber and the vacuum chamber must be 80~80% of the vacuum chamber pressure.
Must be maintained below 100%. This pressure difference is extremely small in semiconductor manufacturing equipment where the vacuum chamber pressure is approximately 1 torr or less. Furthermore, in the operation of semiconductor manufacturing equipment, the flow rate of the supplied gas is usually varied over a fairly wide range, and a ratio of the maximum flow rate to the minimum flow rate is required to be about 5 to 10. Even at the maximum flow rate, it is necessary to maintain it below the speed of sound, and the maximum flow rate determines the total area of the holes in the dispersion plate. Therefore, under operating conditions where the pressure in the vacuum chamber is small and the gas flow rate is small, the pressure in the chamber deviates significantly from a uniform distribution, and most of the gas flows from the center near the axis, causing the dispersion plate to Functionality was impaired and wafer processing uniformity deteriorated.

上記したように、従来技術では1枚の分散板を
通してガスを真空室に供給しているために、分散
板の孔からのガス速度が一様にならぬことに起因
する、ウエハ処理の不均一性を惹き起すという問
題点を有していた。
As mentioned above, in the conventional technology, gas is supplied to the vacuum chamber through a single dispersion plate, resulting in uneven wafer processing due to uneven gas velocity from the holes in the dispersion plate. It had the problem of arousing sexuality.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、対向電極からウエハ載置用電
極(以下、テーブルと略)に載置されるウエハ表
面へ等速,等量のガスを供給することで、ウエハ
処理の均一性を向上できる半導体製造装置を提供
することにある。
The purpose of the present invention is to improve the uniformity of wafer processing by supplying a uniform amount of gas at a constant velocity from a counter electrode to the surface of a wafer placed on a wafer placement electrode (hereinafter referred to as a table). The purpose of the present invention is to provide semiconductor manufacturing equipment.

〔発明の概要〕[Summary of the invention]

本発明は、真空室にテーブルと対向して内設さ
れる対向電極を、一端面が開放され他端面にガス
流通路を有する軸が連結されたケーシングと、該
ケーシングの一端面に構設されガス流通路と連通
した空室をケーシングと形成する分散板と、空室
をガス流通路側の空室と分散板側の空室とに連通
可能に分離して空室に内設された他の分散板とで
構成し、分散板のテーブルに載置されるウエハ表
面をカバーする範囲に同一開口面積,同一ピツチ
の孔を配置し、他の分散板に中心部から外縁端部
に向かうにしたがい同心円上の開口面積の和が大
きくなる孔を配置したことを特徴とするもので、
対向電極からテーブルに載置されたウエハ表面へ
等速,等量のガスを供給しようとするものであ
る。
The present invention comprises a casing having one end surface open and connected to a shaft having a gas flow path on the other end surface, and a counter electrode disposed internally in a vacuum chamber facing a table, and a counter electrode provided on one end surface of the casing. A dispersion plate that forms a cavity communicating with the gas flow passage with the casing, and another dispersion plate installed inside the cavity so as to separate the cavity into a cavity on the gas flow passage side and a cavity on the distribution plate side so as to be able to communicate with each other. It consists of a dispersion plate, and holes with the same opening area and the same pitch are arranged in a range that covers the surface of the wafer placed on the table of the dispersion plate, and holes of the same opening area and the same pitch are arranged in the range that covers the surface of the wafer placed on the table of the dispersion plate, and the holes are arranged in the other dispersion plates from the center toward the outer edge. It is characterized by the arrangement of holes that increase the sum of the opening areas on concentric circles,
The idea is to supply gas at a constant velocity and in an equal amount from the counter electrode to the surface of the wafer placed on the table.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図〜第3図により説明
する。
An embodiment of the present invention will be described with reference to FIGS. 1 to 3.

第1図〜第3図で、真空室10には、対向電極
20とテーブル30とが放電空間40を有し、こ
の場合、上下方向に対向して内設されている。対
向電極20は、一端面(第1図では、下端面)が
開放され他端面(第1図では、上端面)にガス流
通路11を有する軸12が連結されたケーシング
21と、ケーシング21の一端面(第1図では、
下端面)に構設されガス流通路11と連通した空
室41をケーシング21と形成する分散板22
と、空室41をガス流通路11側の空室(以下、
第1空室と略)42と分散板22側の空室(以
下、第2空室と略)43とに連通可能に分離して
空室41に内設された他の分散板23とで構成さ
れている。
1 to 3, the vacuum chamber 10 has a discharge space 40 in which a counter electrode 20 and a table 30 are disposed facing each other in the vertical direction. The counter electrode 20 includes a casing 21 which is open at one end surface (lower end surface in FIG. 1) and connected to a shaft 12 having a gas flow passage 11 at the other end surface (upper end surface in FIG. 1). One end surface (in Figure 1,
a dispersion plate 22 that forms, with the casing 21, a cavity 41 that is constructed on the lower end surface (lower end surface) and communicates with the gas flow passage 11;
and the empty space 41 on the side of the gas flow passage 11 (hereinafter referred to as
Another dispersion plate 23 is installed inside the vacancy 41 and is separated from the vacancy 42 (hereinafter referred to as the ``first vacancy'') 42 and the vacancy 43 on the side of the dispersion plate 22 (hereinafter abbreviated as the ``second vacancy''). It is configured.

この場合、軸12は、ケーシング21の他端面
の中心部に連結され、また、ガス供給装置(図示
省略)に連結されたガス導管(図示省略)がガス
流通路11と連通して軸12に連結されている。
In this case, the shaft 12 is connected to the center of the other end surface of the casing 21, and a gas conduit (not shown) connected to a gas supply device (not shown) communicates with the gas flow passage 11 and is connected to the shaft 12. connected.

分散板22は、多孔体、例えば、多数の孔24
が穿設された多孔板で形成されている(第2図)。
他の分散板23は、多孔板、例えば、多数の孔2
5が穿設された多孔板で形成されている(第3
図)。この場合、他の分散板23の孔25は、他
の分散板23の中心を通る複数の放射線上に、か
つ、等ピツチの同心円上に配置され、孔25の開
口面積は、他の分散板23の中心部から外縁端部
に向うにしたがつて漸次大きくなつている。すな
わち、中心部から外縁端部に向かうにしたがい同
心円上の開口面積の和が大きくなつている。ま
た、分散板22の孔24は、分散板22の外周辺
部を除くテーブル30に載置されるウエハ50表
面をカバー可能な範囲内に、同一開口面積、同一
ピツチで規則的に配置(正三角形配置あるいは正
四角形配置)される。孔24のピツチは、テーブ
ル30に載置されるウエハ50表面へのガス供給
の等方性を増すために小さい方が好ましい。
The distribution plate 22 is a porous body, for example, a large number of holes 24.
It is made of a perforated plate with holes (Figure 2).
The other distribution plate 23 is a perforated plate, for example, a large number of holes 2
It is made of a perforated plate with 5 holes (3rd
figure). In this case, the holes 25 of the other dispersion plate 23 are arranged on a plurality of rays passing through the center of the other dispersion plate 23 and on equally spaced concentric circles, and the opening area of the hole 25 is the same as that of the other dispersion plate 23. It gradually increases in size from the center of 23 toward the outer edge. That is, the sum of the opening areas on the concentric circles increases from the center toward the outer edge. Further, the holes 24 of the distribution plate 22 are regularly arranged (correctly (triangular or square arrangement). The pitch of the holes 24 is preferably small in order to increase the isotropy of gas supply to the surface of the wafer 50 placed on the table 30.

なお、テーブル30の側面並びに放電空間40
と反対側面は、電気絶縁体31で被覆されてい
る。また、テーブル30の放電空間40と反対側
面には、電気絶縁体31で外周面を被覆され、一
端部が真空室10内に突出しその底壁に気密に設
けられた軸13が連結されている。テーブル30
には、熱媒溝32が形成され、軸13には、熱媒
溝32に連通して熱媒流通路14a,14bが形
成されている。軸13には、電源、例えば、高周
波電源60が接続されている。また、真空室10
の底壁には、排気ノズル15が設けられ、排気ノ
ズル15は、真空室10外に設置された真空排気
装置(図示省略)に連結されている。また、真空
室10は、外部との間でウエハ50を搬入出可能
な構造となつている。
Note that the side surface of the table 30 and the discharge space 40
The opposite side is covered with an electrical insulator 31. Further, a shaft 13 is connected to the opposite side of the table 30 from the discharge space 40, the outer peripheral surface of which is covered with an electrical insulator 31, one end of which protrudes into the vacuum chamber 10, and which is airtightly provided on the bottom wall thereof. . table 30
A heat medium groove 32 is formed in the shaft 13, and heat medium flow passages 14a and 14b are formed in the shaft 13 so as to communicate with the heat medium groove 32. A power source, for example, a high frequency power source 60 is connected to the shaft 13 . In addition, the vacuum chamber 10
An exhaust nozzle 15 is provided on the bottom wall of the vacuum chamber 10, and the exhaust nozzle 15 is connected to a vacuum exhaust device (not shown) installed outside the vacuum chamber 10. Further, the vacuum chamber 10 has a structure that allows the wafer 50 to be carried in and out of the vacuum chamber 10 .

例えば、真空室10は、真空排気装置により所
定圧力まで減圧排気される。この減圧排気完了
後、真空室10には、外部よりウエハ50が搬入
され、このウエハ50は、この場合、テーブル3
0の中央部に載置される。一方、ガス供給装置か
らのガスはガス導管を介してガス流通路11に供
給され、ガス流通路11を流通した後に、第1空
室42,第2空室43を順次通過して放電空間4
0、つまり、ウエハ50表面に供給される。
For example, the vacuum chamber 10 is evacuated to a predetermined pressure by an evacuation device. After this evacuation is completed, the wafer 50 is carried into the vacuum chamber 10 from the outside, and in this case, the wafer 50 is placed on the table 3.
It is placed in the center of 0. On the other hand, gas from the gas supply device is supplied to the gas flow passage 11 via the gas conduit, and after flowing through the gas flow passage 11, it passes through the first cavity 42 and the second cavity 43 in order, and then passes through the discharge space 4.
0, that is, it is supplied to the surface of the wafer 50.

この場合、ガス流通路11を流通した後に第1
空室42に供給されたガスは、第1空室42内を
半径方向へ流動する。この際、圧力損失が生じ他
の分散板23の中心部から外縁端部に向うにした
がつて孔25を通過するガス速度は漸次小となる
が、しかし、孔25の開口面積が中心部から外縁
端部に向つて漸次大きくなつているために、孔2
5におけるそれぞれのガスの第2空室43への供
給量は、他の分散板23の中心部においても周辺
部においても等量となる。このため、その後の第
2空室43においては、ガスの圧力は、第2空室
43の全域で一定となり、分散板22の孔24か
らのガス速度は、孔24の位置に関係なく等速と
なる。また、分散板22の孔24がウエハ50表
面をカバー可能な範囲内に同一開口面積、同一ピ
ツチで規則的に配置されているため、ウエハ50
表面へ等速,等量のガスが供給される。
In this case, the first
The gas supplied to the cavity 42 flows in the first cavity 42 in the radial direction. At this time, a pressure loss occurs and the gas velocity passing through the holes 25 gradually decreases from the center to the outer edge of the other dispersion plate 23, but the opening area of the holes 25 decreases from the center. Since the hole 2 gradually becomes larger toward the outer edge,
The amount of each gas supplied to the second cavity 43 in 5 is the same in both the center and the periphery of the other distribution plates 23. Therefore, in the second cavity 43 thereafter, the gas pressure becomes constant throughout the second cavity 43, and the gas velocity from the holes 24 of the dispersion plate 22 is constant regardless of the position of the holes 24. becomes. Further, since the holes 24 of the dispersion plate 22 are regularly arranged with the same opening area and the same pitch within a range that can cover the surface of the wafer 50,
Gas is supplied to the surface at a constant velocity and in an equal amount.

このようなガスの供給と共に、真空室10内が
処理に必要な圧力に調整される。その後、高周波
電源60が入力され対向電極20とテーブル30
との間にグロー放電が生じ、この放電によりガス
はプラズマ化される。このプラズマによりウエハ
50が所定の処理され、ウエハ50表面に供給さ
れたガスは、テーブル30を迂回して排気ノズル
15を通つた後に真空排気装置により排気され
る。
Along with this gas supply, the pressure inside the vacuum chamber 10 is adjusted to the pressure required for processing. After that, the high frequency power supply 60 is input, and the counter electrode 20 and the table 30 are connected to each other.
A glow discharge occurs between the two, and the gas is turned into plasma by this discharge. The wafer 50 is processed in a predetermined manner by this plasma, and the gas supplied to the surface of the wafer 50 bypasses the table 30, passes through the exhaust nozzle 15, and is then exhausted by a vacuum exhaust device.

このようなプラズマによる処理の際、ウエハ5
0は所定温度に調整される。すなわち、真空室1
0外に設置された熱媒温度制御装置(図示省略)
によつて温度を制御された熱媒は、熱媒流通路1
4aを経て熱媒溝32に供給され熱媒溝32を流
通する。この間に熱媒は、テーブル30を介しウ
エハ50の温度を所定温度に調整する。その後、
熱媒溝32を流通した熱媒は、熱媒流通路14b
を経て熱媒温度制御装置に戻される。
During such plasma processing, the wafer 5
0 is adjusted to a predetermined temperature. That is, vacuum chamber 1
Heat medium temperature control device installed outside 0 (not shown)
The heating medium whose temperature is controlled by the heating medium flow path 1
The heat medium is supplied to the heat medium groove 32 through the heat medium groove 4a and flows through the heat medium groove 32. During this time, the heating medium adjusts the temperature of the wafer 50 to a predetermined temperature via the table 30. after that,
The heat medium flowing through the heat medium groove 32 flows through the heat medium flow path 14b.
The heat medium is then returned to the heat medium temperature control device.

本実施例のような半導体製造装置では、対向電
極からテーブルに載置されたウエハ表面へガスを
等速,等量で供給できるので、ウエハ処理の均一
性を向上できる。
In a semiconductor manufacturing apparatus such as the present embodiment, gas can be supplied from the counter electrode to the surface of the wafer placed on the table at a constant velocity and in the same amount, so that the uniformity of wafer processing can be improved.

第4図は、他の分散板の他の実施例を示すもの
で、他の分散板23′には、一つの同心円上の孔
25が放射線の一つ飛びに、かつ、隣接する孔2
5が同一放射線上とならないように互いにずらさ
れ配置されている。また、孔25の開口面積は、
他の分散板23′の中心部から外縁端部に向うに
したがつて漸次大きくなつている。すなわち、中
心部から外縁端部に向かうにしたがい同心円上の
開口面積の和が大きくなつている。
FIG. 4 shows another embodiment of another dispersion plate, in which the other dispersion plate 23' has holes 25 on one concentric circle, and two adjacent holes
5 are shifted from each other so that they are not on the same radiation. Moreover, the opening area of the hole 25 is
The size gradually increases from the center to the outer edge of the other dispersion plate 23'. That is, the sum of the opening areas on the concentric circles increases from the center toward the outer edge.

このような他の分散板を用いた場合は、他の分
散板から第2空室へのガス供給の等量性を一実施
例の場合より更に向上させることができる。
When such other dispersion plates are used, the uniformity of gas supply from the other dispersion plates to the second cavity can be further improved than in the case of one embodiment.

第5図は、他の分散板の更に他の実施例を示す
もので、他の分散板23″には、開口面積が等し
い孔25が他の分散板23″の中心部から外縁端
部に向うにしたがつて同心円上の個数を漸次多く
して配置されている。すなわち、中心部から外縁
端部に向かうにしたがい同心円上の開口面積の和
が大きくなつている。
FIG. 5 shows still another embodiment of another dispersion plate, in which holes 25 having the same opening area are formed from the center of the other dispersion plate 23'' to the outer edge thereof. The number of concentric circles is gradually increased toward the other side. That is, the sum of the opening areas on the concentric circles increases from the center toward the outer edge.

このような他の分散板を用いた場合は、一実施
例、他の実施例と比較し孔の総開口面積が等しい
場合、他の分散板から第2空室へのガス供給の等
量性を更に向上させることができ、また、孔の開
口面積が同一であるため、他の分散板の加工も容
易となる。
When such other dispersion plates are used, if the total opening area of the holes is equal compared to one embodiment and other embodiments, the equivalence of gas supply from the other dispersion plates to the second cavity is determined. Further, since the opening areas of the holes are the same, processing of other dispersion plates is also facilitated.

なお、本実施例では、分散板と他の分散板とを
形成する多孔体として多孔板を用いているが、多
孔体としては、その他に網目状物,多孔質鋳造
物,多孔質セラミツクス,多孔質焼結金属等を用
いても良い。
In this example, a porous plate is used as the porous body forming the dispersion plate and other dispersion plates, but other porous bodies may include mesh materials, porous castings, porous ceramics, and porous materials. High quality sintered metal or the like may also be used.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように、真空室にテー
ブルと対向して内設される対向電極を、一端面が
開放され他端面にガス流通路を有する軸が連結さ
れたケーシングと、該ケーシングの一端面に構設
されガス流通路と連通した空室をケーシングと形
成する分散板と、空室を第1空室と第2空室とに
連通可能に分離して空室に内設された他の分散板
とで構成し、分散板のテーブルに載置されるウエ
ハ表面をカバーする範囲に同一開口面積,同一ピ
ツチの孔を配置し、他の分散板に中心部から外縁
端部に向かうにしたがい同心円上の開口面積の和
が大きくなる孔を配置したことで、対向電極から
テーブルに載置されたウエハ表面へガスを等速,
等量で供給できるので、ウエハ処理の均一性を向
上できる効果がある。
As explained above, the present invention includes a casing in which a counter electrode disposed in a vacuum chamber facing a table is connected to a shaft having an open end surface and a gas flow passage in the other end surface, and A dispersion plate is provided on one end surface and forms a cavity communicating with the gas flow path with the casing, and a dispersion plate is installed inside the cavity to separate the cavity into a first cavity and a second cavity so as to communicate with each other. Consisting of other dispersion plates, holes with the same opening area and the same pitch are arranged in a range that covers the surface of the wafer placed on the table of the dispersion plate, and the holes are arranged from the center to the outer edge of the other dispersion plates. By arranging the holes so that the sum of the opening areas on the concentric circles becomes larger according to
Since it can be supplied in equal amounts, it has the effect of improving the uniformity of wafer processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による半導体製造装置の一実
施例を示す真空室の縦断面図、第2図は、第1図
の対向電極を構成する分散板の平面図、第3図
は、第1図の対向電極を構成する他の分散板の平
面図、第4図は、他の分散板の他の実施例を示す
平面図、第5図は、他の分散板の更に他の実施例
を示す平面図である。 10……真空室、11……ガス流通路、12…
…軸、20……対向電極、21……ケーシング、
22……分散板、23,23′,23″……他の分
散板、24,25……孔、30……テーブル、4
1……空室、42……第1空室、43……第2空
室、50……ウエハ。
FIG. 1 is a vertical cross-sectional view of a vacuum chamber showing an embodiment of a semiconductor manufacturing apparatus according to the present invention, FIG. 2 is a plan view of a dispersion plate constituting the counter electrode of FIG. 1, and FIG. FIG. 1 is a plan view of another dispersion plate constituting the counter electrode, FIG. 4 is a plan view showing another embodiment of the other dispersion plate, and FIG. 5 is a plan view of yet another embodiment of the other dispersion plate. FIG. 10... Vacuum chamber, 11... Gas flow path, 12...
... shaft, 20 ... counter electrode, 21 ... casing,
22... Dispersion plate, 23, 23', 23''... Other dispersion plate, 24, 25... Hole, 30... Table, 4
1...Vacancy, 42...First vacancy, 43...Second vacancy, 50...Wafer.

Claims (1)

【特許請求の範囲】 1 真空室に対向電極とテーブルとが対向して内
接され、対向電極を介して真空室内にガスを供給
すると共に、対向電極とテーブルとの間でグロー
放電を生ぜしめてテーブルに載置されたウエハを
処理する装置において、 前記対向電極を、前記テーブル側に面する端面
が開放され他端面にガス流通路を有する軸を連結
したケーシングと、前記ケーシングの開放側端面
に構設され前記ケーシング内に前記ガス流通路と
連通する空室を形成する分散板と、前記ケーシン
グ内に設けられ前記空室をガス流通路側の空室と
分散板側の空室とに分離する他の分散板とで構成
し、 前記分散板の前記テーブルに載置される前記ウ
エハ表面をカバーする範囲に同一開口面積,同一
ピツチの孔を配置し、 前記他の分散板に中心部から外縁端部に向かう
にしたがい同心円上の開口面積の和が大きくなる
孔を配置したことを特徴とする半導体製造装置。 2 前記他の分散板に設けた孔は、前記他の分散
板の中心を通る複数の放射線上に、かつ、等ピツ
チの同心円上に配置され、前記他の分散板の中心
部から外縁端部に向かうにしたがい孔の開口面積
を大きくした特許請求の範囲第1項記載の半導体
製造装置。 3 前記他の分散板に設けた孔は、一つの同心円
上の孔が放射線の一つとびに、かつ、隣接する孔
が同一放射線上とならないように互いにずらして
配置され、前記他の分散板の中心部から外縁端部
に向かうにしたがい孔の開口面積を大きくした特
許請求の範囲第1項記載の半導体製造装置。 4 前記他の分散板に設けた孔は、孔の開口面積
を等しくし、かつ、前記他の分散板の中心部から
外縁端部に向かうにしたがい同心円上の孔の個数
を多くして配置した特許請求の範囲第1項記載の
半導体製造装置。
[Claims] 1. A counter electrode and a table are inscribed in a vacuum chamber facing each other, and gas is supplied into the vacuum chamber via the counter electrode, and a glow discharge is generated between the counter electrode and the table. In an apparatus for processing wafers placed on a table, the counter electrode is connected to a casing having an open end face facing the table side and a shaft having a gas flow passage on the other end face, and a casing connected to an open end face of the casing. a dispersion plate configured to form a cavity in the casing that communicates with the gas flow passage; and a dispersion plate provided in the casing to separate the cavity into a cavity on the gas flow passage side and a cavity on the distribution plate side. and another dispersion plate, holes of the same opening area and the same pitch are arranged in a range covering the surface of the wafer placed on the table of the dispersion plate, and the other dispersion plate is arranged from the center to the outer edge. A semiconductor manufacturing device characterized in that holes are arranged such that the sum of opening areas on concentric circles increases toward the end. 2 The holes provided in the other dispersion plate are arranged on a plurality of rays passing through the center of the other dispersion plate and on concentric circles of equal pitch, and extend from the center of the other dispersion plate to the outer edge end thereof. 2. The semiconductor manufacturing apparatus according to claim 1, wherein the opening area of the hole increases as it goes toward. 3 The holes provided in the other dispersion plate are arranged so that one concentric hole is on each ray, and adjacent holes are staggered from each other so that they are not on the same ray, 2. The semiconductor manufacturing apparatus according to claim 1, wherein the opening area of the hole increases from the center toward the outer edge. 4. The holes provided in the other distribution plate were arranged so that the opening areas of the holes were equal, and the number of holes on concentric circles increased from the center to the outer edge of the other distribution plate. A semiconductor manufacturing apparatus according to claim 1.
JP15325883A 1983-08-24 1983-08-24 Equipment for manufacturing semiconductor Granted JPS6046029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15325883A JPS6046029A (en) 1983-08-24 1983-08-24 Equipment for manufacturing semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15325883A JPS6046029A (en) 1983-08-24 1983-08-24 Equipment for manufacturing semiconductor

Publications (2)

Publication Number Publication Date
JPS6046029A JPS6046029A (en) 1985-03-12
JPH0473289B2 true JPH0473289B2 (en) 1992-11-20

Family

ID=15558518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15325883A Granted JPS6046029A (en) 1983-08-24 1983-08-24 Equipment for manufacturing semiconductor

Country Status (1)

Country Link
JP (1) JPS6046029A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015529395A (en) * 2012-08-23 2015-10-05 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method and hardware for cleaning a UV chamber

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169418A (en) * 1986-01-22 1987-07-25 Toshiba Corp Dry etching unit
JPH0693452B2 (en) * 1986-01-29 1994-11-16 株式会社日立製作所 Single-wafer thin film forming method and thin film forming apparatus
JPS63237530A (en) * 1987-03-26 1988-10-04 Toshiba Corp Dry etching
JPH0245629U (en) * 1988-09-22 1990-03-29
JPH0245628U (en) * 1988-09-22 1990-03-29
US7164095B2 (en) 2004-07-07 2007-01-16 Noritsu Koki Co., Ltd. Microwave plasma nozzle with enhanced plume stability and heating efficiency
TW200742506A (en) 2006-02-17 2007-11-01 Noritsu Koki Co Ltd Plasma generation apparatus and work process apparatus
JP4620015B2 (en) * 2006-08-30 2011-01-26 株式会社サイアン Plasma generating apparatus and work processing apparatus using the same
CN101488446B (en) * 2008-01-14 2010-09-01 北京北方微电子基地设备工艺研究中心有限责任公司 Plasma processing apparatus and gas dispensing apparatus thereof
US7921804B2 (en) 2008-12-08 2011-04-12 Amarante Technologies, Inc. Plasma generating nozzle having impedance control mechanism
WO2016157317A1 (en) * 2015-03-27 2016-10-06 株式会社日立国際電気 Substrate processing device, semiconductor device production method, and recording medium
KR102416568B1 (en) * 2017-08-14 2022-07-04 삼성디스플레이 주식회사 Forming method of metal oxide layer and plasma-enhanced chemical vapor deposition device
CN113451168A (en) * 2020-04-14 2021-09-28 重庆康佳光电技术研究院有限公司 Dry etching gas control system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169116A (en) * 1980-05-28 1981-12-25 Sanyo Electric Co Ltd Manufacture of amorphous silicon film
JPS594028A (en) * 1982-06-30 1984-01-10 Fujitsu Ltd Manufacturing device of semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169116A (en) * 1980-05-28 1981-12-25 Sanyo Electric Co Ltd Manufacture of amorphous silicon film
JPS594028A (en) * 1982-06-30 1984-01-10 Fujitsu Ltd Manufacturing device of semiconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015529395A (en) * 2012-08-23 2015-10-05 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method and hardware for cleaning a UV chamber

Also Published As

Publication number Publication date
JPS6046029A (en) 1985-03-12

Similar Documents

Publication Publication Date Title
US4358686A (en) Plasma reaction device
US4792378A (en) Gas dispersion disk for use in plasma enhanced chemical vapor deposition reactor
KR101118003B1 (en) Stepped upper electrode for plasma processing uniformity
US5472565A (en) Topology induced plasma enhancement for etched uniformity improvement
JPH0473289B2 (en)
JPH02101169A (en) Apparatus for gaseous phase processing of disc-shaped work
JP2000294538A (en) Vacuum treatment apparatus
JPH0917770A (en) Plasma treatment method and plasma apparatus used for it
JPH088239A (en) Wafer treatment device
JPH08227880A (en) Plasma cvd device
JP2022511063A (en) Electrostatic chuck with improved thermal coupling for temperature sensitive processes
JPH09320799A (en) Plasma processor and plasma processing method
JPH0437578B2 (en)
JPS5842226A (en) Manufacturing device for plasma semiconductor
JP2550037B2 (en) Dry etching method
JPH0452611B2 (en)
JPH05320891A (en) Sputtering device
JPS6187872A (en) Anode electrode in parallel plane sheet type plasma cvd apparatus
JPS61174388A (en) Etching device
JPS6117151A (en) Plasma cvd device
JP2004186404A (en) Plasma processing apparatus
JP2669168B2 (en) Microwave plasma processing equipment
JPS6230329A (en) Dry etching device
JPH02184022A (en) Cvd electrode
JPH1154482A (en) Manufacture of semiconductor device and device, and treatment method of work