JP2007062000A - Grinding wheel and grinding method - Google Patents

Grinding wheel and grinding method Download PDF

Info

Publication number
JP2007062000A
JP2007062000A JP2005255263A JP2005255263A JP2007062000A JP 2007062000 A JP2007062000 A JP 2007062000A JP 2005255263 A JP2005255263 A JP 2005255263A JP 2005255263 A JP2005255263 A JP 2005255263A JP 2007062000 A JP2007062000 A JP 2007062000A
Authority
JP
Japan
Prior art keywords
grinding
spherical
grinding wheel
workpiece
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005255263A
Other languages
Japanese (ja)
Inventor
Kazuki Morita
和樹 森田
Fumitoshi Kobayashi
史敏 小林
Hitoshi Omori
整 大森
Yutaka Yamagata
豊 山形
Imin Hayashi
偉民 林
Toru Suzuki
亨 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
RIKEN Institute of Physical and Chemical Research
Original Assignee
Nippon Sheet Glass Co Ltd
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd, RIKEN Institute of Physical and Chemical Research filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2005255263A priority Critical patent/JP2007062000A/en
Publication of JP2007062000A publication Critical patent/JP2007062000A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grinding wheel and a grinding method, by which grinding wheel and grinding method, defects of a machined surface can be suppressed. <P>SOLUTION: A spherical-zone grinding wheel 10 has a cylindrical gripping portion 11 at its base end portion. A base portion 12 and a spherical-zone portion 13 are formed on the tip end side of the gripping portion 11. The spherical-zone portion 13 has such a shape (a spherical-zone shape) that a part of the tip end portion (a head portion) of a hemisphere formed on the base portion 12 has been cut off. The plane 13b on the tip of the spherical-zone portion 13 is perpendicular to the axis C3 of the grinding wheel, and the center P1 of curvature of the spherical-zone portion 13 at its base end surface is located on the axis C3 of the grinding wheel. The spherical-zone grinding wheel 10 is set such that the most projecting point P2 of the spherical-zone portion 13 becomes the most projecting point in the Z direction when the spherical-zone grinding wheel 10 has been fixed to a wheel spindle and has been turned about a rotation axis C2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、研削砥石及び研削加工方法に関する。   The present invention relates to a grinding wheel and a grinding method.

近年、非球面光学レンズはレンズ成形金型を用いて成形され、各社で量産されている。ガラス成形に用いるレンズ成形金型は主に精密研削加工で所望する形状精度と表面粗さに加工される。   In recent years, aspheric optical lenses are molded using a lens mold and are mass-produced by various companies. Lens molding dies used for glass molding are processed to desired shape accuracy and surface roughness mainly by precision grinding.

レンズ形成金型においては、光ディスク装置の大容量化、高性能化に伴って非球面レンズのNA(開口率)が高くなってきている。それに伴いレンズ成形金型の窪みは深くなってきている。また、光ディスク装置の小型化により、レンズ成形金型外形は小さくなってきている。そのため、曲率半径の小さく傾斜角度が大きい、凹部の非球面形状を精度よく加工することが望まれている。   In lens forming molds, the NA (aperture ratio) of aspherical lenses is increasing with the increase in capacity and performance of optical disk devices. Along with this, the depression of the lens mold is getting deeper. In addition, the outer shape of the lens molding die is becoming smaller due to the miniaturization of the optical disk device. Therefore, it is desired to accurately process the aspherical shape of the concave portion having a small curvature radius and a large inclination angle.

そして、特許文献1において、成形型の光学面を研削加工する研削加工方法とその装置が開示されている。この特許文献1は、円柱状の硬脆材料を回転軸対称の非球面形状に研削加工するものであり、砥石の回転中心軸を加工物の回転中心軸に対して所定の角度だけ傾けることを特徴とした斜軸研削加工装置及び研削加工方法である。   And in patent document 1, the grinding method and apparatus which grind the optical surface of a shaping | molding die are disclosed. This patent document 1 grinds a cylindrical hard and brittle material into an aspherical shape symmetrical with respect to a rotational axis, and tilts the rotational center axis of a grindstone by a predetermined angle with respect to the rotational center axis of a workpiece. It is the featured oblique axis grinding apparatus and grinding method.

また、特許文献2では砥石先端形状を図7に示すように、球形状もしくは球形状の所定範囲だけを有する曲面形状の加工された回転砥石(以下、半球砥石という)2を用いることで加工プログラムを簡便にする方法が提案されている。さらに、特許文献3では、半球砥石2の回転中心軸を被加工物の回転中心軸に対する傾き角度を加工中に変化させることで砥石の作用面積を増加させて砥石摩耗を低減させる方法が提案されている。
特開平8−229792 特開2002−346893 特開2002−254280
Further, in Patent Document 2, as shown in FIG. 7, the grinding wheel tip shape is a spherical shape or a curved grinding wheel with a curved surface having only a predetermined range (hereinafter referred to as a hemispherical grinding stone) 2. A method for simplifying the above has been proposed. Further, Patent Document 3 proposes a method for reducing the grinding wheel wear by increasing the working area of the grinding wheel by changing the tilt angle of the rotational center axis of the hemispherical grinding wheel 2 with respect to the rotational center axis of the workpiece during machining. ing.
JP 8-229792 JP2002-346893 JP2002-254280

ところが、上記した従来技術においては以下のような問題点があった。
特許文献1においては、斜軸研削加工装置において、図7及び図8に示すような砥石先端部の形状が半球状の先端半球部2aを有する半球砥石2で凹形状の非球面レンズ金型6を研削加工する。この研削加工方法おいては、半球砥石2の先端半球部2aの曲率半径が被加工物(金型6)の非球面形状に干渉しない程度の大きさに設定するのは当然であるが、先端半球部2aの曲率半径が比較的大きい場合は前記被加工物(金型6)の加工面6aの中央部付近に円周状のキズが生じる場合がある。
However, the above-described prior art has the following problems.
In Patent Document 1, in an oblique axis grinding apparatus, an aspherical lens mold 6 having a concave shape with a hemispherical grindstone 2 having a hemispherical tip hemispherical portion 2a as shown in FIGS. To grind. In this grinding method, it is natural that the radius of curvature of the tip hemispherical portion 2a of the hemispherical grindstone 2 is set to a size that does not interfere with the aspherical shape of the workpiece (mold 6). When the radius of curvature of the hemispherical portion 2a is relatively large, a circumferential flaw may occur near the center of the processed surface 6a of the workpiece (mold 6).

円周状のキズの例を図9に示す。本例は回転中心軸に近い部分の曲率半径が500μm程度の非球面形状を、先端半球部2aの曲率半径が350μmの半球砥石2で加工した例であり、直径数十μmから20μmで深さ50nm程度のキズMが複数本発生している。   An example of a circumferential scratch is shown in FIG. In this example, an aspherical shape with a radius of curvature of about 500 μm at the portion near the rotation center axis is processed with a hemispherical grindstone 2 with a radius of curvature of the tip hemispherical portion 2 a of 350 μm. A plurality of scratches M of about 50 nm are generated.

加工初期にキズMが発生しない場合でも加工を重ねるに従って円周状のキズMが発生しやすくなる。
また、特許文献2においては、半球砥石2の曲率半径を小さくすることが効果的であることが確認されているが、砥石周速が小さくなり、加工条件に大きな制約が生じる。
Even when scratches M do not occur at the initial stage of machining, circumferential scratches M are more likely to occur as machining is repeated.
Moreover, in Patent Document 2, it has been confirmed that it is effective to reduce the radius of curvature of the hemispherical grindstone 2, but the peripheral speed of the grindstone is reduced, and processing conditions are greatly restricted.

さらに、特許文献3においては、半球砥石2の回転中心軸線C2の角度を変えて半球砥石2の作用範囲を増加させる手法にて上記問題を低減することが可能であるが、装置の可動部が多くなることにより、非球面精度が悪化すること、装置コストが増加することや加工プログラムが複雑になる問題がある。   Furthermore, in Patent Document 3, it is possible to reduce the above problem by changing the angle of the rotation center axis C2 of the hemispherical grindstone 2 to increase the operating range of the hemispherical grindstone 2, but the movable part of the apparatus As the number increases, the accuracy of the aspheric surface deteriorates, the apparatus cost increases, and the machining program becomes complicated.

この発明は上記問題点を解消するためになされたものであって、加工精度や、砥石寿命を犠牲にすることなく、かつ砥粒の分散状態に影響されることなく、加工面のキズを抑制する研削砥石及び研削加工方法を提供することにある。   The present invention has been made to solve the above-mentioned problems, and suppresses scratches on the machined surface without sacrificing machining accuracy, grinding wheel life, and without being affected by the dispersed state of the abrasive grains. An object of the present invention is to provide a grinding wheel and a grinding method.

請求項1の発明は、先端部に研削部を有した研削砥石において、前記研削部を球帯形状にした。
請求項2の発明は、回転軸対称形状を有する被加工物の一側面に対して、研削砥石の先端部に形成した研削部を当接させ、さらに前記研削砥石を回転させながら相対的に移動させることにより、被加工物を凹形状に加工する研削加工方法において、前記研削砥石の回転中心軸を前記被加工物の回転中心軸に対して傾けて回転させながら同研削砥石を相対的に移動させるとともに、前記研削部は前記研削砥石の回転軸を中心として環状に形成された球帯形状をなし、前記球帯形状の研削部の先端部に形成されるエッジが、前記被加工物の回転軸中心点を加工する。
According to the first aspect of the present invention, in the grinding wheel having a grinding part at the tip part, the grinding part has a spherical shape.
According to the second aspect of the present invention, a grinding part formed at the tip of a grinding wheel is brought into contact with one side surface of a workpiece having a rotationally symmetric shape, and the grinding wheel is further moved while rotating. In the grinding method for processing a workpiece into a concave shape, the grinding wheel is relatively moved while the rotation center axis of the grinding wheel is inclined and rotated with respect to the rotation center axis of the workpiece. In addition, the grinding portion has a spherical shape formed in an annular shape around the rotation axis of the grinding wheel, and an edge formed at a tip portion of the spherical grinding portion is a rotation of the workpiece. Machining the axis center point.

請求項3の発明は、請求項2に記載の研削加工方法において、前記球帯形状の研削部の高さは、その球帯形状の研削部の曲率中心が、前記球帯形状の研削部のエッジと前記被加工物の回転軸中心点との当接部より低い位置になる高さに形成した。   A third aspect of the present invention is the grinding method according to the second aspect, wherein the height of the spherically shaped grinding part is such that the center of curvature of the spherically shaped grinding part is that of the spherically shaped grinding part. It was formed at a height that is lower than the abutting portion between the edge and the rotational axis center point of the workpiece.

請求項4の発明は、請求項2又は3に記載の研削加工方法において、前記被加工物は、レンズ成形金型である。   A fourth aspect of the present invention is the grinding method according to the second or third aspect, wherein the workpiece is a lens molding die.

請求項1の発明によれば、研削部を球帯形状にしたことにより、金型中心部を研削部の先端部に形成されるエッジを使って研削するため、被加工物の加工面をキズ付けるといたことはなくなる。   According to the first aspect of the present invention, since the grinding part has a spherical shape, the center of the mold is ground using the edge formed at the tip of the grinding part. If you put it on, it will disappear.

請求項2の発明によれば、球帯形状をなした研削部の研削砥石の回転中心軸を被加工物の回転中心軸に対して傾けて回転させながら同研削砥石を相対的に移動させるとともに、球帯形状の研削部の先端部に形成されるエッジを被加工物の回転軸中心点に当接させるようにして被加工物を凹形状に加工した。   According to the second aspect of the present invention, the grinding wheel is relatively moved while the rotation center axis of the grinding wheel of the grinding part having the ball shape is inclined and rotated with respect to the rotation center axis of the workpiece. The workpiece was machined into a concave shape by bringing the edge formed at the tip of the spherical belt-shaped grinding portion into contact with the rotational axis center point of the workpiece.

従って、金型中央部を砥石エッジで加工するため、被加工物の加工面をキズ付けるといったことはなくなる。
請求項3の発明によれば、研削部と被加工物の加工面との干渉がより低減されるため、キズの発生がより抑制される。
Therefore, since the center portion of the mold is processed with the grindstone edge, the processing surface of the workpiece is not scratched.
According to invention of Claim 3, since interference with a grinding part and the processed surface of a workpiece is reduced more, generation | occurrence | production of a crack is suppressed more.

請求項4の発明によれば、キズのないレンズ成形金型が成形されるので、キズの少ない精度の高いレンズを成形することができる。   According to the fourth aspect of the present invention, since a lens molding die without scratches is molded, it is possible to mold a highly accurate lens with few scratches.

以下、本発明の具体化した実施形態を図面に従って説明する。
(第1実施形態)
まず、本発明の第1実施形態を図1〜図3に従って説明する。図1は本発明の研削砥石を示す図、図2は斜軸研削を行う研削加工装置の斜視図である。
Embodiments of the present invention will be described below with reference to the drawings.
(First embodiment)
First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a view showing a grinding wheel of the present invention, and FIG. 2 is a perspective view of a grinding apparatus for performing oblique axis grinding.

図2において、台盤31の上に設置された機台32にワークスピンドルSP1が回転可能に支持され、ワークスピンドルSP1は被加工物(金型6)を保持しワークスピンドルSP1の回転中心軸C1を中心に同被加工物(金型6)を回転させるようになっている。機台32には、ワークスピンドルSP1を回転させるための図示しないモータ、その他回転機構が内蔵されている。   In FIG. 2, a work spindle SP1 is rotatably supported on a machine base 32 installed on a base plate 31, and the work spindle SP1 holds a workpiece (mold 6) and rotates about the rotation center axis C1 of the work spindle SP1. The workpiece (die 6) is rotated around the center. The machine base 32 incorporates a motor (not shown) for rotating the work spindle SP1 and other rotation mechanisms.

また、台盤31上に、同台盤31に対してX方向及びZ方向に移動可能なXZテーブル33が設置されている。台盤31とXZテーブル33には、台盤31に対してXZテーブル33をX方向及びZ方向に移動させるための図示しないモータ、その他送り機構が内蔵されている。   An XZ table 33 that can move in the X direction and the Z direction with respect to the base plate 31 is installed on the base plate 31. The base 31 and the XZ table 33 incorporate a motor (not shown) and other feed mechanisms for moving the XZ table 33 in the X direction and the Z direction with respect to the base 31.

XZテーブル33には、同XZテーブル33に対してY方向に移動するYテーブル34が配置されている。XZテーブル33とYテーブル34には、XZテーブル33に対してYテーブル34をY方向に移動させるための図示しないモータ、その他送り機構が内蔵されている。   In the XZ table 33, a Y table 34 that moves in the Y direction with respect to the XZ table 33 is arranged. The XZ table 33 and the Y table 34 incorporate a motor (not shown) and other feed mechanisms for moving the Y table 34 in the Y direction with respect to the XZ table 33.

Yテーブル34の上に前記ワークスピンドルSP1に対向するように砥石スピンドルSP2が設置される。この砥石スピンドルSP2は、図3に示すように、その回転中心軸C2が前記ワークスピンドルSP1の回転中心軸C1に対して45度の傾斜角度θをもつように、Yテーブル34に設置されている。砥石スピンドルSP2は、ワークスピンドルSP1は保持された被加工物(金型6)を研削加工する球帯砥石10を保持している。そして、砥石スピンドルSP2は球帯砥石10を保持し砥石スピンドルSP2の回転中心軸C2を中心に同球帯砥石10を回転させるようになっている。   A grindstone spindle SP2 is installed on the Y table 34 so as to face the work spindle SP1. As shown in FIG. 3, the grinding wheel spindle SP2 is installed on the Y table 34 so that the rotation center axis C2 has an inclination angle θ of 45 degrees with respect to the rotation center axis C1 of the work spindle SP1. . The grindstone spindle SP2 holds a ball grinding wheel 10 for grinding the workpiece (die 6) held by the work spindle SP1. The grindstone spindle SP2 holds the ball band grindstone 10 and rotates the ball band grindstone 10 about the rotation center axis C2 of the grindstone spindle SP2.

球帯砥石10について、詳細に説明する。図1に示すように、球帯砥石10は基端部に円柱形状の咬着部11を有し、咬着部11の先端側に基部12、球帯部13が形成されている。球帯砥石10は、その咬着部11が砥石スピンドルSP2に保持されている。球帯部13は、本実施形態ではダイヤモンド砥石であって、その粒度が2000番、ボンド材がレジン、砥粒の集中度が75からなり、咬着部11の中心軸(砥石軸C3)に対して軸対称な形状をしている。   The ball grinding wheel 10 will be described in detail. As shown in FIG. 1, the ball grinding wheel 10 has a cylindrical biting portion 11 at the base end portion, and a base portion 12 and a ball band portion 13 are formed on the distal end side of the biting portion 11. The ball band grindstone 10 has its biting portion 11 held by the grindstone spindle SP2. In this embodiment, the ball belt portion 13 is a diamond grindstone, the particle size is 2000, the bond material is resin, and the concentration of abrasive grains is 75, and the central axis (grindstone axis C3) of the biting portion 11 is used. It has an axisymmetric shape.

球帯部13は、基部12に形成した半球体の先端部(頭部)の一部を切り落とした形状(球帯形状)であって、本実施形態では曲率半径475μmの面(球体面)13aを有する球帯である。   The spherical band 13 has a shape (spherical band shape) obtained by cutting off a part of the tip (head) of a hemisphere formed on the base 12, and in this embodiment, a surface (spherical surface) 13a having a curvature radius of 475 μm. It is a ball belt having

球帯部13の頂上の平面13bは、砥石軸C3に対して垂直で、球帯部13の基端部の基端面(平面13bと平行な仮想の面)の中心(曲率中心)P1は砥石軸C3上にある。球帯部13の高さ(球帯部13の仮想の面から球帯部13の頂上の平面13bまでの距離)hを336μmとした。そして、球帯砥石10は、当接部を構成する球帯部13の点(以下、最突出点という)P2(球体面13aと平面13bとの境界位置であって最も金型6側に位置した点)が球帯砥石10を砥石スピンドルSP2に取着して回転させたとき、Z方向で最も突出した点となるように設定されている。   The top plane 13b of the ball section 13 is perpendicular to the grindstone axis C3, and the center (curvature center) P1 of the base end surface (virtual plane parallel to the plane 13b) of the ball section 13 is the grindstone. On axis C3. The height (the distance from the virtual surface of the spherical zone 13 to the flat surface 13b on the top of the spherical zone 13) h of the spherical zone 13 was 336 μm. The ball grinding wheel 10 is a point (hereinafter referred to as the most protruding point) P2 (which is the boundary between the spherical surface 13a and the flat surface 13b) of the ball portion 13 constituting the contact portion and is located closest to the mold 6 side. Is set so as to be the most protruding point in the Z direction when the ball grinding wheel 10 is attached to the grinding wheel spindle SP2 and rotated.

次に、上記球帯砥石10を用いた研削加工方法について説明する。図3に示すように、球帯砥石10のZ方向の最突出点P2がスピンドルSP1の回転中心軸C1と一致するようにXZテーブル33とYテーブル34とを移動させX方向とY方向の位置の調節を行う。その後、XZテーブル33をZ方向に移動させて球帯砥石10の最突出点P2を、ワークスピンドルSP1に保持された被加工物(金型6)に当接させる。   Next, a grinding method using the above-mentioned spherical band grindstone 10 will be described. As shown in FIG. 3, the XZ table 33 and the Y table 34 are moved so that the most projecting point P2 in the Z direction of the ball grindstone 10 coincides with the rotation center axis C1 of the spindle SP1. Make adjustments. Thereafter, the XZ table 33 is moved in the Z direction so that the most protruding point P2 of the ball grinding wheel 10 is brought into contact with the workpiece (die 6) held on the work spindle SP1.

その後、砥石スピンドルSP2を回転数50000rpm、ワークスピンドルSP1を回転数100rpmで回転させ、目標加工形状である回転中心軸C1に近い部分の曲率半径が10000μmの非球面加工を超硬材に対して行う。球帯砥石10の移動は、従来、斜軸研削手法と同様に、被加工物(金型6)も目標形状と球帯砥石10の形状に基づいて決定され、所定のNCプログラムによってXZテーブル33及びYテーブル34の移動が制御されて、被加工物(金型6)の端面は目標の形状に研削加工される。   Thereafter, the grindstone spindle SP2 is rotated at a rotational speed of 50000 rpm and the work spindle SP1 is rotated at a rotational speed of 100 rpm, and aspherical processing with a radius of curvature of 10,000 μm near the rotational center axis C1, which is the target machining shape, is performed on the cemented carbide. . Conventionally, the movement of the ball grinding wheel 10 is determined based on the target shape and the shape of the ball grinding wheel 10 as in the case of the oblique axis grinding method, and the XZ table 33 is determined by a predetermined NC program. Then, the movement of the Y table 34 is controlled, and the end surface of the workpiece (mold 6) is ground into a target shape.

以上のように加工を行った結果、球帯砥石10(球帯部13)の曲率半径475μmに対して目標非球面(金型6の加工面6a)の曲率半径1000μmで、その加工面6aの中央部に円周状のキズMを発生させることなく、形状精度のよい加工が行われることを確認した。   As a result of processing as described above, the target aspherical surface (processing surface 6a of the mold 6) has a curvature radius of 1000 μm with respect to the curvature radius of 475 μm of the spherical grinding wheel 10 (spherical zone portion 13), and the processing surface 6a It was confirmed that processing with good shape accuracy was performed without generating a circumferential scratch M at the center.

さらに、加工を続け、同一の球帯砥石10で連続して20回の仕上げ加工を行った。その結果、球帯砥石10の磨耗が数μm進行していることが確認できたが、連続した加工に伴う加工精度の低下は見られず、また、中央部の円周状のキズMも発生することはなかった。   Further, the processing was continued, and the finishing process was performed 20 times continuously with the same ball grinding wheel 10. As a result, it was confirmed that the wear of the ball wheel grindstone 10 was progressing by several μm, but there was no decrease in machining accuracy due to continuous machining, and circumferential scratches M were also generated at the center. I never did.

ここで、図7示す、先端半球形状の半球砥石2を使用して、図8に示すような、被加工物(金型6)に凹状の球面加工を行って、半球砥石2の曲率半径と被加工物の加工凹球面の曲率半径との比と、被加工物の中央部に発生する円周状のキズMとの関係について説明する。   Here, using the hemispherical grindstone 2 of the tip hemisphere shape shown in FIG. 7, concave spherical processing is performed on the workpiece (die 6) as shown in FIG. The relationship between the ratio of the curvature radius of the processing concave spherical surface of the workpiece and the circumferential scratch M generated at the center of the workpiece will be described.

曲率半径475μmの半球砥石2を使用し、被加工物(金型6)の凹球面(加工面6a)の曲率半径800μm、1000μm、1200μmの球面加工を順次行った。
その結果、曲率半径800μmの凹球面の加工では、当初から中央部に円周状のキズMが発生した。これに対して、曲率半径が1000μmと1200μmの凹球面の加工では、円周状のキズMが発生しなかった。
Using the hemispherical grindstone 2 with a curvature radius of 475 μm, spherical processing with a curvature radius of 800 μm, 1000 μm, and 1200 μm of the concave spherical surface (processing surface 6a) of the workpiece (mold 6) was sequentially performed.
As a result, in the processing of the concave spherical surface having a curvature radius of 800 μm, a circumferential scratch M was generated at the center from the beginning. On the other hand, in the processing of the concave spherical surfaces having the curvature radii of 1000 μm and 1200 μm, the circumferential scratch M was not generated.

これによって、被加工物(金型6)の凹球面の曲率半径と半球砥石2の曲率半径との比が、被加工物(金型6)の凹球面の円周状のキズMに大きな影響を与えることが確認できた。   As a result, the ratio of the radius of curvature of the concave spherical surface of the workpiece (mold 6) and the radius of curvature of the hemispherical grindstone 2 has a great influence on the circumferential scratch M of the concave spherical surface of the workpiece (mold 6). It was confirmed to give.

さらに加工を重ねた結果、凹球面の曲率半径が1000μmの被加工物(金型6)については5回の仕上げ加工で円周状のキズMが発生し、凹球面の曲率半径が1200μmの被加工物(金型6)では10回以上の仕上げ加工で円周状のキズMが発生した。
(第2実施形態)
次に、第2実施形態について図4に従って説明する。
As a result of further processing, a workpiece (mold 6) having a concave spherical curvature radius of 1000 μm generates a circumferential scratch M after five finishings, and the concave spherical curvature radius is 1200 μm. In the processed product (die 6), circumferential scratches M were generated after finishing 10 times or more.
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG.

図4に示すように、曲率半径が475μmの球帯部13における最突出点P2が同球帯部13の曲率中心P1よりY方向(上方)に位置している球帯砥石10を使用した例を示す。   As shown in FIG. 4, an example in which a spherical grinding wheel 10 is used in which the most protruding point P <b> 2 in the spherical belt portion 13 with a curvature radius of 475 μm is located in the Y direction (upward) from the curvature center P <b> 1 of the spherical belt portion 13. Indicates.

本実施形態の球帯砥石10においては、最突出点P2が球帯部13の曲率中心P1よりY方向に15μm上方に位置し、Z方向で最も突出した点となる。すなわち、球帯部13の高さhを325μmとした。   In the ball grinding wheel 10 of the present embodiment, the most protruding point P2 is located 15 μm above the curvature center P1 of the ball band portion 13 in the Y direction and is the most protruding point in the Z direction. That is, the height h of the spherical zone portion 13 was set to 325 μm.

第1実施形態の球帯砥石10を使用した場合は、図3に示すように、最突出点P2における砥石接線Lの角度は回転中心軸C1と垂直であるが、本実施形態の場合の最突出点P2における砥石接線Lは、図4に示すように、回転中心軸C2側に傾くため、より金型6の加工面6aとの干渉がなくなるため、円周状のキズMの発生が抑制される。   When the ball wheel 10 of the first embodiment is used, the angle of the grinding wheel tangent L at the most protruding point P2 is perpendicular to the rotation center axis C1, as shown in FIG. As shown in FIG. 4, the grinding wheel tangent L at the protrusion point P2 is inclined toward the rotation center axis C2 side, so that the interference with the processing surface 6a of the mold 6 is further eliminated, and the generation of the circumferential scratch M is suppressed. Is done.

この球帯砥石10の移動軌跡の計算は、回転中心軸C1に対して最突出点P2が近いため、球帯砥石10のエッジが回転中心軸C1にあるものと近似して球帯砥石10の移動軌跡を計算させることができる。そのため、球帯砥石10の移動軌跡の計算を半球砥石2と同様の計算式で導出することが可能となる。
(第3実施形態)
次に、第3実施形態について図5に従って説明する。
Since the most protruding point P2 is close to the rotation center axis C1, the calculation of the movement trajectory of the ball wheel whetstone 10 approximates that the edge of the ball wheel whetstone 10 is on the rotation center axis C1, and The movement trajectory can be calculated. Therefore, it is possible to derive the movement trajectory of the ball wheel whetstone 10 using the same calculation formula as that for the hemispherical whetstone 2.
(Third embodiment)
Next, a third embodiment will be described with reference to FIG.

上記第1実施形態及び第2実施形態では、砥石先端が球の先端部を落とした球帯形状の砥石(球帯砥石10)について説明した。本実施形態の球帯砥石50では、図5に示すように円柱状のエッジに円弧状に面取りを付加したような円柱砥石5(図10参照)において、砥石先端側の被加工物(金型6)に最も近い位置でその面取り部分が砥石軸C3に対して垂直に切り落とされた形状(球帯形状)をしている。   In the said 1st Embodiment and 2nd Embodiment, the grindstone (spherical stone 10) with the grindstone tip dropping the front-end | tip part of a ball | bowl was demonstrated. In the ball grinding wheel 50 of the present embodiment, as shown in FIG. 5, in a cylindrical grinding stone 5 (see FIG. 10) in which chamfering is added to a circular cylindrical edge, a workpiece (mold) on the tip side of the grinding stone. 6) The chamfered portion is cut off perpendicularly to the grinding wheel axis C3 at the position closest to 6) (spherical band shape).

図10に示すような円柱砥石5による加工の際は、曲率半径が小さいために当接点P3において金型6の曲率半径との差が大きいために円周状のキズMが発生しないが、加工を重ねるに従って円周状のキズMが発生する場合がある。   When machining with the cylindrical grindstone 5 as shown in FIG. 10, since the radius of curvature is small and the difference from the radius of curvature of the mold 6 is large at the contact point P3, circumferential scratch M does not occur. In some cases, circumferential scratches M may occur as the values are overlapped.

本実施形態は、図5に例を示す。球帯砥石50は図2の研削加工装置の砥石スピンドルSP2に取着され、その砥石スピンドルSP2はその回転中心軸C2がワークスピンドルSP1の回転中心軸C1に対して45度の傾斜角度θをもつように装着されている。   This embodiment shows an example in FIG. The ball grinding wheel 50 is attached to the grinding wheel spindle SP2 of the grinding apparatus of FIG. 2, and the grinding wheel spindle SP2 has a rotation center axis C2 having an inclination angle θ of 45 degrees with respect to the rotation center axis C1 of the work spindle SP1. It is so fitted.

この球帯砥石50は、直径1.0mmの円柱部51の先端側エッジに点(曲率中心)51aを中心に曲率半径が400μmの円弧状に面取りがなされた形状のもの(近似球帯部53)を、点51aと被加工物(金型6)の回転中心軸C1の交点である点51bにおいて、砥石軸C3と垂直に切り落とされている近似球帯形状を有している。尚、特許請求の範囲に記載された球帯形状は、このような近似球帯形状も含むものとする。   This spherical grinding wheel 50 has a shape (approximate spherical belt portion 53) chamfered in an arc shape having a radius of curvature of 400 μm around a point (curvature center) 51a at a tip side edge of a cylindrical portion 51 having a diameter of 1.0 mm. ) At the point 51b, which is the intersection of the point 51a and the rotation center axis C1 of the workpiece (mold 6), has an approximate spherical band shape that is cut off perpendicularly to the grindstone axis C3. In addition, the spherical zone shape described in the claims includes such an approximate spherical zone shape.

本実施形態の球帯砥石50を、第1実施形態と同様のダイヤモンド砥石(♯2000番、レンジボンド、集中度75)にて作り、球帯砥石50の回転数50000rpm、ワークスピンドルSP1の回転数100rpmで回転させ、目標加工形状の回転中心軸C1に近い部分の曲率半径が10000μmの非球面加工を行った。その結果、単に円弧状の面取りだけの円柱砥石5を使用した場合には、3回の仕上げ加工で円周状のキズMが発生したが、球帯砥石50の場合は、20回の仕上げ加工でも円周状のキズMは発生しなかった。   The ball wheel 50 of this embodiment is made of the same diamond wheel (# 2000, range bond, concentration 75) as in the first embodiment, the rotation speed of the ball wheel 50 is 50000 rpm, and the rotation speed of the work spindle SP1. It was rotated at 100 rpm, and aspherical processing was performed in which the radius of curvature of the portion close to the rotation center axis C1 of the target processing shape was 10,000 μm. As a result, when the cylindrical grindstone 5 having only an arc-shaped chamfer was used, a circumferential scratch M was generated by three finishing processes, but in the case of the ball grinding wheel 50, 20 finishing processes were performed. However, no circumferential scratch M occurred.

また、第1及び第2実施形態で示した、斜軸研削におけるワークスピンドルSP1の回転中心軸C1に対する砥石スピンドルSP2の回転中心軸C2の傾斜角度θは45度に限定されるものではない。また、球帯砥石50は、球帯砥石50の粒度、集中度、ボンドの種類によらず、上記した実施形態と同様な効果があることは明らかである。   Further, the inclination angle θ of the rotation center axis C2 of the grindstone spindle SP2 with respect to the rotation center axis C1 of the work spindle SP1 in the oblique axis grinding shown in the first and second embodiments is not limited to 45 degrees. Moreover, it is clear that the ball-grinding wheel 50 has the same effect as the above-described embodiment regardless of the particle size, concentration degree, and bond type of the ball-grinding wheel 50.

第1及び第2実施形態においては、球帯砥石10の高さhにて、砥石軸C3と垂直な面で切り落とした形状としている。しかし、前記の切り落とし面よりも砥石先端側は加工に寄与しない部分であるため、例えば図6に示すような図1の球帯砥石10の平面13bに相当する面を被加工物と干渉しない程度の球面60aにした球帯部61を有した球帯砥石60であってもよく、同様の効果を得ることができる。   In 1st and 2nd embodiment, it is set as the shape cut off by the surface perpendicular | vertical to the grindstone axis | shaft C3 at the height h of the ball-band grindstone 10. FIG. However, since the tip side of the grindstone from the cut-off surface is a portion that does not contribute to the machining, for example, the surface corresponding to the flat surface 13b of the ball-and-brush grindstone 10 of FIG. 1 as shown in FIG. A spherical grinding wheel 60 having a spherical belt portion 61 having a spherical surface 60a may be used, and similar effects can be obtained.

本発明は主に比較的小径の軸対称非球面形状を有するレンズやミラー、又はそれらを成形する金型を精度よく研削加工することができる。   The present invention can accurately grind a lens or mirror having a relatively small-diameter axisymmetric aspherical shape or a mold for molding them.

本発明の球帯砥石の側面図。The side view of the ball wheel grindstone of the present invention. 本発明に使用する斜軸研削加工装置の構成斜視図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の球帯砥石の加工を示す図。The figure which shows the process of the ball wheel grindstone of this invention. 第2実施形態の球帯砥石の加工を示す図。The figure which shows the process of the ball wheel grindstone of 2nd Embodiment. 第3実施形態の球帯砥石の加工を示す図。The figure which shows the process of the ball wheel grindstone of 3rd Embodiment. 球帯砥石の他の例を示す図。The figure which shows the other example of a ball belt grindstone. 従来技術の半球砥石の側面図。The side view of the hemispherical grindstone of a prior art. 従来技術の半球砥石の加工を示す図。The figure which shows the process of the hemispherical grindstone of a prior art. 円周状のキズを説明する図。The figure explaining the circumferential crack. 従来技術の円柱砥石での加工を示す図。The figure which shows the process with the cylindrical grindstone of a prior art.

符号の説明Explanation of symbols

6…加工物としての金型、10,50,60…球帯砥石、13,61…研削部としての球帯部、53…研削部としての近似球帯部、91…パイプ、P1…曲率中心(中心)、P2…最突出部、h…高さ、C1,C2…回転中心軸、SP1…ワークスピンドル、SP2…砥石スピンドル、P2…最突出点。   6 ... Mold as workpiece, 10, 50, 60 ... Spherical grinding wheel, 13, 61 ... Spherical zone as grinding part, 53 ... Approximate spherical part as grinding part, 91 ... Pipe, P1 ... Center of curvature (Center), P2: most protruding portion, h: height, C1, C2: rotation center axis, SP1, work spindle, SP2: grinding wheel spindle, P2: most protruding point.

Claims (4)

先端部に研削部を有した研削砥石において、
前記研削部を、球帯形状にしたことを特徴とする研削砥石。
In a grinding wheel with a grinding part at the tip,
A grinding wheel characterized in that the grinding part has a spherical band shape.
回転軸対称形状を有する被加工物の一側面に対して、研削砥石の先端部に形成した研削部を当接させ、さらに前記研削砥石を回転させながら相対的に移動させることにより、被加工物を凹形状に加工する研削加工方法において、
前記研削砥石の回転中心軸を前記被加工物の回転中心軸に対して傾けて回転させながら同研削砥石を相対的に移動させるとともに、
前記研削部は前記研削砥石の回転軸を中心として環状に形成された球帯形状をなし、前記球帯形状の研削部の先端部に形成されるエッジが、前記被加工物の回転軸中心点を加工することを特徴とする研削加工方法。
A workpiece is formed by contacting a grinding portion formed at the tip of a grinding wheel against one side surface of the workpiece having a rotationally symmetrical shape, and further moving the grinding wheel while rotating the grinding wheel. In a grinding method for processing a concave shape,
While relatively rotating the grinding wheel while rotating the rotation center axis of the grinding wheel relative to the rotation center axis of the workpiece,
The grinding portion has a spherical shape formed in an annular shape around the rotation axis of the grinding wheel, and an edge formed at a tip portion of the spherical shape grinding portion is a rotation axis center point of the workpiece. Grinding method characterized by processing.
請求項2に記載の研削加工方法において、
前記球帯形状の研削部の高さは、その球帯形状の研削部の曲率中心が、前記球帯形状の研削部のエッジと前記被加工物の回転軸中心点との当接部より低い位置になる高さに形成したことを特徴とする研削加工方法。
In the grinding method according to claim 2,
The height of the spherical zone-shaped grinding portion is such that the center of curvature of the spherical zone-shaped grinding portion is lower than the contact portion between the edge of the spherical zone-shaped grinding portion and the rotational axis center point of the workpiece. A grinding method characterized by being formed at a height to be positioned.
請求項2又は3に記載の研削加工方法において、
前記被加工物は、レンズ成形金型であることを特徴とする研削加工方法。
In the grinding method according to claim 2 or 3,
A grinding method, wherein the workpiece is a lens molding die.
JP2005255263A 2005-09-02 2005-09-02 Grinding wheel and grinding method Pending JP2007062000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005255263A JP2007062000A (en) 2005-09-02 2005-09-02 Grinding wheel and grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005255263A JP2007062000A (en) 2005-09-02 2005-09-02 Grinding wheel and grinding method

Publications (1)

Publication Number Publication Date
JP2007062000A true JP2007062000A (en) 2007-03-15

Family

ID=37924791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005255263A Pending JP2007062000A (en) 2005-09-02 2005-09-02 Grinding wheel and grinding method

Country Status (1)

Country Link
JP (1) JP2007062000A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962913A (en) * 2014-05-14 2014-08-06 苏州意玛斯砂光设备有限公司 Polishing machine
CN113486474A (en) * 2021-07-28 2021-10-08 大连理工大学 Method for designing shape of grinding wheel for grinding complex curved surface part

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962913A (en) * 2014-05-14 2014-08-06 苏州意玛斯砂光设备有限公司 Polishing machine
CN113486474A (en) * 2021-07-28 2021-10-08 大连理工大学 Method for designing shape of grinding wheel for grinding complex curved surface part
CN113486474B (en) * 2021-07-28 2024-06-11 大连理工大学 Shape design method of grinding wheel for grinding complex curved surface part

Similar Documents

Publication Publication Date Title
CA2591479C (en) Polishing wheel
JP5213442B2 (en) Raster cutting technology for ophthalmic lenses
JP2005001100A (en) Method of working aspherical face and method of forming aspherical face
JP2009184066A5 (en)
JP2000254845A (en) Chamfering method of notch groove of wafer, and wafer
KR100659433B1 (en) Method for machining aspherical surface, method for forming aspherical surface, and system for machining aspherical surface
JP2007062000A (en) Grinding wheel and grinding method
JP2007118117A (en) Machining device and method for fly-eye lens forming die
JP7158702B2 (en) chamfering grinder
JP7016568B1 (en) Fresnel lens mold manufacturing method, processing equipment and cutting tools
JP5258484B2 (en) Lens polishing device and aspheric polishing plate
WO2006132126A1 (en) Method of producing optical element, and optical element
JP2009166222A (en) Polishing method
JP4670249B2 (en) Processing apparatus, processing method, and diamond tool
JP2009160714A (en) Manufacturing method for die
JP3466880B2 (en) Processing method of spherical shape such as lens
JP2000052217A (en) Tool and processing method
JP2009018366A (en) Method of grinding convex surface
JPH10328995A (en) Curved surface grinding method
JP2006055961A (en) Method and apparatus for machining axially symmetric aspheric surface by surface grinding machine
JP2009095973A (en) Grinding wheel molding device and method
JP4333876B2 (en) Grinding method
JP2002346893A (en) Grinding method
JP4519618B2 (en) Grinding wheel molding method and molding apparatus
JP2006297562A (en) Grinding method, molding die, and optical element