JPH04289658A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH04289658A
JPH04289658A JP3054526A JP5452691A JPH04289658A JP H04289658 A JPH04289658 A JP H04289658A JP 3054526 A JP3054526 A JP 3054526A JP 5452691 A JP5452691 A JP 5452691A JP H04289658 A JPH04289658 A JP H04289658A
Authority
JP
Japan
Prior art keywords
positive electrode
electrolyte secondary
secondary battery
fibrous graphite
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3054526A
Other languages
Japanese (ja)
Inventor
Yasuhiko Mifuji
靖彦 美藤
Shuji Ito
修二 伊藤
Sukeyuki Murai
村井 祐之
Masaki Hasegawa
正樹 長谷川
Yoshinori Toyoguchi
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3054526A priority Critical patent/JPH04289658A/en
Publication of JPH04289658A publication Critical patent/JPH04289658A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a nonaqueous electrolyte secondary battery having an excellent charge/discharge cycle characteristic. CONSTITUTION:A positive electrode 1 to which fiber-like graphite is added is used as a positive electrode having an active material of LiCoO2, and a lithium metal is employed as a negative electrode 4. A nonaqueous electrolyte secondary battery having a good charge/discharge cycle characteristic can be obtained, because a current collecting property in the electrode becomes excellent even charging and discharging are repeated, by adding the fiber-like graphite to the positive electrode.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、非水電解液二次電池に
関し、特に正極を改良した非水電解液二次電池に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery with an improved positive electrode.

【0002】0002

【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解液二次電池は高電圧で高エネルギー密度と
なることが期待され、多くの研究が行なわれている。
BACKGROUND OF THE INVENTION Non-aqueous electrolyte secondary batteries using lithium or lithium compounds as negative electrodes are expected to have high voltage and high energy density, and many studies are being conducted.

【0003】特に、これら電池の正極活物質としてMn
O2やTiS2がよく検討されている。これらの正極活
物質はLiに対する電位が3V程度であるが、さらに最
近、LiMnO2O4およびLiCoO2がLiに対し
て4V以上の電位を示す正極活物質として注目されてい
る。
In particular, Mn is used as the positive electrode active material of these batteries.
O2 and TiS2 are often considered. These positive electrode active materials have a potential of about 3 V with respect to Li, but more recently, LiMnO2O4 and LiCoO2 have attracted attention as positive electrode active materials exhibiting a potential of 4 V or more with respect to Li.

【0004】すなわち、電池の高エネルギー密度を得る
手段として容量の拡大とともに電池電圧を高める努力が
なされている。
That is, efforts are being made to increase the battery voltage as well as expand the capacity as a means of obtaining a high energy density of the battery.

【0005】上記の正極活物質を用いた非水電解液二次
電池の課題の1つに充放電にともなう容量低下がある。 このサイクル特性を向上するために、これまでに正極活
物質の改良や電解液の検討,セパレータの改善などの多
くの努力がなされている。
[0005] One of the problems with non-aqueous electrolyte secondary batteries using the above-mentioned positive electrode active material is a decrease in capacity due to charging and discharging. In order to improve this cycle characteristic, many efforts have been made so far, such as improving positive electrode active materials, examining electrolytes, and improving separators.

【0006】[0006]

【発明が解決しようとする課題】このような充放電を繰
り返した場合の放電容量の低下が起こる原因の1つとし
ては、上記の正極活物質などのリチウムを挿入,脱離す
ることのできる化合物においても、深い充放電を繰り返
すと活物質の微細化が起こり、その結果、電極が崩れて
しまうことが考えられる。そこで、正極にフッ素樹脂,
ポリオレフィンなどの結着材が用いられている。しかし
ながら、この場合においてもリチウムの挿入,脱離に伴
う電極の膨張,収縮の結果、活物質保持の不良や集電不
良が生じ充分なサイクル特性が得られないという欠点を
有している。
[Problems to be Solved by the Invention] One of the reasons why the discharge capacity decreases when charging and discharging are repeated is that compounds that can intercalate and deintercalate lithium, such as the above-mentioned positive electrode active materials, Even in this case, repeated deep charging and discharging may cause the active material to become finer, and as a result, the electrode may collapse. Therefore, we used fluororesin as the positive electrode.
A binder such as polyolefin is used. However, even in this case, as a result of the expansion and contraction of the electrode due to the intercalation and deintercalation of lithium, there is a drawback that insufficient active material retention and current collection occur, making it impossible to obtain sufficient cycle characteristics.

【0007】本発明は上記のような充放電に伴う放電容
量の低下、すなわち、サイクル特性が不十分であるとい
う問題を解決し、充放電サイクル特性に優れた非水電解
液二次電池を提供することを目的とする。
[0007] The present invention solves the above problem of a decrease in discharge capacity due to charging and discharging, that is, insufficient cycle characteristics, and provides a non-aqueous electrolyte secondary battery with excellent charge and discharge cycle characteristics. The purpose is to

【0008】[0008]

【課題を解決するための手段】この課題を解決するため
本発明の非水電解液二次電池は、充電放電に対し可逆性
を有する正極と負極と、リチウム塩を含有する非水電解
液とを有し、前記正極中に繊維状黒鉛を含むものである
[Means for Solving the Problem] In order to solve this problem, the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode and a negative electrode that are reversible in charging and discharging, and a non-aqueous electrolyte containing a lithium salt. The positive electrode contains fibrous graphite.

【0009】また繊維状黒鉛の添加量は0.5重量%〜
20重量%であることが望ましい。さらに、繊維状黒鉛
の平均繊維径に対する平均繊維長の比は10〜500が
好ましい。
[0009] The amount of fibrous graphite added is 0.5% by weight or more.
The content is preferably 20% by weight. Furthermore, the ratio of the average fiber length to the average fiber diameter of the fibrous graphite is preferably 10 to 500.

【0010】0010

【作用】この構成により本発明の非水電解液二次電池は
、正極中に導電剤として繊維状黒鉛を添加することによ
り、電極の膨張時においても充分な集電が得られる。 その結果、少ないサイクル数で充放電容量が低下するこ
とがなくなることとなる。
[Function] With this structure, the non-aqueous electrolyte secondary battery of the present invention can obtain sufficient current collection even when the electrode is expanded by adding fibrous graphite as a conductive agent to the positive electrode. As a result, the charge/discharge capacity does not decrease even with a small number of cycles.

【0011】[0011]

【実施例】以下、本発明の一実施例の非水電解液二次電
池について図面を基にして説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A non-aqueous electrolyte secondary battery according to an embodiment of the present invention will be described below with reference to the drawings.

【0012】(実施例1)電池の製造を次のようにして
行なう。
(Example 1) A battery was manufactured as follows.

【0013】正極中の導電剤として繊維径と繊維長さの
比率が1:20(アスペクト比20)、1:75(アス
ペクト比75)、1:200(アスペクト比200)の
3種類の繊維状黒鉛を用いて構成したものについて説明
する。なお、用いた繊維状黒鉛の平均繊維径はすべて0
.1μmである。
Three types of fibrous materials are used as the conductive agent in the positive electrode, with the ratio of fiber diameter to fiber length being 1:20 (aspect ratio 20), 1:75 (aspect ratio 75), and 1:200 (aspect ratio 200). A device constructed using graphite will be explained. The average fiber diameter of the fibrous graphite used was all 0.
.. It is 1 μm.

【0014】正極活物質としてLiCoO2  100
gに導電剤として上記繊維状黒鉛3.0gを混合し、さ
らに、結着剤としてのポリ4弗化エチレン樹脂5.0g
を混合して正極合剤とした。正極合剤0.1グラムを直
径17.5mmに1トン/cm2でプレス成型して、正
極とした。図1において、成型した正極1をケース2に
置く。 正極1の上にセパレータ3としての多孔性ポリプロピレ
ンフィルムを置いた。負極4として直径17.5mm,
厚さ0.3mmのリチウム板を、ポリプロピレン製ガス
ケット5を付けた封口板6に圧着した。非水電解液とし
て、1モル/lの過塩素酸リチウムを溶解したプロピレ
ンカーボネート溶液を用い、これをセパレータ3上およ
び負極4上に加えた。その後電池を封口した。上記のよ
うにして得られた電池の充放電サイクル試験を行なった
[0014] LiCoO2 100 as a positive electrode active material
3.0 g of the above-mentioned fibrous graphite as a conductive agent was mixed with g, and 5.0 g of polytetrafluoroethylene resin was added as a binder.
were mixed to form a positive electrode mixture. 0.1 g of the positive electrode mixture was press-molded into a diameter of 17.5 mm at 1 ton/cm 2 to obtain a positive electrode. In FIG. 1, a molded positive electrode 1 is placed in a case 2. A porous polypropylene film as a separator 3 was placed on the positive electrode 1 . As the negative electrode 4, the diameter is 17.5 mm,
A lithium plate with a thickness of 0.3 mm was crimped onto a sealing plate 6 to which a polypropylene gasket 5 was attached. A propylene carbonate solution in which 1 mol/l of lithium perchlorate was dissolved was used as the non-aqueous electrolyte, and this was added onto the separator 3 and the negative electrode 4. After that, the battery was sealed. The battery obtained as described above was subjected to a charge/discharge cycle test.

【0015】なお比較例として、導電剤として繊維状黒
鉛ではなく従来のアセチレンブラックを添加した正極を
用いた電池も上記と同様の方法で作製した。
As a comparative example, a battery using a positive electrode containing conventional acetylene black instead of fibrous graphite as a conductive agent was also fabricated in the same manner as above.

【0016】以上のように導電剤の異なる4種類の電池
の充放電サイクル特性の比較を行なった。なお本実施例
における充放電サイクル試験は、充放電電流0.5mA
,電圧範囲が4.2Vから3.0Vの間で定電流充放電
することで行なった。
As described above, the charge/discharge cycle characteristics of four types of batteries using different conductive agents were compared. Note that the charge/discharge cycle test in this example was conducted at a charge/discharge current of 0.5 mA.
This was carried out by constant current charging and discharging within a voltage range of 4.2V to 3.0V.

【0017】(表1)に初期放電容量ならびに初期放電
容量に対する100サイクル目の放電容量の容量維持率
を示す。サンプル数nはそれぞれ50個とした。
Table 1 shows the initial discharge capacity and the capacity retention ratio of the discharge capacity at the 100th cycle with respect to the initial discharge capacity. The number of samples n was 50 for each.

【0018】ここでの放電容量は正極活物質1g当りに
換算している。
The discharge capacity here is calculated per 1 g of positive electrode active material.

【0019】[0019]

【表1】[Table 1]

【0020】(表1)に示すように、導電剤として従来
のアセチレンブラックを添加した正極を用いた比較例の
電池は、100サイクル後の放電容量維持率が70%程
度まで低下する。一方、導電剤として繊維状黒鉛を含む
正極を用いた本実施例の電池はいずれも従来例の電池と
比較して放電容量が大きく向上し、また100サイクル
後の放電容量維持率が90%以上とサイクル特性も大幅
に向上している。このような電池の放電容量の向上は、
導電剤としてアセチレンブラックを添加した場合には正
極中の電子伝導性が小さく、すなわち集電がまだ不十分
であったものが、導電剤として繊維状黒鉛を含有させる
ことで充分な集電が得られるようになったためと考えら
れる。また、正極中に繊維状黒鉛を含有させることで充
放電時の電極の膨張においても充分な集電が得られる。 その結果、少ないサイクル数で充放電容量が低下するこ
とがなくなると考えられる。
As shown in Table 1, in the battery of the comparative example using the positive electrode to which conventional acetylene black was added as a conductive agent, the discharge capacity retention rate after 100 cycles decreased to about 70%. On the other hand, all of the batteries of this example using positive electrodes containing fibrous graphite as a conductive agent have greatly improved discharge capacity compared to conventional batteries, and have a discharge capacity retention rate of 90% or more after 100 cycles. The cycle characteristics have also been significantly improved. This improvement in battery discharge capacity is due to
When acetylene black was added as a conductive agent, the electron conductivity in the positive electrode was low, meaning that current collection was still insufficient, but by adding fibrous graphite as a conductive agent, sufficient current collection was achieved. This is thought to be due to the fact that it has become possible to Further, by including fibrous graphite in the positive electrode, sufficient current collection can be obtained even when the electrode expands during charging and discharging. As a result, it is thought that the charge/discharge capacity does not decrease with a small number of cycles.

【0021】さらに、アスペクト比の異なる繊維状黒鉛
を導電剤として含有した場合について着目すると、アス
ペクト比20の繊維状黒鉛を用いた場合、100サイク
ル目での容量維持率は90%であり、充放電サイクル特
性の向上効果がみられた。また、アスペクト比75と2
00の場合にも、100サイクル目での容量維持率はそ
れぞれ93%,96%と同等な効果が得られた。
[0021] Furthermore, focusing on the case where fibrous graphite with different aspect ratios is contained as a conductive agent, when fibrous graphite with an aspect ratio of 20 is used, the capacity retention rate at the 100th cycle is 90%. The effect of improving discharge cycle characteristics was observed. Also, the aspect ratio is 75 and 2.
Even in the case of 00, the capacity retention rate at the 100th cycle was 93% and 96%, respectively, and the same effect was obtained.

【0022】(実施例2)次に、正極活物質としてLi
Mn2O4を用いて実施例1と同様の検討を行なった。
(Example 2) Next, Li was used as the positive electrode active material.
The same study as in Example 1 was conducted using Mn2O4.

【0023】正極中の導電剤として繊維径と繊維長さの
比率が1:20(アスペクト比20)、1:75(アス
ペクト比75)、1:200(アスペクト比200)の
3種類の繊維状黒鉛を用いて構成した。なお、用いた繊
維状黒鉛の平均繊維径はすべて0.1μmである。
Three types of fibrous materials are used as the conductive agent in the positive electrode, with ratios of fiber diameter and fiber length of 1:20 (aspect ratio 20), 1:75 (aspect ratio 75), and 1:200 (aspect ratio 200). Constructed using graphite. Note that the average fiber diameter of the fibrous graphite used was all 0.1 μm.

【0024】正極活物質としてLiMn2O4  10
0gに導電剤として上記繊維状黒鉛3.0gを混合し、
さらに、結着剤としてのポリ4弗化エチレン樹脂5.0
gを混合して正極合剤とした。正極合剤0.1グラムを
直径17.5mmに1トン/cm2でプレス成型して、
正極とした。図1において、成型した正極1をケース2
に置く。 正極1の上にセパレータ3としての多孔性ポリプロピレ
ンフィルムを置いた。負極4として直径17.5mm,
厚さ0.3mmのリチウム板を、ポリプロピレン製ガス
ケット5を付けた封口板6に圧着した。非水電解液とし
て、1モル/lの過塩素酸リチウムを溶解したプロピレ
ンカーボネート溶液を用い、これをセパレータ3上およ
び負極4上に加えた。その後電池を封口した。上記のよ
うにして得られた電池の充放電サイクル試験を行なった
LiMn2O4 10 as a positive electrode active material
0g and 3.0g of the above fibrous graphite as a conductive agent mixed,
Furthermore, polytetrafluoroethylene resin 5.0 as a binder
g was mixed to prepare a positive electrode mixture. 0.1 g of the positive electrode mixture was press-molded into a diameter of 17.5 mm at 1 ton/cm2.
It was used as a positive electrode. In Figure 1, the molded positive electrode 1 is placed in a case 2.
put it on. A porous polypropylene film as a separator 3 was placed on the positive electrode 1 . As the negative electrode 4, the diameter is 17.5 mm,
A lithium plate with a thickness of 0.3 mm was crimped onto a sealing plate 6 to which a polypropylene gasket 5 was attached. A propylene carbonate solution in which 1 mol/l of lithium perchlorate was dissolved was used as the non-aqueous electrolyte, and this was added onto the separator 3 and the negative electrode 4. After that, the battery was sealed. The battery obtained as described above was subjected to a charge/discharge cycle test.

【0025】なお比較例として、導電剤として繊維状黒
鉛ではなく従来のアセチレンブラックを添加した正極を
用いた電池も上記と同様の方法で作製した。
As a comparative example, a battery using a positive electrode to which conventional acetylene black was added instead of fibrous graphite as a conductive agent was also fabricated in the same manner as above.

【0026】以上のように導電剤の異なる4種類の電池
の充放電サイクル特性の比較を行なった。なお本実施例
における充放電サイクル試験は、充放電電流0.5mA
、電圧範囲が4.3Vから3.0Vの間で定電流充放電
することで行なった。
As described above, the charge/discharge cycle characteristics of four types of batteries using different conductive agents were compared. Note that the charge/discharge cycle test in this example was conducted at a charge/discharge current of 0.5 mA.
This was carried out by constant current charging and discharging within a voltage range of 4.3V to 3.0V.

【0027】(表2)に初期放電容量ならびに初期放電
容量に対する100サイクル目の放電容量の容量維持率
を示す。サンプル数nはそれぞれ50個とした。
Table 2 shows the initial discharge capacity and the capacity retention ratio of the discharge capacity at the 100th cycle with respect to the initial discharge capacity. The number of samples n was 50 for each.

【0028】ここでの放電容量は正極活物質1g当りに
換算している。
The discharge capacity here is calculated per 1 g of positive electrode active material.

【0029】[0029]

【表2】[Table 2]

【0030】(表2)に示すように、導電剤として従来
のアセチレンブラックを添加した正極を用いた比較例の
電池は、100サイクル後の放電容量維持率が60%程
度まで低下する。一方、導電剤として繊維状黒鉛を含む
正極を用いた本実施例の電池はいずれも比較例の電池と
比較し放電容量が大きく向上し、また100サイクル後
の放電容量維持率が85%以上とサイクル特性も大幅に
向上している。このように正極活物質としてLiMn2
O4を用いた場合にも、正極中に繊維状黒鉛を含有させ
ることで充放電時の電極の膨張においても充分な集電が
得られる。その結果、少ないサイクル数で充放電容量が
低下することがなくなると考えられる。
As shown in Table 2, in the battery of the comparative example using the positive electrode to which conventional acetylene black was added as a conductive agent, the discharge capacity retention rate after 100 cycles decreased to about 60%. On the other hand, all of the batteries of this example using positive electrodes containing fibrous graphite as a conductive agent had greatly improved discharge capacity compared to the batteries of comparative examples, and the discharge capacity retention rate after 100 cycles was 85% or more. Cycle characteristics have also been significantly improved. In this way, LiMn2 is used as a positive electrode active material.
Even when O4 is used, sufficient current collection can be obtained by including fibrous graphite in the positive electrode even when the electrode expands during charging and discharging. As a result, it is thought that the charge/discharge capacity does not decrease with a small number of cycles.

【0031】さらに、アスペクト比の異なる繊維状黒鉛
を導電剤として含有した場合について着目すると、アス
ペクト比20の繊維状黒鉛を用いた場合、100サイク
ル目での容量維持率は89%であり、充放電サイクル特
性の向上効果がみられた。また、アスペクト比75と2
00の場合にも、100サイクル目での容量維持率はそ
れぞれ93%,98%と同等な効果が得られた。
Furthermore, focusing on the case where fibrous graphite with different aspect ratios is contained as a conductive agent, when fibrous graphite with an aspect ratio of 20 is used, the capacity retention rate at the 100th cycle is 89%, and the charging The effect of improving discharge cycle characteristics was observed. Also, the aspect ratio is 75 and 2.
Even in the case of 00, the capacity retention rate at the 100th cycle was 93% and 98%, respectively, and the same effect was obtained.

【0032】(実施例3)さらに、正極への繊維状黒鉛
の添加量について検討した。
(Example 3) Furthermore, the amount of fibrous graphite added to the positive electrode was investigated.

【0033】正極活物質としては、LiMn2O4を用
いた。正極中の導電剤として繊維径と繊維長さの比率が
、1:75(アスペクト比75)の繊維状黒鉛を用いて
構成したものについて説明する。
[0033] LiMn2O4 was used as the positive electrode active material. An example will be described in which fibrous graphite with a fiber diameter to fiber length ratio of 1:75 (aspect ratio 75) is used as the conductive agent in the positive electrode.

【0034】本実施例での正極合剤および電池構成方法
は実施例2と同様に行なった。(表3)に繊維状黒鉛の
添加量(電極中の含有量)とこれらの正極を用いた電池
の充放電サイクル試験での初期容量および100サイク
ルにおける容量維持率を示す。
The positive electrode mixture and battery construction method in this example were the same as in Example 2. (Table 3) shows the amount of fibrous graphite added (content in the electrode), the initial capacity in a charge/discharge cycle test of batteries using these positive electrodes, and the capacity retention rate in 100 cycles.

【0035】[0035]

【表3】[Table 3]

【0036】結果から正極への繊維状黒鉛の添加量が0
.5wt%より少ない場合には初期放電容量が小さく、
充放電に伴う容量維持率も低い。一方、繊維状黒鉛の添
加量が20wt%より大きな場合には充放電に伴う容量
維持率は高いが初期放電容量が小さいものとなる。
From the results, the amount of fibrous graphite added to the positive electrode is 0.
.. If it is less than 5wt%, the initial discharge capacity is small;
The capacity retention rate associated with charging and discharging is also low. On the other hand, if the amount of fibrous graphite added is greater than 20 wt%, the capacity retention rate during charging and discharging will be high, but the initial discharge capacity will be small.

【0037】したがって、正極への繊維状黒鉛の添加量
は、0.5〜20wt%の範囲が望ましい。
[0037] Therefore, the amount of fibrous graphite added to the positive electrode is preferably in the range of 0.5 to 20 wt%.

【0038】(実施例4)さらに、繊維状黒鉛の平均繊
維径に対する平均繊維長の比(アスペクト比)について
詳しく検討した。検討したアスペクト比は5,10,2
0,50,75,150,200,300,500,6
00,1000の11種類とした。
(Example 4) Furthermore, the ratio of the average fiber length to the average fiber diameter (aspect ratio) of fibrous graphite was studied in detail. The aspect ratios considered were 5, 10, and 2.
0, 50, 75, 150, 200, 300, 500, 6
There were 11 types of 00,1000.

【0039】正極活物質としては、LiCoO2を用い
た。正極中への繊維状黒鉛の添加量は2.0重量%とし
て構成したものについて説明する。
[0039] LiCoO2 was used as the positive electrode active material. In the following description, the amount of fibrous graphite added to the positive electrode is 2.0% by weight.

【0040】本実施例での正極合剤および電池構成方法
は実施例1と同様に行なった。(表4)に繊維状黒鉛の
アスペクト比とこれらの正極を用いた電池の充放電サイ
クル試験での初期容量および100サイクルにおける容
量維持率を示す。
The positive electrode mixture and battery construction method in this example were the same as in Example 1. (Table 4) shows the aspect ratio of fibrous graphite, the initial capacity in a charge/discharge cycle test, and the capacity retention rate in 100 cycles of batteries using these positive electrodes.

【0041】[0041]

【表4】[Table 4]

【0042】結果から繊維状黒鉛のアスペクト比が10
以上の場合に充放電に伴う容量維持率が高くなるが、ア
スペクト比が500を越えると初期放電容量が小さいも
のとなる。
From the results, the aspect ratio of fibrous graphite is 10.
In the above cases, the capacity retention rate accompanying charging and discharging becomes high, but when the aspect ratio exceeds 500, the initial discharge capacity becomes small.

【0043】したがって、正極へ添加する繊維状黒鉛の
アスペクト比は、10〜500の範囲が望ましい。
Therefore, the aspect ratio of the fibrous graphite added to the positive electrode is preferably in the range of 10 to 500.

【0044】また、アセチレンブラックなどの導電材料
に比べて繊維状黒鉛はその形状からも理解できるように
、かさ密度が小さく電極合剤の密度を低下させ、単位体
積当りのエネルギー密度が小さくなる。このため、正極
へ含有する繊維状黒鉛のアスペクト比は、20〜300
の範囲がさらに好ましい。
Furthermore, as can be understood from its shape, fibrous graphite has a smaller bulk density than conductive materials such as acetylene black, which lowers the density of the electrode mixture, resulting in a lower energy density per unit volume. Therefore, the aspect ratio of the fibrous graphite contained in the positive electrode is 20 to 300.
The range of is more preferable.

【0045】以上の実施例では正極活物質としてLiC
oO2およびLiMn2O4について説明したが、Mn
O2やTiS2を用いた場合にも同様の効果が認められ
ることを確認している。
In the above examples, LiC was used as the positive electrode active material.
Although oO2 and LiMn2O4 were explained, Mn
It has been confirmed that similar effects are observed when O2 or TiS2 is used.

【0046】これらの結果から、充放電時のリチウムイ
オンの挿入脱離反応による電極の膨張収縮が起こる正極
中に導電剤として繊維状黒鉛を添加することにより、電
極の膨張時においても充分な集電が得られる。
From these results, it was found that by adding fibrous graphite as a conductive agent to the positive electrode, where the electrode expands and contracts due to lithium ion insertion/desorption reactions during charging and discharging, sufficient collection can be achieved even when the electrode expands. You can get electricity.

【0047】その結果、比較的少ないサイクル数で充放
電容量が低下することがなくなり、安定した充放電サイ
クル特性を有する信頼性の高い非水電解液二次電池を得
ることができる。
As a result, the charge/discharge capacity does not decrease even with a relatively small number of cycles, and a highly reliable non-aqueous electrolyte secondary battery having stable charge/discharge cycle characteristics can be obtained.

【0048】なお、以上の実施例では、電解液として1
モル/lの過塩素酸リチウムを溶解したプロピレンカー
ボネート溶液を用いた場合の結果であるが、電解液とし
てこれ以外に、溶質として過塩素酸リチウム,6フッ化
燐酸リチウムやトリフロロメタンスルフォン酸リチウム
,ホウフッ化リチウム、溶媒としてプロピレンカーボネ
ート,エチレンカーボネートなどのカーボネート類、ガ
ンマーブチロラクトン,酢酸メチルなどのエステル類お
よびジメトキシエタンやテトラヒドロフランなどのエー
テル類を用いた電解液を用いた場合にも同様の効果が得
られることを確認した。
[0048] In the above embodiments, the electrolyte was 1
These are the results when using a propylene carbonate solution containing mol/l of lithium perchlorate, but in addition to this, lithium perchlorate, lithium hexafluorophosphate, and lithium trifluoromethanesulfonate may be used as electrolytes as solutes. Similar effects can be obtained using electrolytes containing lithium borofluoride, carbonates such as propylene carbonate and ethylene carbonate, esters such as gamma-butyrolactone and methyl acetate, and ethers such as dimethoxyethane and tetrahydrofuran. I confirmed that I can get it.

【0049】[0049]

【発明の効果】以上の実施例の説明で明らかなように本
発明の非水電解液二次電池によれば、充放電に対し可逆
性を有する正極と負極と、リチウム塩を含有する非水電
解液を主体とし、前記正極中に繊維状黒鉛を添加するこ
とにより、充放電サイクル特性が良好な非水電解液二次
電池を得ることができ、産業上の意義は大きい。
Effects of the Invention As is clear from the above description of the embodiments, the non-aqueous electrolyte secondary battery of the present invention has a positive electrode and a negative electrode that are reversible in charging and discharging, and a non-aqueous electrolyte containing a lithium salt. By using an electrolyte as a main component and adding fibrous graphite to the positive electrode, a non-aqueous electrolyte secondary battery with good charge/discharge cycle characteristics can be obtained, which has great industrial significance.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の非水電解液二次電池の縦断
面図
[Fig. 1] A vertical cross-sectional view of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  正極 2  ケース 3  セパレータ 4  負極 5  ガスケット 6  封口板 1 Positive electrode 2 Case 3 Separator 4 Negative electrode 5 Gasket 6 Sealing plate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】充放電に対し可逆性を有する正極と負極と
、リチウム塩を含有する非水電解液を主体とし、前記正
極中に繊維状黒鉛を含有する非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode that are reversible in charging and discharging, and a non-aqueous electrolyte containing a lithium salt, the positive electrode containing fibrous graphite.
【請求項2】繊維状黒鉛の平均繊維径に対する平均繊維
長の比が10〜500である請求項1記載の非水電解液
二次電池。
2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the ratio of the average fiber length to the average fiber diameter of the fibrous graphite is 10 to 500.
【請求項3】正極中の繊維状黒鉛の含有量が0.5〜2
0重量%である請求項1記載の非水電解液二次電池。
Claim 3: The content of fibrous graphite in the positive electrode is 0.5 to 2.
The non-aqueous electrolyte secondary battery according to claim 1, wherein the content is 0% by weight.
JP3054526A 1991-03-19 1991-03-19 Nonaqueous electrolyte secondary battery Pending JPH04289658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3054526A JPH04289658A (en) 1991-03-19 1991-03-19 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3054526A JPH04289658A (en) 1991-03-19 1991-03-19 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH04289658A true JPH04289658A (en) 1992-10-14

Family

ID=12973107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3054526A Pending JPH04289658A (en) 1991-03-19 1991-03-19 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH04289658A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856898A3 (en) * 1997-02-04 1999-06-30 Mitsubishi Denki Kabushiki Kaisha Electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2002507313A (en) * 1997-06-27 2002-03-05 エルジー・ケミカル・リミテッド Lithium ion secondary battery and method of manufacturing the same
US6858349B1 (en) 2000-09-07 2005-02-22 The Gillette Company Battery cathode
JP2010114042A (en) * 2008-11-10 2010-05-20 Nec Corp Secondary battery, and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358763A (en) * 1986-08-28 1988-03-14 Nikkiso Co Ltd Graphite fiber-lithium secondary battery
JPS64645A (en) * 1987-06-23 1989-01-05 Yazaki Corp Nonaqueous electrolyte secondary battery
JPH01143146A (en) * 1987-11-27 1989-06-05 Matsushita Electric Ind Co Ltd Cell using manganese dioxide as active material
JPH0294363A (en) * 1988-09-30 1990-04-05 Furukawa Battery Co Ltd:The Positive electrode for nonaqueous electrolyte secondary battery
JPH02262243A (en) * 1989-03-31 1990-10-25 Matsushita Electric Ind Co Ltd Positive electrode for lithium secondary battery and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358763A (en) * 1986-08-28 1988-03-14 Nikkiso Co Ltd Graphite fiber-lithium secondary battery
JPS64645A (en) * 1987-06-23 1989-01-05 Yazaki Corp Nonaqueous electrolyte secondary battery
JPH01143146A (en) * 1987-11-27 1989-06-05 Matsushita Electric Ind Co Ltd Cell using manganese dioxide as active material
JPH0294363A (en) * 1988-09-30 1990-04-05 Furukawa Battery Co Ltd:The Positive electrode for nonaqueous electrolyte secondary battery
JPH02262243A (en) * 1989-03-31 1990-10-25 Matsushita Electric Ind Co Ltd Positive electrode for lithium secondary battery and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856898A3 (en) * 1997-02-04 1999-06-30 Mitsubishi Denki Kabushiki Kaisha Electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2002507313A (en) * 1997-06-27 2002-03-05 エルジー・ケミカル・リミテッド Lithium ion secondary battery and method of manufacturing the same
US6858349B1 (en) 2000-09-07 2005-02-22 The Gillette Company Battery cathode
JP2010114042A (en) * 2008-11-10 2010-05-20 Nec Corp Secondary battery, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Yamaura et al. High voltage, rechargeable lithium batteries using newly-developed carbon for negative electrode material
JPH10255807A (en) Lithium ion secondary battery
JP2002025611A (en) Nonaqueous electrolyte secondary battery
JPH07335261A (en) Lithium secondary battery
JPH06302320A (en) Nonaqueous electrolyte secondary battery
JP2965450B2 (en) Electrodes for non-aqueous electrolyte secondary batteries
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JPH04355057A (en) Nonaqueous electrolyte secondary battery
US20220052336A1 (en) Cathode active material for lithium secondary battery, and lithium secondary battery comprising same
JP3480764B2 (en) Non-aqueous electrolyte secondary battery
JPH04289658A (en) Nonaqueous electrolyte secondary battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JP2839627B2 (en) Rechargeable battery
JPH04355056A (en) Nonaqueous electrolyte secondary battery
JPH1197062A (en) Organic electrolyte secondary battery
CN112467218A (en) Lithium metal battery based on copper nitrate electrolyte additive
JPH08124597A (en) Solid electrolytic secondary cell
JPH10106546A (en) Manufacture of electrode for battery
JP2701586B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JPH04282561A (en) Nonaqueous electrolyte secondary battery
JPH08241733A (en) Lithium secondary battery
KR102054266B1 (en) Active material separated type lithium-sulfur battery
JP2898056B2 (en) Rechargeable battery
JP3066086B2 (en) Non-aqueous secondary battery
JPH08190933A (en) Secondary battery having nonaqueous solvent electrolyte