JPH0451489B2 - - Google Patents

Info

Publication number
JPH0451489B2
JPH0451489B2 JP2406626A JP40662690A JPH0451489B2 JP H0451489 B2 JPH0451489 B2 JP H0451489B2 JP 2406626 A JP2406626 A JP 2406626A JP 40662690 A JP40662690 A JP 40662690A JP H0451489 B2 JPH0451489 B2 JP H0451489B2
Authority
JP
Japan
Prior art keywords
sample
zinc sulfide
treatment
article
hip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2406626A
Other languages
Japanese (ja)
Other versions
JPH03271122A (en
Inventor
Bii Uiringamu Chaaruzu
Batsupisu Jeemusu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Publication of JPH03271122A publication Critical patent/JPH03271122A/en
Publication of JPH0451489B2 publication Critical patent/JPH0451489B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/08Sulfides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/102Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Glass Compositions (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】 (0001) 本発明は、光学特性が改良された硫化
亜鉛の物品に関するものである。詳しくは、本発
明は、電磁スペクトルの可視及び赤外領域におい
て実質的に均一な透過率を有する硫化亜鉛の物品
に関するものである。更に、本発明は、その透過
範囲全体に亙つて実質的に吸収帯のない硫化亜鉛
の物品に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (0001) The present invention relates to zinc sulfide articles with improved optical properties. Specifically, the present invention relates to zinc sulfide articles having substantially uniform transmission in the visible and infrared regions of the electromagnetic spectrum. Furthermore, the present invention relates to zinc sulfide articles that are substantially free of absorption bands over their entire transmission range.

(0002) 硫化亜鉛およびセレン化亜鉛はミサイ
ルのドームのように長波長の赤外線に対して透過
能を有することが要求される用途に使用される。
硫化亜鉛は対空FLIRシステムの窓用の主要材料
である。これらの化合物は約10マイクロメートル
以下の電磁スペクトルの赤外領域において透明
で、化学的および機械的に最も耐久性がある材料
の一つであつて、これを使用する寸法で入手する
ことが出来、スペクトルの可視領域において滞在
的な透過能を持つている。これらの化合物の一つ
の問題点はこれらが電磁スペクトルの可視領域お
よび近赤外領域において適当な透過能を持つてい
ないことである。もしその可視領域および近赤外
領域の波長に対する透明性が改善されるならば、
これらの化合物の用途は更に附加開発されるであ
ろう。もつと具体的に言うと、その場合には多量
スペクトル性能を要求する用途に使用することが
出来るであろう。その遠赤外領域の波長に限界が
あることは、この材料の本質的性質であつて多重
音子吸収(multi−phononabsorption)と関係が
あるのに対して、その短波長領域の限界はいくつ
かの不明確な性格の非本質的効果で測定せられて
いる状況である。
(0002) Zinc sulfide and zinc selenide are used in applications that require the ability to transmit long wavelength infrared rays, such as missile domes.
Zinc sulfide is the primary material for windows in anti-aircraft FLIR systems. These compounds are transparent in the infrared region of the electromagnetic spectrum below about 10 micrometers and are among the most chemically and mechanically durable materials available in the dimensions they are used for. , which has a persistent transmission power in the visible region of the spectrum. One problem with these compounds is that they do not have adequate transmission power in the visible and near infrared regions of the electromagnetic spectrum. If its transparency to visible and near-infrared wavelengths is improved,
Additional uses for these compounds will be developed. More specifically, in that case, it could be used in applications requiring a large amount of spectral performance. The fact that there is a limit to the wavelength in the far-infrared region is an essential property of this material and is related to multi-phonon absorption, whereas there are some limitations in the short wavelength region. This is a situation in which a non-essential effect of an unclear character is being measured.

(0003) 加熱等圧圧縮(HIP)は不活性な作動
流体を用いて熱および圧力を同時にかけることで
ある。硫化亜鉛およびセレン化亜鉛の試料のHIP
処理を行なうと細孔が消滅する以上の改良が行な
われことが発見された。これによつて2ミクロン
より短い波長における透明性が改善される。硫化
亜鉛の試料はまたその有効スペクトル帯全域に亘
つて透過特性が改善されることが見出された。硫
化亜鉛およびセレン化亜鉛の透明性に限界がある
のは散乱および吸収の機構によるものである。2
マイクロメー以下の波長では透過能を制限する主
な機構は散乱であつて吸収ではない。HIP処理を
行なうことによつて、多孔度が減少するか又は細
孔が消滅することによつてだけでなく、不純物が
拡散によつて外へ出て来るように作用するため第
二の相の包含を減少または消滅させ、また硫化亜
鉛の場合には硫化亜鉛の非立方晶同質異像(non
−cubic Polymorphs)をその立方晶系へ変換す
ることを促進することによつて散乱が少なくなる
ことが見出されている。総体的に見て、吸収は
HIP法によつて存在する可能性がある吸収を行な
う物質を拡散させることによつて減少される。ま
たHIP法によつて両ZnSおよびZnSeの成分原子
比を化学量論的な値にすることが出来ることも見
出された。
(0003) Heated isostatic compression (HIP) is the simultaneous application of heat and pressure using an inert working fluid. HIP of zinc sulfide and zinc selenide samples
It was discovered that the treatment resulted in improvements beyond the disappearance of pores. This improves transparency at wavelengths shorter than 2 microns. The zinc sulfide sample was also found to have improved transmission properties across its effective spectral band. The limited transparency of zinc sulfide and zinc selenide is due to scattering and absorption mechanisms. 2
At sub-micrometer wavelengths, the primary mechanism limiting transmission is scattering, not absorption. The HIP process not only reduces the porosity or eliminates the pores, but also causes the impurities to come out by diffusion, thereby increasing the concentration of the second phase. inclusions are reduced or eliminated, and in the case of zinc sulfide, non-cubic polymorphism of zinc sulfide
It has been found that scattering is reduced by promoting the conversion of -cubic Polymorphs) to their cubic system. Overall, the absorption is
It is reduced by the HIP method by diffusing any adsorbing substances that may be present. It was also found that the atomic ratio of both ZnS and ZnSe could be brought to stoichiometric values by the HIP method.

(0004) 本発明は更に物品の表面の化学ポテン
シヤルを調節し、製品を加熱し等圧を作用させる
ことによつてZnSおよびZnSeの製品を処理する
方法を提供するものである。前記化学ポテンシヤ
ルの調節は製品を不活性材料の箔に包み、更に若
干の蒸気の交換を許容することによつて行なうこ
とが好ましい。
[0004] The present invention further provides a method for treating ZnS and ZnSe products by adjusting the chemical potential of the surface of the article, heating the product, and applying isobaric pressure to the product. Adjustment of the chemical potential is preferably carried out by wrapping the product in a foil of inert material and also allowing some exchange of vapor.

(0005) 本発明のその他の目的および利点は、
以下の記載により明らかになるであろう。処理前
後のZnSの試料の透過スペクトルを示す添付図を
参照されたい。
(0005) Other objects and advantages of the present invention include:
It will become clear from the description below. Please refer to the attached figure showing the transmission spectra of a sample of ZnS before and after treatment.

(0006) 加熱等圧加圧法(HIP)、すなわち不
活性作動流体によつて加熱と加圧を同時に行なう
方法は、粉末金属の加圧成型素地および成型物の
治金的な製造において使用されており、この方法
によつてこれらの破壊強度および耐疲労性が改善
される。本発明においては、同様のHIP装置を用
いて硫化亜鉛およびセレン化亜鉛の試料の処理を
行なう。処理すべき試料を通常の設計のHIP炉中
に入れる。炉内を排気した後、アルゴンのような
不活性ガスで加圧する。加熱を行なつて、温度お
よび圧力を安定にする。圧力および温度は種々の
不純物および試料内の欠陥がほとんど消滅するに
十分な期間保持される。処理される試料は化学蒸
着法(CVD)による硫化亜鉛ならびに加熱圧縮
した硫化亜鉛を包含していた。CVD法によるセ
レン化亜鉛の試料も同様に処理された。通常入手
し得る硫化亜鉛およびセレン化亜鉛の試料は着色
しており半透明である。硫化亜鉛について云う
と、着色は材料中の原子の比率が厳密な化学量論
的比率からずれているために起こるのである。ま
た材料の体積内の欠陥によつて光が散乱を起すた
めに試料は透明でなく半透明となる。これら種々
のタイプの欠陥の全部についての正確な性質は分
つていない。色および光を散乱させる欠陥のタイ
プおよびその相対的な割合はこの材料の調製に使
用した技術および調製の処理条件によつて定ま
る。散乱を起す欠陥の存在のために、2ミクロン
以下の波長においてその透明度が著しく制限され
る。更に試料の調製法に依存して種々の波長の位
置に若干の吸収帯が存在する。透過帯の長波長側
の限界はその材料の本質的性質であつて多重音子
吸収現象に依るものである。約2μmないし長波長
側の限界までの間の波長に対しては透過能は主と
して不純物に関連する吸収現象によつて制限され
る。これらの材料の可視領域および近赤外領域に
おける透明度の制限は、不完全な特性吸収および
散乱現象が組み合わさつて原因となるものである
が、散乱による制限の方が極めて大きい。透過帯
の短波長側の限界は全く本質的な材料特性である
が、化学量論量からのずれ、不純物その他の点欠
陥のため短波長側の限界に近い波長において透明
性が失われることがある。加熱圧圧縮法(HIP)
によつて材料の多孔度を減少又は細孔を消滅する
ことだけでなく、散乱又は吸収に寄与する欠陥の
多くを減少又は消滅することによつてこれらの制
限を減らすことが出来る。これはHIP法によつて
加熱と加圧を同時に行なうことによつて起る因子
の組合わせに基くものである。加熱によつて常態
では材料の内部に存在している不純物の大部分が
外部に拡散して出て来る。これらの不純物、理想
的な化合物を形成する元素以外の元素である汚染
性の原子によつて形成される実際に存在する不純
物によつて構成されていても、又は、原子の不在
又は割込みのような結晶格子中の欠陥によつて構
成されていてもよい。いづれにせよこれらの不純
物は温度の関数である一定の速度で試料の表面へ
拡散して来るであろう。不純物の原子は分離した
明瞭な相として硫化物又はセレン化物内に存在し
ている可能性がある。加えられた熱は処理される
化合物の第二の相の析出物の包含度を減らし又は
消滅させるのにも役立つ。加えられた圧力は試料
中に処理前に存在している可能性のあるこのよう
な残留細孔を消滅させるのに役立ち、もしこの処
理を行なわなかつたら処理中に起こる可能性のあ
る新しい細孔の生成を抑制する。その外、使用さ
れる化合物は使用される処理温度においてかなり
大きい蒸気圧を持つているから、加圧によつて化
合物の蒸発を制約する作用をする。硫化亜鉛の場
合には光学的に等方性の立方晶系結晶形の複屈折
性を有する六方晶系形のものよりも密度が大き
い。HIP法の処理の圧力によつて、非立方晶系の
同質異像の立方晶系結晶への変換が容易になるこ
とがわかつた。更に、加圧によつて割込み原子や
結晶格子欠陥の平衡濃度が小さくなる。また一般
的に不純物の溶解度が減少する。
(0006) Hot isostatic pressing (HIP), a method of simultaneously heating and pressurizing with an inert working fluid, is used in the metallurgical production of powder metal compacts and moldings. This method improves their fracture strength and fatigue resistance. In the present invention, similar HIP equipment is used to process zinc sulfide and zinc selenide samples. The sample to be processed is placed in a HIP furnace of conventional design. After the furnace is evacuated, it is pressurized with an inert gas such as argon. Apply heat to stabilize temperature and pressure. The pressure and temperature are maintained for a sufficient period of time to substantially eliminate various impurities and defects within the sample. The samples treated included chemical vapor deposition (CVD) zinc sulfide as well as heat-pressed zinc sulfide. A sample of zinc selenide by CVD method was similarly treated. Commonly available samples of zinc sulfide and zinc selenide are colored and translucent. In the case of zinc sulfide, the coloration occurs because the ratio of atoms in the material deviates from the strict stoichiometric ratio. Also, defects within the volume of the material cause scattering of light, making the sample translucent rather than transparent. The exact nature of all of these various types of defects is not known. The types and relative proportions of color and light scattering defects are determined by the technique used to prepare the material and the processing conditions of the preparation. Due to the presence of scattering defects, its transparency is severely limited at wavelengths below 2 microns. Furthermore, there are several absorption bands at different wavelengths depending on the method of sample preparation. The limit of the transmission band on the long wavelength side is an essential property of the material and depends on the phenomenon of multitonal absorption. For wavelengths between about 2 μm and the long wavelength limit, the transmission power is primarily limited by absorption phenomena related to impurities. The transparency limitations of these materials in the visible and near-infrared regions are due to a combination of imperfect characteristic absorption and scattering phenomena, but the limitations due to scattering are significantly greater. Although the short-wavelength limit of the transmission band is a completely inherent material property, deviations from stoichiometry, impurities, and other point defects can cause loss of transparency at wavelengths near the short-wavelength limit. be. Heat Pressure Pressure Method (HIP)
These limitations can be reduced not only by reducing the porosity of the material or eliminating pores, but also by reducing or eliminating many of the defects that contribute to scattering or absorption. This is based on a combination of factors caused by the simultaneous heating and pressurization of the HIP method. By heating, most of the impurities that normally exist inside the material diffuse to the outside. These impurities, whether constituted by actually present impurities formed by contaminating atoms of elements other than those forming the ideal compound, or by the absence or interruption of atoms. It may also be composed of defects in a crystal lattice. In any case, these impurities will diffuse to the surface of the sample at a constant rate that is a function of temperature. Impurity atoms may be present within the sulfide or selenide as separate, distinct phases. The applied heat also serves to reduce or eliminate the inclusion of precipitates in the second phase of the compound being treated. The applied pressure helps to annihilate any such residual pores that may have been present in the sample prior to processing, and eliminates any new pores that may have arisen during processing if this treatment had not been performed. suppresses the generation of In addition, since the compounds used have a fairly high vapor pressure at the processing temperatures used, the pressurization serves to limit the evaporation of the compounds. In the case of zinc sulfide, the density is higher than that of the birefringent hexagonal crystal form of the optically isotropic cubic crystal form. It was found that the processing pressure of the HIP process facilitates the conversion of non-cubic crystals to cubic crystals. Furthermore, the equilibrium concentration of interstitial atoms and crystal lattice defects is reduced by pressurization. Also, the solubility of impurities generally decreases.

(0007) 硫化亜鉛の試料は化学蒸着法(CVD)
および加熱圧縮法によるタイプのものを包含して
いるものであつた。セレン化亜鉛の試料はCVD
法によるタイプのものであつた。加熱圧縮法よる
セレン化亜鉛はCVD法によるセレン化亜鉛に比
べて透過特性が著しく劣るので一般的には使用さ
れない。しかし、本処理法によれば加熱圧縮法に
よるセレン化亜鉛の特性も同じように良好になる
よう改善される。処理時間の長さは試料の当初の
品質によつて異なる。試料の品質すなわち透過能
が大きい程、透過性を所定水準まで改善するに要
する時間を短くすることが出来る。加熱圧縮法で
調整した硫化亜鉛材料はCVD法で調製した硫化
亜鉛に比して、散乱に影響するような不純物又は
欠陥の濃度が大きいことが見出されている。処理
時間は出発試料の厚さによつても異る。所定水準
まで透過性能の改善を行なうためには厚さが大き
い程処理時間を長くしなければならない。
(0007) Zinc sulfide samples were made by chemical vapor deposition (CVD)
and those using the heat compression method. Zinc selenide sample is CVD
It was a legal type. Zinc selenide produced by the heat compression method is not generally used because its permeation properties are significantly inferior to zinc selenide produced by the CVD method. However, according to the present treatment method, the properties of zinc selenide obtained by the heat compression method are improved to the same extent. The length of processing time depends on the initial quality of the sample. The higher the quality or permeability of the sample, the shorter the time required to improve the permeability to a predetermined level. It has been found that zinc sulfide materials prepared by hot compression have a higher concentration of impurities or defects that affect scattering than zinc sulfide prepared by CVD. Processing time also depends on the thickness of the starting sample. In order to improve the transmission performance to a predetermined level, the larger the thickness, the longer the processing time must be.

(0008) 前記のように、透過率をHIP法で処理
することによつて光学素子の光学的特性が改善さ
れることが発見せられた。これは諸因子の組合わ
せ効果によるものである。加えられた熱は不純物
が試料の芯部から外表面へ拡散して出て来ること
に有利に作用すると思われる。圧力は化合物の蒸
発を制約すると共に細孔を消滅させその生成を防
止するに役立つ。硫化亜鉛の場合には圧力によつ
て存在しているすべての非立方晶系同質異像の結
晶が立方晶系に変えられると考えられている。こ
の事実は作業温度および圧力の選択を行なう場合
の指針となる。温度は試料体からの不純物を拡散
して外へ出て来るようにするために十分高い温度
でなければならない。圧力は蒸発を防止し、試料
中の細孔をほとんど消滅させるに十分な圧力でな
ければならない。処理時間の長さは試料の厚さお
よびその光学的品質の両方によつて決定される。
透過能の小さい試料は通常、所定の光学的透明性
を得るためにより長い処理時間を必要とする。然
し、処理時間の上限は、処理時間が不合理な程長
い場合に結晶粒の成長が過度に起ることのために
制限される。CVD型の硫化亜鉛が、加熱加圧型
の硫化亜鉛よりも著しく高度に光学的改善を受け
ることも見出されている。これは恐らく加熱加圧
法の場合にはCVD法のもの程、良く拡散して外
へ出来ないような大きい寸法の欠陥が生成すると
いう事実によるものであろう。
(0008) As mentioned above, it has been discovered that the optical characteristics of an optical element can be improved by processing the transmittance using the HIP method. This is due to the combined effect of various factors. The applied heat appears to favor the diffusion of impurities from the core of the sample to the outer surface. The pressure serves to constrain evaporation of the compound and to eliminate pores and prevent their formation. In the case of zinc sulfide, it is believed that pressure converts all existing non-cubic polymorphic crystals into cubic crystals. This fact guides the selection of operating temperatures and pressures. The temperature must be high enough to allow impurities from the sample to diffuse out. The pressure must be sufficient to prevent evaporation and nearly eliminate pores in the sample. The length of processing time is determined by both the thickness of the sample and its optical quality.
Samples with lower transmittance typically require longer processing times to achieve a given optical clarity. However, the upper limit on processing time is limited because excessive grain growth occurs if processing times are unreasonably long. It has also been found that CVD zinc sulfide undergoes optical improvement to a significantly higher degree than heat-pressed zinc sulfide. This is probably due to the fact that the heat-pressing method produces larger defects that cannot be diffused and removed as well as the CVD method.

(0009) CVD法によつて製造された6ミリメ
ートルのCVD型硫化亜鉛試料を、通常のHIP装
置を用い、通常のHIP処理法にしたがつて990℃,
5000psi〔350Kg/cm2〕の温度および圧力で3hr処理
すると、試料の光学的特性が眼で認められる程改
良された。加熱加圧型硫化亜鉛およびCVD型セ
レン化亜鉛の試料に対しては30000psi〔2100Kg/
cm2〕の圧力および1000℃の温度で著しい光学的特
性の改善が得られた。15ミリメーターのCVD型
硫化亜鉛試料では約1000℃の温度、および
30000psi〔2100Kg/cm2〕の圧力で約24hrの処理に
よつて良好な結果が得られた。種々の型の試料に
ついて処理時間を定めるために700℃ないし1050
℃の温度範囲および5000ないし30000psi〔350ない
し2100Kg/cm2〕の圧力を使用した。厚さの小さい
ものでは3hr、厚さの大きいものでは36hrの範囲
の処理時間が適当であつた。然し本発明はここに
開示した操作のパラメーターによつて制約される
ものではない。温度、圧力および処理時間の組合
わせが著しく異つていても処理された試料の光学
的特性はある程度までは改善されるであろう。実
際的な作業上のパラメーターは通常具体的応用上
の要求によつて定まる。所定の改善を達成するた
めに使用される温度および圧力は著しく低いであ
ろう。
(0009) A 6 mm CVD type zinc sulfide sample manufactured by the CVD method was heated to 990°C using a normal HIP device and according to the normal HIP treatment method.
After 3 hours of treatment at 5000 psi (350 Kg/cm 2 ) temperature and pressure, the optical properties of the sample were visibly improved. 30000psi [2100Kg/
A significant improvement in the optical properties was obtained at a pressure of [cm 2 ] and a temperature of 1000°C. A temperature of approximately 1000°C for a 15 mm CVD type zinc sulfide sample, and
Good results were obtained with a treatment time of about 24 hours at a pressure of 30,000 psi (2,100 Kg/cm 2 ). 700℃ to 1050℃ to determine the processing time for various types of samples.
A temperature range of 0.degree. C. and a pressure of 5000 to 30000 psi [350 to 2100 Kg/cm 2 ] were used. Appropriate treatment times were 3 hours for small thicknesses and 36 hours for large thicknesses. However, the invention is not limited to the operating parameters disclosed herein. Significantly different combinations of temperature, pressure and treatment time will still improve the optical properties of the treated samples to some extent. Practical operating parameters are usually determined by specific application requirements. The temperatures and pressures used to achieve a given improvement will be significantly lower.

(0010) HIP法の装置内で温度および圧力をか
けるに先立つて予め一部の試料の若干を第二物質
の箔で包んだ。この包装は真空を遮断する包装状
態ではないが試料と反応室との間の蒸気の交換を
制限し、また、処理を促進するために試料中の揮
発性物質の化学ポテンシヤルを調節して、試料の
透過性を高めるのに役立つ。この試料の表面上の
揮発性物質の化学ポテンシヤルの調節は、作業に
使用されるガス中にドーパント又は蒸気状物質を
放出する固体を使用する等の他の手段によつても
実施することが出来るであろう。種々の型式の物
質がこれまで使用されて来た。石墨、軟鋼、タン
タル、銅、および白金の箔がこれまで使用されて
いる。白金の包装箔は試料の透過性能の改善を最
も良く行なうことが出来た。これは恐らくその不
活性な性質に依るものであろう。
(0010) Prior to applying temperature and pressure in the HIP apparatus, some of the samples were previously wrapped in a foil of a second material. Although this packaging is not a vacuum-blocking packaging condition, it limits the exchange of vapor between the sample and the reaction chamber, and also adjusts the chemical potential of volatile substances in the sample to facilitate processing. helps increase transparency. This adjustment of the chemical potential of volatile substances on the surface of the sample can also be carried out by other means, such as by using dopants or solids that release vapors into the gas used for the operation. Will. Various types of materials have been used in the past. Graphite, mild steel, tantalum, copper, and platinum foil have been used. Platinum packaging foil was able to improve the transmission performance of the samples best. This is probably due to its inert nature.

(0011) 添付図面には厚さ6ミリメートルの
CVD型硫化亜鉛試料の透過スペクトルが示され
ている。線10は処理前の当初の試料のスペクト
ルであり、線20は同一の試料をHIP法処理に依
つて1000℃および30000psi〔2100Kg/cm2〕におい
て3hr処理したもののスペクトルである。HIP法
の処理によつて材料の短波長に対する透過能が著
しく改善せられ、また6マイクロメートルにおけ
る赤外線吸収帯が消滅した。硫化亜鉛における吸
収帯は試料の製造方法と作業条件によつて異なる
ものであるが、これらはHIP処理によつて著しく
改善されると思われる。処理を行なわない試料は
肉眼的に橙黄色であつて可視波長の像を造るのに
使用出来ない程不鮮明であつた。処理を行なつた
試料は亜鉛と硫黄の割合を化学量論的に1対1に
調整したものであるので無色であり、処理によつ
て光を散乱する欠陥の濃度を極めて著しく減少し
ているので水のように透明であつた。HIP処理法
によつて2マイクロメートルよりも大きい波長に
おける透過能が著しく改善された。その他のZnS
試料を、同様に990℃,30000psi〔2100Kg/cm2〕に
おいて24hr処理した。試料の厚さは0.4ないし1.5
cmであつた。
(0011) The attached drawing shows a 6mm thick
The transmission spectrum of a CVD zinc sulfide sample is shown. Line 10 is the spectrum of the original sample before treatment, and line 20 is the spectrum of the same sample treated by HIP treatment at 1000° C. and 30000 psi for 3 hours. The HIP treatment significantly improved the short wavelength transmission of the material and also eliminated the infrared absorption band at 6 micrometers. Although the absorption bands in zinc sulfide vary depending on the sample preparation method and working conditions, these appear to be significantly improved by HIP treatment. The untreated sample was macroscopically orange-yellow and too indistinct to be used for imaging at visible wavelengths. The treated sample is colorless because the stoichiometric ratio of zinc and sulfur has been adjusted to 1:1, and the treatment significantly reduces the concentration of light-scattering defects. So it was clear like water. The HIP process significantly improved the transmission power at wavelengths greater than 2 micrometers. Other ZnS
The sample was similarly treated at 990° C. and 30,000 psi [2,100 Kg/cm 2 ] for 24 hours. Sample thickness is 0.4 to 1.5
It was cm.

(0012) 後記の表は添付図の一つと同様のZnS
試料の厚さ6ミリメートルのものの吸収係数の測
定結果をまとめたものである。これらの見掛けの
吸収能の値は、吸収した光の割合を試料の厚さで
割つて算出したものであつて、従つて吸収能に対
する表面の寄与度を示している。
(0012) The table below shows ZnS similar to one of the attached figures.
This is a summary of the measurement results of the absorption coefficient of a sample with a thickness of 6 mm. These apparent absorption power values are calculated by dividing the percentage of light absorbed by the thickness of the sample, and thus indicate the contribution of the surface to the absorption power.

■■■ 亀の甲 [0022] ■■■ 厚さが6ミリメートルのCVD法セレン化亜鉛
を、同様に、1000℃,30000psi〔2100Kg/cm2〕で
3hr処理してスペクトルを得た。未処理試料は肉
眼で見て黄色で、不鮮明であつた。処理後の色は
黄緑色で透明となつた。この色はセレン化亜鉛の
割合を化学量論的に正しい割合としたことに依る
ものである。可視領域における透過能は著しく改
善せられた。処理前の厚さ0.5マイクロメーター
の試料の透過能を分光器で測定した結果は5%で
あつたがこれに対して処理後の試料の透過能は50
%であつた。この著しい改善この処理によつて化
学量論的割合が調整されたことに依るものであ
る。処理前および処理後の試料の光散乱度の測定
値もまた得られている。0.6328マイクロメーター
の光源を与えるためにHe−Neレーザーを使用し
た。90℃において散乱した光の入射レーザー光に
対する割合を(立体弧度)-1で測定した結果は次
の通りであつた。
■■■ Turtle shell [0022] ■■■ CVD zinc selenide with a thickness of 6 mm was similarly processed at 1000℃ and 30000psi [2100Kg/cm 2 ].
Spectra were obtained after processing for 3 hours. The untreated sample was visually yellow and indistinct. After treatment, the color was yellow-green and transparent. This color is due to the stoichiometrically correct proportion of zinc selenide. The transmission power in the visible region was significantly improved. The transmittance of a 0.5 micrometer thick sample before treatment was measured with a spectrometer and was 5%, whereas the transmittance of the sample after treatment was 50%.
It was %. This significant improvement is due to the adjustment of stoichiometry by this treatment. Measurements of light scattering of the samples before and after treatment have also been obtained. A He-Ne laser was used to provide a 0.6328 micrometer light source. The ratio of scattered light to incident laser light at 90°C was measured as (steric arc degree) -1 , and the results were as follows.

(0014) 処理前 2×10-3 処理後 4.5×10-4 この結果はこの材料中の不純物のタイプが著し
い散乱を起させる性質を有するものであることを
示しており、この現象は低波長部での透過能が低
下していること、およびHIP法によればこの減少
が効果的に行なわれることを示すものである。
(0014) Before treatment 2 × 10 -3 After treatment 4.5 × 10 -4 This result indicates that the type of impurity in this material has the property of causing significant scattering, and this phenomenon is observed at low wavelengths. This shows that the permeability in the area is reduced, and that this reduction is effectively achieved by the HIP method.

(0015) 以上で本発明の記載を完了する。当業
者は本発明の精神および範囲から逸脱することな
く多くの変更を行なうことが出来るであろう。従
つて本発明は添付した特許請求の範囲によつて定
義されていること以外によつて制限されるもので
はない。
(0015) This completes the description of the present invention. Many modifications may be made by those skilled in the art without departing from the spirit and scope of the invention. Accordingly, the invention is not to be limited except as defined by the appended claims.

【図面の簡単な説明】[Brief explanation of drawings]

(同1)図は、厚さ6ミリメートルのCVD型
硫化亜鉛試料の処理前及び処理後の透過スペクト
ルを示す図である。 (符号の説明) 10:処理前の当初試料の透過スペクトル、2
0:処理後の試料の透過スペクトル、横軸:波長
(マイクロメートル)、縦軸:透過率(%)。
(Same 1) The figure shows the transmission spectrum of a 6 mm thick CVD type zinc sulfide sample before and after treatment. (Explanation of symbols) 10: Transmission spectrum of the original sample before treatment, 2
0: Transmission spectrum of sample after treatment, horizontal axis: wavelength (micrometer), vertical axis: transmittance (%).

Claims (1)

【特許請求の範囲】 1 電磁スペクトルの可視及び赤外領域において
実質的に均一な透過率を有する硫化亜鉛の物品。 【請求項2】 実質的に無色透明である請求項1
記載の硫化亜鉛の物品。 【請求項3】 0.4マイクロメーターにおいて、
6ミリ厚の試料が有意の透過率を有する請求項1
記載の物品。 【請求項4】 実質的に6マイクロメーターであ
る波長帯において、実質的に吸収帯のない化学蒸
着された請求項1記載の物品。 【請求項5】 5.6ミリの厚さを有する試料が、
電磁スペクトルの可視範囲の全体に亙つて30%以
上の透過率を有する請求項1記載の物品。 【請求項6】 該物品の透過範囲全体に亙つて実
質的に吸収帯のない請求項1記載の物品。
Claims: 1. An article of zinc sulfide having substantially uniform transmission in the visible and infrared regions of the electromagnetic spectrum. [Claim 2]Claim 1, which is substantially colorless and transparent.
Zinc sulfide articles as described. [Claim 3] At 0.4 micrometer,
Claim 1: A 6 mm thick sample has significant transmittance.
Items listed. 4. The chemical vapor deposited article of claim 1 having substantially no absorption band in a wavelength range that is substantially 6 micrometers. [Claim 5] A sample having a thickness of 5.6 mm is
The article of claim 1 having a transmittance of 30% or more throughout the visible range of the electromagnetic spectrum. 6. The article of claim 1, which is substantially free of absorption bands over the entire transmission range of the article.
JP2406626A 1980-12-29 1990-12-26 Article of zinc sulfide having improved optical characteristics Granted JPH03271122A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22094480A 1980-12-29 1980-12-29
US220944 1980-12-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56216050A Division JPS57135723A (en) 1980-12-29 1981-12-25 Polycrystal zinc sulfide and zinc selenide products with improved optical properties

Publications (2)

Publication Number Publication Date
JPH03271122A JPH03271122A (en) 1991-12-03
JPH0451489B2 true JPH0451489B2 (en) 1992-08-19

Family

ID=22825678

Family Applications (3)

Application Number Title Priority Date Filing Date
JP56216050A Granted JPS57135723A (en) 1980-12-29 1981-12-25 Polycrystal zinc sulfide and zinc selenide products with improved optical properties
JP2406626A Granted JPH03271122A (en) 1980-12-29 1990-12-26 Article of zinc sulfide having improved optical characteristics
JP2406625A Pending JPH03271107A (en) 1980-12-29 1990-12-26 Article of zinc selenide having improved optical characteristics

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP56216050A Granted JPS57135723A (en) 1980-12-29 1981-12-25 Polycrystal zinc sulfide and zinc selenide products with improved optical properties

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2406625A Pending JPH03271107A (en) 1980-12-29 1990-12-26 Article of zinc selenide having improved optical characteristics

Country Status (7)

Country Link
JP (3) JPS57135723A (en)
CA (1) CA1181557A (en)
DE (1) DE3150525A1 (en)
FR (2) FR2497361B1 (en)
GB (2) GB2090237B (en)
IT (1) IT1172159B (en)
SE (1) SE8107840L (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957951A (en) * 1982-09-27 1984-04-03 住友電気工業株式会社 Manufacture of zns polycrystal body
EP0157040A3 (en) * 1983-04-05 1987-11-25 Sumitomo Electric Industries Limited Method of producing transparent polycrystalline zns body
JPS607413A (en) * 1983-06-28 1985-01-16 Matsushita Electric Ind Co Ltd Lens for converging beam
JPH0617280B2 (en) * 1987-03-18 1994-03-09 社団法人生産技術振興協会 ZnSe single crystal production method
JP2737191B2 (en) * 1987-12-28 1998-04-08 東ソー株式会社 Method for producing homogeneous quartz glass block
DE69112347T2 (en) * 1990-11-14 1996-04-25 Raytheon Co Zinc sulfide optical elements.
DE9110969U1 (en) * 1991-09-04 1991-12-05 Wild Leitz Systemtechnik GmbH, 6330 Wetzlar Panoramic periscope for day and night vision
DE4414552C2 (en) * 1994-04-26 2001-06-07 Lukas Kuepper Process for the production of micro-optical elements or a fiber end in the form of a micro-optical element
JP3578357B2 (en) * 1994-04-28 2004-10-20 信越石英株式会社 Method for producing heat-resistant synthetic quartz glass
JP2002534801A (en) 1999-01-04 2002-10-15 インフィネオン テクノロジース アクチエンゲゼルシャフト Apparatus and method for shaping a semiconductor surface
FR2898962B1 (en) 2006-03-23 2008-05-09 Brandt Ind Sas DOMESTIC GAS COOKING OVEN AND METHOD OF IGNITING AT LEAST ONE GAS BURNER IN SUCH GAS DOMESTIC COOKING OVEN
US7790072B2 (en) 2007-12-18 2010-09-07 Raytheon Company Treatment method for optically transmissive bodies
EP2511236B1 (en) * 2011-04-14 2015-07-01 Rohm and Haas Company Improved quality multi-spectral zinc sulfide
JP5444397B2 (en) * 2012-03-09 2014-03-19 住友電気工業株式会社 Manufacturing method of optical components
US20130271610A1 (en) * 2012-04-16 2013-10-17 Keith Gregory ROZENBURG Polycrystalline chalcogenide ceramic material
JP5876798B2 (en) * 2012-09-14 2016-03-02 住友電気工業株式会社 ZnSe polycrystal and method for producing the same
JP5621828B2 (en) * 2012-10-11 2014-11-12 住友電気工業株式会社 Manufacturing method of optical components
JP6989102B2 (en) * 2017-04-05 2022-01-05 日本電気株式会社 Manufacturing method of zinc sulfide sintered body and zinc sulfide sintered body

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3131025A (en) * 1959-10-29 1964-04-28 Eastman Kodak Co Zinc sulfide optical element
FR1272294A (en) * 1960-10-26 1961-09-22 Kodak Pathe New optical element and method and apparatus for its manufacture
DE1244433B (en) * 1961-08-21 1967-07-13 Eastman Kodak Co Optical material and process for its manufacture
GB1013156A (en) * 1961-08-21 1965-12-15 Eastman Kodak Co Improvements in or relating to the manufacture of optical elements of zinc selenide
US3454685A (en) * 1961-08-21 1969-07-08 Eastman Kodak Co Method of forming zinc selenide infrared transmitting optical elements
US3177759A (en) * 1961-10-04 1965-04-13 Barnes Eng Co Apparatus for the spectrum examination of materials
FR2286394A1 (en) * 1974-09-30 1976-04-23 Comp Generale Electricite OPTICAL DEVICE
GB1547172A (en) * 1976-06-24 1979-06-06 Nat Res Dev Methods and apparatus for cutting welding drilling and surface treating
JPS55113802A (en) * 1979-02-24 1980-09-02 Sumitomo Electric Ind Ltd Production of high-purity sintered body by hot hydrostatic press
JPS6016391B2 (en) * 1979-03-31 1985-04-25 住友電気工業株式会社 Manufacturing method of high purity, high strength ZnSe sintered body by hot forging method
DE2949512C2 (en) * 1979-12-08 1982-10-21 W.C. Heraeus Gmbh, 6450 Hanau Process for the aftertreatment of zinc sulphide bodies for optical purposes
JPS5711824A (en) * 1980-06-23 1982-01-21 Matsushita Electric Ind Co Ltd Preparation of semiconductive zinc sulfide
JPS5717411A (en) * 1980-07-02 1982-01-29 Agency Of Ind Science & Technol Manufacture of polycrystalline zinc selenide body
DE3039749C2 (en) * 1980-10-22 1982-08-19 Heraeus Quarzschmelze Gmbh, 6450 Hanau Process for the production of bubble-free, glassy material
JPS606307B2 (en) * 1980-12-22 1985-02-16 工業技術院長 Method for producing polycrystalline zinc selenide

Also Published As

Publication number Publication date
IT8149921A0 (en) 1981-12-16
JPH03271122A (en) 1991-12-03
JPH03271107A (en) 1991-12-03
FR2497361B1 (en) 1989-03-31
JPS57135723A (en) 1982-08-21
GB2090237B (en) 1985-12-11
IT1172159B (en) 1987-06-18
GB8323505D0 (en) 1983-10-05
GB2125023A (en) 1984-02-29
GB2090237A (en) 1982-07-07
SE8107840L (en) 1982-06-30
JPH0469090B2 (en) 1992-11-05
GB2125023B (en) 1985-11-13
DE3150525A1 (en) 1982-08-26
CA1181557A (en) 1985-01-29
FR2610730A1 (en) 1988-08-12
FR2497361A1 (en) 1982-07-02
FR2610730B1 (en) 1990-10-12

Similar Documents

Publication Publication Date Title
JPH0451489B2 (en)
US4944900A (en) Polycrystalline zinc sulfide and zinc selenide articles having improved optical quality
US5126081A (en) Polycrystalline zinc sulfide and zinc selenide articles having improved optical quality
JP4653121B2 (en) Broadband contrast polarizing glass
US20100028556A1 (en) Chemical vapor deposition colored diamond
Merle-Méjean et al. Chemical forms of hydroxyls on/in zirconia: An FT-IR study
Sugak et al. Growth and induced color centers in YAlO3–Nd single crystals
US2964427A (en) Ultra-violet filter
DE2229909C3 (en) Process for the production of blue colored translucent layers
US4303635A (en) Zinc sulfide body for optical purposes
EP0486236B1 (en) Zinc sulfide optical elements
KR100687773B1 (en) High temperature/high pressure colour change of diamond
KR100687775B1 (en) High temperature/high pressure colour change of diamond
US3744870A (en) Optical filter comprising a substrate of metal fluoride having deposited thereon a film of strontium or barium fluoride
BE1008681A3 (en) Glass carrying pyrolytic coating.
WO2002048038A3 (en) Jadeite and its production
El-Nahass Optical properties of CdIn 2 Se 4 thin films
Peraudeau et al. Influence of Colour Filter on Reaction Products from Mo and W Heated to 2000 C by Concentrated Solar Beam in N2 Gas Environment in a Solar Furnace at PROMES-CNRS
Bauhofer et al. New crystallographic determination and optical properties of TeI single crystals
Krishnan Effect of laser fluence on the structural and optical properties of tantalum oxide films ablated by pulsed laser
Kristianpoller et al. Effects of ultraviolet and visible light on synthetic sapphire
Shih COLOR CHANGES IN THE COMPOUND AuAl $ sub 2$ INDUCED BY IMPERFECTIONS.
Tuzzolo et al. Hydrogen-induced absorption in glasses containing arsenic and antimony
DK143696B (en) PROCEDURE FOR PREPARING A HEAT REFLECTING WINDOW
SU1642226A1 (en) Band-stop filter