JPH04322957A - Internal spherical surface honing method - Google Patents

Internal spherical surface honing method

Info

Publication number
JPH04322957A
JPH04322957A JP17942991A JP17942991A JPH04322957A JP H04322957 A JPH04322957 A JP H04322957A JP 17942991 A JP17942991 A JP 17942991A JP 17942991 A JP17942991 A JP 17942991A JP H04322957 A JPH04322957 A JP H04322957A
Authority
JP
Japan
Prior art keywords
grindstone
workpiece
inner sphere
center
spherical surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17942991A
Other languages
Japanese (ja)
Inventor
Terutoshi Yomo
四方 照敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP17942991A priority Critical patent/JPH04322957A/en
Publication of JPH04322957A publication Critical patent/JPH04322957A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To embody excellent sphericity and surface roughness in a job for honing an internal spherical surface. CONSTITUTION:According to this honing method, a ringlike grinding wheel 1 is used. An axis passing through the wheel center and extending in the longitudinal direction of a wheel spindle stock 8 serves as a turning axis, and the grinding wheel 1 is rotated around it. Along with this rotation, with internal ball center 7 being a base point, the wheel spindle stock 8 is rocked. Simultaneously with the axis passing through the internal ball center 7 from an internal ball apex 2 being a turning axis, a workpiece 6 is turned for grinding.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、内球面の真球度及び表
面粗度を高めるホーニング加工方法に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a honing method for increasing the sphericity and surface roughness of an inner spherical surface.

【0002】0002

【従来の技術】従来より、図4(B)に示すような棒状
の砥石を用いた内球面のホーニング加工方法が提案され
ている。この加工方法を図4(A)を用いて説明する。 同図において21は棒状の砥石で、22はこの砥石を固
定した砥石台である。砥石21はその中心を通り、砥石
台22の長手方向に及ぶ軸を回転軸として回転すること
ができる。一方、加工物23は、半球状の凹部が形成さ
れたもので、内球頂点24から内球中心25を通る軸を
回転軸として回転することができる。そして、内球面の
加工は、前記砥石を加工物の内球面に押し当て、砥石を
回転させるとともに加工物も回転させることによって行
なう。
2. Description of the Related Art Conventionally, a method of honing an inner spherical surface using a rod-shaped grindstone as shown in FIG. 4(B) has been proposed. This processing method will be explained using FIG. 4(A). In the figure, 21 is a bar-shaped whetstone, and 22 is a whetstone stand to which this whetstone is fixed. The whetstone 21 can rotate about an axis that passes through its center and extends in the longitudinal direction of the whetstone head 22 as a rotation axis. On the other hand, the workpiece 23 has a hemispherical recess formed therein, and can rotate about an axis passing from the apex 24 of the inner sphere to the center 25 of the inner sphere. Machining of the inner spherical surface is carried out by pressing the grindstone against the inner spherical surface of the workpiece and rotating the grindstone as well as the workpiece.

【0003】0003

【発明が解決しようとする課題】しかし、従来の棒状砥
石では、砥石の摩耗に伴い内球面との接触面積が増え、
図5に示すようにA点とB点、C点とD点では、各々加
工物の回転軸からの距離及び砥石の回転軸からの距離が
異なるため、周速の違いにより研削量に差が生じる。こ
の差は真球度の誤差として現われ、特に加工物内球の径
が大きい場合に顕著に表われるという問題点があった。
[Problems to be Solved by the Invention] However, with conventional rod-shaped grindstones, the contact area with the inner spherical surface increases as the grindstone wears.
As shown in Figure 5, since the distances from the rotation axis of the workpiece and the distance from the grindstone rotation axis are different between points A and B, and points C and D, there is a difference in the amount of grinding due to the difference in peripheral speed. arise. This difference appears as an error in sphericity, and is especially noticeable when the diameter of the inner sphere of the workpiece is large.

【0004】0004

【課題を解決するための手段】従って、本発明は上記課
題を解決するためになされたもので、リング状の砥石を
用い、砥石の回転、揺動、加工物の回転の三次元運動に
より、高い真球度、表面粗度を求めることができるホー
ニング加工方法を提供するものである。
[Means for Solving the Problems] Therefore, the present invention has been made to solve the above problems, and uses a ring-shaped grindstone and uses three-dimensional movement of rotation, rocking, and rotation of the workpiece. The present invention provides a honing method that can obtain high sphericity and surface roughness.

【0005】即ち、加工物の内球頂点から内球端部に及
ぶ長さを外径とするリング状の砥石を、加工物の内球面
に押し当て、前記砥石に、この砥石の研削面と垂直でか
つ砥石の中心及び内球中心を通る軸を回転軸として回転
を与えると共に、前記砥石の回転軸に内球中心を基点と
した若干の揺動を与え、同時に加工物に内球頂点から内
球中心を通る軸を回転軸として回転を与えつつ研削を行
なうことを特徴としている。
That is, a ring-shaped grindstone whose outer diameter is the length extending from the apex of the inner sphere to the end of the inner sphere of the workpiece is pressed against the inner spherical surface of the workpiece, and the grinding surface of the grindstone and the grinding surface of the grindstone are pressed against the inner spherical surface of the workpiece. Rotation is applied about an axis that is vertical and passes through the center of the grindstone and the center of the inner sphere, and a slight swing is applied to the rotation axis of the grindstone with the center of the inner sphere as a starting point, and at the same time, the workpiece is rotated from the apex of the inner sphere. The feature is that grinding is performed while applying rotation using an axis passing through the center of the inner sphere as the rotation axis.

【0006】図1を用いて本発明の基本原理を説明する
。同図において1はリング状の砥石で、その直径は加工
物内球頂点2から内球端部3に及ぶ長さに形成されてい
る。この砥石1は、その研削面4と垂直で、砥石の中心
を通る軸5を回転軸として回転することができる。 又、図示のごとく、砥石1をその外周縁が加工物6の内
球頂点2及び内球端部3に接するよう押し当てた場合、
内球中心7は砥石1の回転軸上に位置し、軸5(これと
一体の砥石1も)は、内球中心7を基点として若干揺動
(例えば上下、左右)することができる。一方、加工物
6は半球状の凹部が形成されたもので、内球頂点2から
内球中心7を通る軸を回転軸として回転できる。そして
、砥石1を内球面に押し当てつつ砥石1及び加工物6を
回転させ、同時に砥石1を揺動させることによって研削
を行なうのである。
The basic principle of the present invention will be explained using FIG. In the figure, reference numeral 1 denotes a ring-shaped grindstone, and its diameter is formed to have a length extending from the apex 2 of the inner sphere of the workpiece to the end 3 of the inner sphere. This grindstone 1 can rotate about an axis 5 that is perpendicular to its grinding surface 4 and passes through the center of the grindstone. Further, as shown in the figure, when the grindstone 1 is pressed so that its outer peripheral edge touches the inner sphere apex 2 and the inner sphere end 3 of the workpiece 6,
The center 7 of the inner sphere is located on the rotation axis of the grindstone 1, and the shaft 5 (and the grindstone 1 integrated therewith) can swing slightly (for example, up and down, left and right) about the center 7 of the inner sphere. On the other hand, the workpiece 6 has a hemispherical recess formed therein, and can be rotated about an axis passing from the apex 2 of the inner sphere to the center 7 of the inner sphere. Then, grinding is performed by rotating the grindstone 1 and the workpiece 6 while pressing the grindstone 1 against the inner spherical surface, and simultaneously swinging the grindstone 1.

【0007】[0007]

【作用】上記の加工において、同図は断面を示している
ため、内球頂点2と内球端部3しか砥石が接していない
ように見えるが、実際は砥石自体がリング状であるため
その外周縁全体が内球面と接している。このため、加工
物6の回転と砥石1の回転のみで内球面全体を加工する
ことが可能である。ただ、内球頂点2のみは加工物6の
回転軸上に位置するため、そこが回転の中心になり、十
分な研削ができない。そこで、砥石1を内球中心7を基
点として、例えば上下に若干揺動させれば内球頂点2附
近も正確な加工を行なうことができる。又、砥石1の揺
動は、砥石の自生作用促進と目ずまり防止及びスラッジ
処理として作用する。
[Operation] In the above processing, since the figure shows a cross section, it appears that only the inner sphere apex 2 and the inner sphere end 3 are in contact with the grindstone, but in reality the grindstone itself is ring-shaped, so the outside The entire periphery is in contact with the inner spherical surface. Therefore, it is possible to process the entire inner spherical surface only by rotating the workpiece 6 and rotating the grindstone 1. However, since only the inner sphere apex 2 is located on the rotation axis of the workpiece 6, this becomes the center of rotation, and sufficient grinding cannot be achieved. Therefore, if the grindstone 1 is slightly swung up and down, for example, with the center 7 of the inner sphere as a reference point, accurate machining can be performed even around the apex 2 of the inner sphere. Further, the rocking of the grindstone 1 acts to promote the self-sharpening action of the grindstone, prevent clogging, and dispose of sludge.

【0008】ここで用いるリング状の砥石1は厚さが薄
いもの程高い精度が出せる。砥石の厚さとは、リング外
周からリング内周までの距離をいうが、これが薄い程高
精度が出る理由を図5との比較により説明する。既に述
ベたように、図5における棒状の砥石では、砥石の摩耗
に伴い内球面との接触面積が増え、周速の違いにより真
球度の誤差が大きくなる。しかし、本発明ではリング状
の砥石を用いたことにより、砥石が摩耗した場合でも砥
石の厚さ以上に内球面と接触する幅が広がることがない
。従って、砥石の厚さをできるだけ薄くすれば、図1に
示すように内球頂点2、内球中心7、内球端部3で囲ま
れる二等辺三角形を維持しながら研削を行なうことが可
能となり、周速の違いによる研削量の違いを最小限に押
えて真球度を高めることができるのである。さらに、砥
石の回転と揺動により周速及び砥石と内球面との接触面
積を調整すればより真球度を高めることができる。 尚、薄い砥石程好結果が得られるといっても、製作でき
る砥石の厚さには限度があり、又研削圧力に耐える剛性
も必要である。このことをふまえて種々の試験を行なっ
た結果、厚さ1mm程度が限界であった。そして、表面
粗度は仕上砥石の粒度を選択することで要求される加工
精度を得ることができる。
[0008] The thinner the ring-shaped grindstone 1 used here is, the higher the accuracy can be achieved. The thickness of the grindstone refers to the distance from the outer circumference of the ring to the inner circumference of the ring, and the reason why the thinner the thickness is, the higher the accuracy is will be explained by comparing with FIG. 5. As already mentioned, in the rod-shaped grindstone shown in FIG. 5, the contact area with the inner spherical surface increases as the grindstone wears, and the error in sphericity increases due to the difference in circumferential speed. However, in the present invention, by using a ring-shaped grindstone, even if the grindstone is worn out, the width of contact with the inner spherical surface does not increase beyond the thickness of the grindstone. Therefore, if the thickness of the grindstone is made as thin as possible, it becomes possible to perform grinding while maintaining the isosceles triangle surrounded by the inner sphere apex 2, the inner sphere center 7, and the inner sphere end 3, as shown in Figure 1. This makes it possible to minimize differences in the amount of grinding due to differences in circumferential speed and improve sphericity. Further, by adjusting the circumferential speed and the contact area between the grindstone and the inner spherical surface by rotating and rocking the grindstone, the sphericity can be further improved. Although it is said that the thinner the grindstone, the better the result, there is a limit to the thickness of the grindstone that can be manufactured, and it also needs to be rigid enough to withstand grinding pressure. Based on this, various tests were conducted, and the limit was found to be approximately 1 mm in thickness. The required surface roughness can be obtained by selecting the grain size of the finishing whetstone.

【0009】[0009]

【実施例】次に、図2及び図3に示す実施例に基づいて
本発明方法を説明する。
EXAMPLE Next, the method of the present invention will be explained based on the example shown in FIGS. 2 and 3.

【0010】0010

【実施例1】まず、図2に示す実施例から説明する。同
図(A)は半球状で内球端部より加工物外縁9が突出し
たものを加工する場合を示している。1は砥石で同図(
B)に示すようなリング状に形成され、その外径は内球
頂点2から内球端部3に及ぶ長さである。8は砥石台で
前記砥石を一端に固定した棒状のもので、加工物外縁9
と接触しないよう中間部が細く形成されている。砥石台
8の他端は、駆動系(図示していない)へつながり、砥
石台の長手方向に及び砥石中心を通る軸を回転軸として
回転することができる。又、砥石の外周縁が内球頂点2
及び内球端部3に接するよう、砥石1を内球面に押し当
てた場合、内球中心7を基点として砥石台8を揺動させ
ることができる。一方、加工物6の方も内球頂点2から
内球中心7を通る軸を回転軸として回転させる。そして
、砥石の回転、揺動、加工物の回転の3つの運動を同時
に行い加工を行なう。その結果、真球度で2μm以下、
表面粗度0.8S以下という高い精度が得られた。
[Embodiment 1] First, the embodiment shown in FIG. 2 will be explained. Figure (A) shows the case of machining a hemispherical workpiece whose outer edge 9 protrudes from the inner spherical end. 1 is the whetstone in the same figure (
It is formed into a ring shape as shown in B), and its outer diameter is the length extending from the apex 2 of the inner sphere to the end 3 of the inner sphere. Reference numeral 8 denotes a whetstone head, which is a rod-shaped thing with the whetstone fixed to one end, and is attached to the outer edge 9 of the workpiece.
The middle part is formed thin so as not to come into contact with the The other end of the whetstone head 8 is connected to a drive system (not shown) and can rotate in the longitudinal direction of the whetstone head about an axis passing through the center of the whetstone. Also, the outer periphery of the whetstone is at the apex 2 of the inner sphere.
When the grindstone 1 is pressed against the inner spherical surface so as to be in contact with the inner spherical end 3, the grindstone head 8 can be swung about the inner spherical center 7 as a base point. On the other hand, the workpiece 6 is also rotated about an axis passing from the apex 2 of the inner sphere to the center 7 of the inner sphere. Machining is then performed by simultaneously performing three movements: rotation of the grindstone, swinging, and rotation of the workpiece. As a result, the sphericity was less than 2μm,
High accuracy with a surface roughness of 0.8S or less was obtained.

【0011】[0011]

【実施例2】次に、図3に示すピストンのシリンダー1
0の底部加工の場合について説明する。砥石1は前記実
施例と同様のもので、その外径が内球頂点2から内球端
部3に及ぶ長さに設計してある点も同様である。このリ
ング状の砥石1が砥石台8の一端に固定され、他端は傘
歯車11が設けられている。そしてこの砥石台8は前記
傘歯車11と咬合する傘歯車12を先端に備える回転棒
13と連結され、砥石中心を通り砥石の研削面と垂直方
向の軸を回転軸として回転できるよう構成されている。 又、図では簡略化して示してあるが、回転棒13から砥
石台8への伝達系は一体として構成され、砥石1を内球
面に押し当てた状態で、シリンダー外部から回転棒13
を操作することにより、内球中心7を基点として砥石1
を揺動することができる。回転棒13の操作は、シリン
ダー10と回転棒13の間隙でしか行なうことができな
いが、この程度のわずかな動きでも、砥石1を揺動させ
て内球頂点2を加工すると共に、研削くずを排除するに
は十分である。さらに、実施例1と同様に、内球頂点2
から内球中心7を通る軸を回転軸として加工物を回転さ
せることができる。そして、前記実施例でのべたように
、砥石の回転、揺動、加工物の回転を行うことによって
、シリンダー底部のように加工面が深い穴の底にある場
合でも、精度の高い加工を行なうことができる。
[Example 2] Next, the cylinder 1 of the piston shown in FIG.
The case of bottom processing of 0 will be explained. The grindstone 1 is similar to that of the embodiment described above, and the outer diameter thereof is designed to have a length extending from the apex 2 of the inner sphere to the end 3 of the inner sphere. This ring-shaped grindstone 1 is fixed to one end of a grindstone stand 8, and a bevel gear 11 is provided at the other end. This grindstone head 8 is connected to a rotating rod 13 having a bevel gear 12 at its tip that meshes with the bevel gear 11, and is configured to rotate about an axis that passes through the center of the grindstone and is perpendicular to the grinding surface of the grindstone. There is. Also, although shown in a simplified manner in the figure, the transmission system from the rotating rod 13 to the grinding wheel head 8 is constructed as one unit, and with the grinding wheel 1 pressed against the inner spherical surface, the rotating rod 13 is transferred from the outside of the cylinder.
By operating the grinding wheel 1 with the inner sphere center 7 as the base point.
can be swung. The rotating rod 13 can only be operated in the gap between the cylinder 10 and the rotating rod 13, but even a slight movement like this will swing the grinding wheel 1 to process the inner sphere apex 2 and remove the grinding waste. Enough to eliminate it. Furthermore, as in Example 1, the inner sphere apex 2
The workpiece can be rotated using the axis passing through the center 7 of the inner sphere as the rotation axis. As mentioned in the above embodiment, by rotating and rocking the grindstone and rotating the workpiece, highly accurate machining can be performed even when the machining surface is at the bottom of a deep hole, such as the bottom of a cylinder. be able to.

【0012】0012

【発明の効果】以上説明したように、リング状の砥石を
用い、砥石の回転、揺動及び加工物の回転の三次元運動
を行なうことによって周速の差より生じる真球度の誤差
を最小限に押え、精度の高いホーニング加工を行なうこ
とができる。従ってベアリングの軸受け等、内球面の加
工に利用すれば有効である。
[Effects of the Invention] As explained above, by using a ring-shaped grindstone and performing three-dimensional motion of rotation and swing of the grindstone and rotation of the workpiece, errors in sphericity caused by differences in circumferential speed can be minimized. Highly accurate honing can be performed by pressing to the limit. Therefore, it is effective when used for processing inner spherical surfaces such as bearings.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明方法の基本原理を示す説明図。FIG. 1 is an explanatory diagram showing the basic principle of the method of the present invention.

【図2】本発明方法により略半球状の加工物内球面を加
工する場合の説明図で、(A)は全体構成図、(B)は
ここで用いた砥石の平面図である。
FIG. 2 is an explanatory diagram of the case where the inner spherical surface of a substantially hemispherical workpiece is machined by the method of the present invention, in which (A) is an overall configuration diagram and (B) is a plan view of the grindstone used here.

【図3】本発明方法によりシリンダー底部の加工を行う
場合の説明図である。
FIG. 3 is an explanatory diagram when the bottom of the cylinder is processed by the method of the present invention.

【図4】従来方法の説明図で、(A)は全体構成図、(
B)はここで用いた砥石の平面図である。
FIG. 4 is an explanatory diagram of the conventional method, where (A) is an overall configuration diagram;
B) is a plan view of the grindstone used here.

【図5】従来方法において砥石が摩耗した場合を示す説
明図である。
FIG. 5 is an explanatory diagram showing a case where a grindstone is worn out in a conventional method.

【符号の説明】[Explanation of symbols]

1,21  砥石    2,24  内球頂点   
 3  内球端部    4  研削面 5  軸    6,23  加工物    7,25
  内球中心    8,22  砥石台 9  加工物外縁    10  シリンダー    
11,12  傘歯車    13  回転棒
1,21 Grindstone 2,24 Inner sphere apex
3 Inner sphere end 4 Grinding surface 5 Shaft 6, 23 Workpiece 7, 25
Center of inner sphere 8, 22 Grinding wheel head 9 Outer edge of workpiece 10 Cylinder
11, 12 Bevel gear 13 Rotating rod

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  加工物の内球頂点から内球端部に及ぶ
長さを外径とするリング状の砥石を、加工物の内球面に
押し当て、前記砥石に、この砥石の研削面と垂直でかつ
砥石の中心及び内球中心を通る軸を回転軸として回転を
与えると共に、前記砥石の回転軸に内球中心を基点とし
た若干の揺動を与え、同時に加工物に内球頂点から内球
中心を通る軸を回転軸として回転を与えつつ研削を行な
うことを特徴とする内球面のホーニング加工方法。
1. A ring-shaped grindstone whose outer diameter is the length extending from the apex of the inner sphere to the end of the inner sphere of the workpiece is pressed against the inner spherical surface of the workpiece, and the grinding surface of the grindstone and the grinding surface of the grindstone are pressed against the inner sphere of the workpiece. Rotation is applied about an axis that is vertical and passes through the center of the grindstone and the center of the inner sphere, and a slight swing is applied to the rotation axis of the grindstone with the center of the inner sphere as a starting point, and at the same time, the workpiece is rotated from the apex of the inner sphere. A method for honing an inner spherical surface, characterized by performing grinding while applying rotation about an axis passing through the center of the inner sphere.
JP17942991A 1991-04-17 1991-04-17 Internal spherical surface honing method Pending JPH04322957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17942991A JPH04322957A (en) 1991-04-17 1991-04-17 Internal spherical surface honing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17942991A JPH04322957A (en) 1991-04-17 1991-04-17 Internal spherical surface honing method

Publications (1)

Publication Number Publication Date
JPH04322957A true JPH04322957A (en) 1992-11-12

Family

ID=16065707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17942991A Pending JPH04322957A (en) 1991-04-17 1991-04-17 Internal spherical surface honing method

Country Status (1)

Country Link
JP (1) JPH04322957A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101894A1 (en) * 2008-02-14 2009-08-20 Sanden Corporation Scroll type fluid machine, and processing method and processing equipment therefor
JP2009216079A (en) * 2008-02-14 2009-09-24 Sanden Corp Scroll type fluid machine, processing method and processing device therefor
EP2138270A1 (en) * 2008-06-27 2009-12-30 Supfina Grieshaber GmbH & Co. KG Device for surface working of ball coverings for a workpiece with a calotte
JP2016083736A (en) * 2014-10-28 2016-05-19 日立建機株式会社 Spherical surface grinding apparatus and spherical surface grinding method using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840259A (en) * 1981-09-01 1983-03-09 Olympus Optical Co Ltd Spherical face slider for lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840259A (en) * 1981-09-01 1983-03-09 Olympus Optical Co Ltd Spherical face slider for lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101894A1 (en) * 2008-02-14 2009-08-20 Sanden Corporation Scroll type fluid machine, and processing method and processing equipment therefor
JP2009216079A (en) * 2008-02-14 2009-09-24 Sanden Corp Scroll type fluid machine, processing method and processing device therefor
EP2138270A1 (en) * 2008-06-27 2009-12-30 Supfina Grieshaber GmbH & Co. KG Device for surface working of ball coverings for a workpiece with a calotte
JP2016083736A (en) * 2014-10-28 2016-05-19 日立建機株式会社 Spherical surface grinding apparatus and spherical surface grinding method using the same

Similar Documents

Publication Publication Date Title
EP0305471B1 (en) Rotary dressing roller and method and apparatus for dressing cup-shaped grinding wheels
JPH0493169A (en) Polishing spindle
JPH04322957A (en) Internal spherical surface honing method
US3438156A (en) Method for form dressing a wheel and for grinding spherical surfaces therewith
JP4284792B2 (en) Super finishing method of ball bearing raceway surface
JP2514539B2 (en) Round spherical honing method
JP2001062633A (en) Curved surface machining method and device
JP2001054846A (en) Spherical surface working method and device thereof
JP2008142799A (en) Working method for diffraction groove
RU2183551C2 (en) Combination grinding wheel
JPS58211854A (en) Chamfering method for rotary valve
JP4519618B2 (en) Grinding wheel molding method and molding apparatus
JPH04240071A (en) Method and device for polishing ring-shaped grinder element
JPH0475878A (en) Polishing device
KR200220691Y1 (en) A grinder for grinding surface of a sphere
JPH0448931Y2 (en)
JP2007062000A (en) Grinding wheel and grinding method
JP2002154040A (en) Rotating tool
JP2600506Y2 (en) Grinding wheel for super finishing of bearing rolling groove
JP4136283B2 (en) Polishing equipment
RU2122933C1 (en) Tool for dressing grinding wheels
JP3442329B2 (en) Spherical processing machine for shaft with spherical surface
JPS6310917Y2 (en)
SU443750A1 (en) Method of grinding rotating surfaces with mechanical grinding wheel grinding
JP2589681Y2 (en) Wheel tool for plateau surface processing