WO2009101894A1 - Scroll type fluid machine, and processing method and processing equipment therefor - Google Patents

Scroll type fluid machine, and processing method and processing equipment therefor Download PDF

Info

Publication number
WO2009101894A1
WO2009101894A1 PCT/JP2009/051980 JP2009051980W WO2009101894A1 WO 2009101894 A1 WO2009101894 A1 WO 2009101894A1 JP 2009051980 W JP2009051980 W JP 2009051980W WO 2009101894 A1 WO2009101894 A1 WO 2009101894A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
concave surface
end plate
wrap
lap
Prior art date
Application number
PCT/JP2009/051980
Other languages
French (fr)
Japanese (ja)
Inventor
Tomiji Suzuki
Takahisa Tobe
Original Assignee
Sanden Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008080520A external-priority patent/JP2009235939A/en
Priority claimed from JP2008265216A external-priority patent/JP2009216079A/en
Application filed by Sanden Corporation filed Critical Sanden Corporation
Publication of WO2009101894A1 publication Critical patent/WO2009101894A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • F04C18/0276Different wall heights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/10Manufacture by removing material

Definitions

  • the present invention relates to a scroll type fluid machine, a processing method thereof, and a processing apparatus thereof, and more particularly to a scroll type fluid machine, a processing method thereof, and a processing apparatus thereof suitable for use in a refrigeration air conditioner and a heat pump type hot water heater.
  • a scroll type fluid machine of this type for example, a hermetic scroll compressor, is a scroll unit that performs a series of processes of suction, compression, and discharge of a working fluid when a movable scroll revolves with respect to a fixed scroll in a housing. It has. Specifically, spiral wraps are provided on the end plate surfaces of the movable and fixed scroll end plates, and the wraps cooperate to form a compression chamber for the working fluid between the wraps. The above-described series of processes is performed by moving toward the innermost periphery while reducing the volume.
  • the inclined surface and the flat surface are formed on the leading end surface of the lap, a step portion is formed between these surfaces, and galling between the wraps and leakage of the working fluid occur at the step portion. Then there is a problem. In general, it takes a long time to cut the inclined surface linearly along the spiral shape of the lap, such as cutting or polishing, which may increase the processing cost of the lap and thus the manufacturing cost of the compressor. There is.
  • the lap height processing is performed by lapping for polishing the lap tip to process the lap height with high accuracy, and the inclined surface at the lap tip.
  • the spiral machining for forming the film is performed in different cutting processes on different lathes having different cutting jigs.
  • the processing reference plane is the end of the end plate. It is the back surface which is the surface opposite to the end plate surface.
  • the processing reference plane is the end of the end plate. It is the back surface which is the surface opposite to the end plate surface.
  • a scroll type fluid machine capable of improving durability, a processing method thereof, and a processing apparatus thereof.
  • a scroll type fluid machine according to the present invention includes a fixed scroll and a movable scroll each provided with a spiral wrap in pairs on the end plate surface of the end plate.
  • a scroll-type fluid machine that forms a compression chamber of working fluid between laps by revolving orbiting and moves while reducing the volume of the compression chamber toward the innermost peripheral portion of the wrap,
  • the wrap of at least one of the fixed scrolls is characterized in that the surface formed by the tip of the wrap has a spheroid or spherical concave surface having a predetermined curvature.
  • the curvature of the concave surface is matched with the thermal expansion amount of the lap during the compression operation of the scroll type fluid machine, and the thrust direction gap between the lap and the end plate surface facing the lap during the compression operation is stepped. Therefore, it is possible to reliably prevent galling between the wraps and leakage of the working fluid.
  • the concave surface portion considering that the compression heat is transmitted radially from the innermost peripheral portion of the wrap to the outermost peripheral side of the wrap, which becomes high temperature as the volume of the compression chamber decreases, Since the thrust gap in accordance with the actual thermal expansion amount of the wrap can be maintained, the compression efficiency and durability of the scroll type fluid machine can be improved thereby.
  • the concave surface portion has a minimum lap height at the innermost peripheral portion of the wrap having the concave surface portion.
  • the thrust direction gap can be appropriately maintained in accordance with the amount of thermal expansion that maximizes the innermost peripheral portion of the lap that becomes the highest temperature due to the compression heat in the compression chamber. Compression efficiency and durability can be reliably improved.
  • the wrap having the concave surface portion has a flat portion having a maximum lap height on the outer peripheral side of the concave surface portion, and the predetermined curvature has the concave surface portion at the tip of the wrap. It is set in advance so as to be smoothly continuous with the flat portion. According to this configuration, the thrust direction gap can be reliably held without any step, so that the compression efficiency and durability of the scroll type fluid machine can be further reliably improved.
  • a processing method of a scroll type fluid machine includes a fixed scroll and a fixed scroll each having a pair of spiral wraps standing on the end plate surface of the end plate.
  • the orbiting scroll revolves to form a compression chamber for the working fluid between the wraps, and the compression chamber moves toward the innermost periphery of the wrap while reducing its volume.
  • the curvature of the concave surface is matched with the thermal expansion amount of the lap during the compression operation of the scroll type fluid machine, and the thrust direction between the lap and the facing end plate surface during the compression operation Since the gap can be properly held without a step, it is possible to reliably prevent galling between the wraps and leakage of the working fluid.
  • the above-described processing method of the scroll type fluid machine uses the concave surface processing jig provided with the convex surface portion, and cuts or polishes the lap by mutually pressing movement of the convex surface portion and the lap.
  • the concave surface portion can be formed in a shorter time than when the tip is processed along the spiral shape of the lap, thereby reducing the processing cost of the lap and consequently the manufacturing cost of the scroll type fluid machine. be able to.
  • the above-described processing method of the scroll type fluid machine includes the clamping step of restricting and fixing at least one end plate of the movable scroll or the fixed scroll only in the height direction of the wrap, and the end plate fixed in the clamping step. And a concave surface processing step of forming a concave surface portion by processing the lap to a predetermined lap height using the same cutting jig.
  • a processing apparatus for a scroll type fluid machine includes a fixed scroll and a fixed scroll each having a spiral wrap standing in pairs on the end plate surface of the end plate.
  • the orbiting scroll revolves to form a compression chamber for the working fluid between the wraps, and the compression chamber moves toward the innermost periphery of the wrap while reducing its volume.
  • the apparatus is characterized in that a spheroid surface or a spherical concave surface having a predetermined curvature on a surface formed by a tip of the wrap is processed on a wrap of at least one of the movable scroll and the fixed scroll. It is said.
  • the curvature of the concave surface is matched to the thermal expansion amount of the lap during the compression operation of the scroll type fluid machine, and the thrust direction between the lap and the end plate surface facing the lap during the compression operation Since the gap can be properly held without a step, it is possible to reliably prevent galling between the wraps and leakage of the working fluid.
  • a concave surface processing jig that includes a convex surface portion and forms the concave surface portion by cutting or polishing the lap by a mutual pressing movement between the convex surface portion and the lap.
  • a clamping mechanism for fixing the scroll in a state where the lap where the concave surface portion is formed is directed to the concave surface processing jig side, and the concave surface processing jig and the clamping mechanism are rotatable in a direction crossing the direction of the pressing motion.
  • the concave surface portion is formed by cutting or polishing the lap while maintaining a constant surface contact state between the convex surface portion and the lap by combining the pressing and rotating motions of the concave surface processing jig and the clamp mechanism. .
  • the concave surface processing jig is configured to be rotatable about its axis in a state inclined at a predetermined inclination angle from the direction of the pressing motion, The part is in surface contact only with the wrap half region when the wrap is divided by a boundary line passing through the spiral center. According to this configuration, since the contact area between the convex surface portion and the lap can be halved, it is possible to halve the influence of processing accuracy errors in the concave surface processing of the processing apparatus, while ensuring the dimensional accuracy of the concave surface portion. Processing time in concave processing can be shortened.
  • the concave surface processing jig is rotated in the direction opposite to the rotation direction of the clamp mechanism. According to this configuration, since the total contact area per unit time between the convex surface portion and the lap can be doubled, the processing time in the concave surface processing can be further shortened.
  • the above-described processing apparatus for the scroll type fluid machine includes a clamp mechanism that restricts and fixes at least one end plate of the movable scroll or the fixed scroll only in the height direction of the wrap, and the end plate fixed by the clamp mechanism. And a cutting mechanism that forms a concave surface by processing the lap to a predetermined lap height using the same cutting jig.
  • the clamping mechanism is pressed by the pressing means that presses the back surface, which is the surface opposite to the end plate surface of the end plate, toward the end plate surface side. And a support member that supports the end plate in contact with at least three locations on the end plate surface.
  • the end plate can be surely flattened and fixed by three-point support, and the end plate surface flattened in advance with high accuracy can be used as a processing reference surface for cutting.
  • the lap height can be processed with higher accuracy.
  • the support member includes a side portion that prevents the end plate from moving in the radial direction, and a flange portion that is bent from the side portion toward the innermost peripheral portion of the wrap.
  • the collar portion has a support surface against which the end plate surface comes into contact with the pressing means.
  • the pressing means presses the end plate toward the support surface by a predetermined elastic force by a spring.
  • the pressing means presses the end plate toward the support surface with a predetermined air pressure.
  • the longitudinal cross-sectional view which showed the scroll unit of the scroll compressor which concerns on 1st Embodiment of this invention The longitudinal cross-sectional view which showed the movable scroll of FIG.
  • the top view which looked at the movable scroll of FIG. 2 from the mirror-plate surface side The longitudinal cross-sectional view which showed the processing method of the concave part of FIG.
  • the longitudinal cross-sectional view which showed the processing method and its processing apparatus of the concave surface part which concern on 2nd Embodiment of this invention The longitudinal cross-sectional view which showed the processing method and processing apparatus of the concave surface part which concern on 3rd Embodiment of this invention, It is the top view which looked at the supporting member of FIG. 6 from the A direction of FIG.
  • FIG. 1 shows a longitudinal sectional view of a scroll unit 2 of a hermetic scroll compressor 1 as an example of a scroll type fluid machine according to this embodiment, and the unit 2 is accommodated in a hermetic container (not shown). It is driven by an electric motor (not shown) through the rotating shaft 4.
  • the compressor 1 is incorporated in a refrigeration circuit such as a refrigeration air conditioner or a heat pump water heater, and the circuit includes a path through which a carbon dioxide refrigerant (hereinafter referred to as a refrigerant), which is an example of a working fluid, circulates. Sucks refrigerant from the path, compresses it, and discharges it toward the path. At this time, the unit 2 performs a series of processes of refrigerant suction, compression and discharge.
  • a refrigerant carbon dioxide refrigerant
  • the unit 2 includes a movable scroll 6 and a fixed scroll 8, and the movable scroll 6 includes a mirror plate 10.
  • a spiral wrap 14 extending toward the mirror plate 12 of the fixed scroll 8 is provided on a mirror plate surface 10 a of the mirror plate 10.
  • a spiral wrap 16 extending toward the end plate 10 is also set up on the end plate surface 12 a of the end plate 12 of the fixed scroll 8.
  • the wraps 14 and 16 cooperate with each other, and form a compression chamber 20 by sucking refrigerant from a refrigerant suction port 18 formed on the outer peripheral side of the end plate 12.
  • the volume of the compression chamber 20 is reduced while moving from the radially outermost side in the radial direction of the wraps 14 and 16 toward the innermost circumferential side, which is the center, by the revolving orbiting motion of the movable scroll 6 with respect to the fixed scroll 8. .
  • a boss 22 is formed on the back side of the end plate 10 to impart a revolving orbiting motion to the movable scroll 6, and the boss 22 is rotatable about an eccentric shaft 26 formed integrally with the upper end side of the rotary shaft 4 via a bearing 24. It is supported by. The rotation of the movable scroll 6 is prevented by a rotation prevention pin (not shown).
  • the fixed scroll 8 is supported and fixed to a frame (not shown) fixed to the inside of the hermetic container, and a discharge hole 28 that can communicate with the compression chamber 20 is formed in the central portion of the fixed scroll 8.
  • the orbiting scroll 6 revolves without rotating along with the rotation of the rotary shaft 26, so that the refrigerant sucked into the unit 2 via the suction port 18 is brought inward of the unit 2. After being compressed while being moved, it is discharged from the discharge hole 28. Then, the refrigerant discharged from the discharge hole 28 circulates in the sealed container, and then is sent out of the compressor through a discharge port (not shown).
  • the wrap 14 of this embodiment is formed on the flat portion 30 formed on the outermost peripheral side of the wrap 14 and on the innermost peripheral portion 32 side of the wrap 14. It is formed from the concave surface portion 34 to be formed.
  • the flat portion 30 corresponds to a portion of the wrap 14 that is the first and substantially half turn on the outermost periphery side.
  • the lap height H from 10a to the tip is the maximum, the tip is a flat flat surface 30a, and when the movable scroll 6 is combined with the fixed scroll 8, the flat surface 30a and the end plate surface of the fixed scroll 8
  • the compression chamber 20 on the outermost peripheral side is formed with a minimum thrust direction gap G MIN between 12a and 12a.
  • the concave surface portion 34 corresponds to the entire winding portion of the wrap 14 closer to the innermost peripheral portion 32 than the flat portion 30 and is indicated by hatching in FIG.
  • a concave surface 34a having a spheroidal surface or a spherical surface having a predetermined curvature k is formed.
  • the wrap height H of the wrap 14 in the concave surface portion 34 smoothly decreases in a parabolic shape from the flat portion 30 to the innermost peripheral portion 32, and is minimum at the innermost peripheral portion 32.
  • the thrust direction gap G between the concave surface 34a and the end plate surface 12a facing the surface increases smoothly in a parabolic shape from the flat portion 30 to the innermost peripheral portion 32, and the maximum gap G MAX (for example, 6 in the innermost peripheral portion 32). Micrometer).
  • the concave surface 34a and the flat surface 30a are smoothly continuous without a step, and the curvature k is to form such a boundary portion 36. It is set in advance.
  • the boundary portion 36 may be formed by continuously changing the curvature k from the concave surface portion 34 to the flat portion 30.
  • the thrust direction gap G between the wrap 14 of the movable scroll 6 and the end plate surface 12 a of the fixed scroll 8 facing the flat scroll 30 extends from the innermost peripheral portion 32. It changes smoothly in a parabolic shape, and during the thermal expansion of the laps 14 and 16 during the compression operation of the compressor, as in the case of the flat portion 30, the minimum thrust direction gap GMIN is left and the innermost peripheral portion 32 side.
  • the compression chamber 20 is formed.
  • the concave surface processing step for forming the concave surface portion 34 shown in FIG. 4 will be described.
  • the end plate 10 made of an aluminum-based material is cut to form the wrap 14 having only the flat portion 30 whose tip is the flat surface 30a.
  • the inner peripheral side of the flat portion 30 is cut by a concave surface processing jig 38 having a convex surface (convex surface portion) 38a having a curvature k ′ substantially the same as the concave surface 34a.
  • the concave surface processing jig 38 is, for example, a lathe cutting tool or an insert chip.
  • the cutting processing is, for example, a concave surface processing by grinding processing or turning processing, and the convex processing surface 38a is formed with the spiral center O of the lap 14 as a processing center.
  • the dotted line portion in FIG. 4 is cut into a bowl shape leaving the flat portion 30 only on the outermost peripheral side, and concave only on the innermost peripheral portion 32 side of the lap 14.
  • a concave surface portion 34 having 34a is formed.
  • each of the laps 14 and 16 is in a state of substantially normal temperature. Since the flat surface 30a is opposed to the end plate surface 12a via the minimum thrust direction gap GMIN , the refrigerant is supplied to the outermost compression chamber 20 without leakage to the suction port 18 side. Can be securely contained.
  • the compressor is warmed up and reaches a rated state, the refrigerant sucked from the suction port 18 is sequentially sent from the outermost peripheral compression chamber 20 to the innermost peripheral portion 32 side compression chamber 20. Due to the compression heat generated at this time, the laps 14 and 16 have a temperature distribution in which the temperature is increased radially from the first volume on the outermost circumference side to the fourth volume on the innermost circumference section 32 side. .
  • each compression chamber 20 increases sequentially from the compression chamber 20 on the outermost peripheral side toward the compression chamber 20 on the innermost peripheral portion 32 side, the compression chamber 20 on the innermost peripheral portion 32 side The temperature becomes higher than the compression chamber 20 on the outermost peripheral side, and the temperatures of the laps 14 and 16 also gradually increase from the outermost peripheral side to the innermost peripheral portion 32 side.
  • high-temperature and high-pressure lubricating oil for lubricating the unit 2, the bearing 24, and the like rises through an oil supply passage (not shown) that is drilled in the axial direction in the rotating shaft 26 and is supplied from the upper end of the rotating shaft 26.
  • the curvature k of the concave surface 34a of the concave surface portion 34 is obtained by having the concave surface portion 34 having a spheroidal surface or a spherical surface in which the surface formed by the tip of the wrap 14 has a predetermined curvature k. Is matched to the thermal expansion amount of the wrap 14 during the compression operation of the compressor, and the thrust direction gap G between the wrap 14 and the end plate surface 12a facing the lap 14 during the compression operation can be properly maintained without any step. , 16 and the leakage of the refrigerant can be reliably prevented, so that the compression efficiency and durability of the compressor can be improved.
  • the innermost peripheral portion 32 of the wrap 14 becomes the highest temperature due to the compression heat of the compression chamber 20 and the heat of the lubricating oil, so that the wrap 14 and eventually the end plate 10 are thermally expanded.
  • the heat transfer part is concerned, and it can be considered that the heat quantity transmitted through the heat transfer part influences the thermal expansion of the wrap 14.
  • the amount of heat transmitted radially from the innermost peripheral portion 32 via the end plate 10 is greater than the amount of heat transmitted along the spiral shape of the wrap 14. Is done. Therefore, by forming the concave surface portion 34, it is possible to maintain the thrust direction gap G in accordance with the thermal expansion amount of the wrap 14, which contributes greatly to improving the compression efficiency and durability of the compressor.
  • the concave portion 34 has the innermost peripheral portion 32 of the wrap 14 having the minimum height, so that the innermost peripheral portion 32 of the wrap 14 having the highest temperature due to the compression heat in the compression chamber 20 is matched with the largest amount of thermal expansion.
  • the thrust direction gap G can be held more appropriately.
  • the curvature k is set in advance so that the concave surface portion 34 and the flat portion 30 are smoothly connected, so that the thrust direction gap G can be reliably held without any step.
  • the concave surface portion 34 is formed by cutting or polishing the lap 14 while pressing the convex processing surface 38a of the concave processing jig 38 against the distal end of the wrap 14, the distal end thereof is formed along the spiral shape of the lap 14. Since the concave surface portion 34 can be formed in a short time compared with the case where the processing is performed, the compression efficiency and durability of the compressor can be improved while reducing the processing cost of the wrap 14 and thus the manufacturing cost of the compressor. .
  • FIG. 5 is a longitudinal sectional view showing the main part of the concave surface processing device 42, and the concave surface processing device 42 is composed of a concave surface processing jig 40 and a clamp mechanism 44.
  • the clamp mechanism 44 is configured to be movable up and down in the vertical direction while rotating in a state where the movable scroll 6 is fixed to the chuck below the concave surface processing jig 40.
  • the concave surface processing jig 40 includes a rotating shaft 46 and a grindstone portion (convex surface portion) 48 attached to the processing tip, and is inclined at a predetermined inclination angle ⁇ (for example, about 45 °) from the vertical direction.
  • for example, about 45 °
  • the grindstone 48 is, for example, CBN (Cubic Boron Nitride (Cubic Boron Nitride), etc., is formed in a bowl shape from a material having a hardness as high as that of diamond, and escapes of cutting and polishing debris generated during concave processing around the radial center O ′ of the grindstone 48 A hollow portion 50 is provided as a space.
  • CBN Cubic Boron Nitride (Cubic Boron Nitride), etc.
  • the processing apparatus 42 configured in this manner is configured by combining the concave surface processing jig 40 and the wrap 14 of the movable scroll 6 by combining the three motions of the rotational motion of the clamp mechanism 44, the pressing motion, and the rotational motion of the concave surface processing jig 40.
  • the concave surface portion 34 is formed while maintaining a constant surface contact state. Specifically, first, the movable scroll 6 is chuck-fixed to the clamp mechanism 44 on the outer peripheral surface 10b of the end plate 10 with the wrap 14 facing upward.
  • the concave surface processing jig 40 and the lap 14 at this time have a positional relationship in which surface contact can be made only with the lap halved region 52 when the grindstone 48 divides the lap 14 by a boundary line passing through the spiral center O. is doing.
  • the clamp mechanism 44 is By rotating, the lap 14 is ground while maintaining a constant surface contact state with the grindstone 48 in different regions.
  • the concave surface part 34 which has the concave surface 34a of the curvature k which becomes substantially the same as the curvature k 'of the convex surface 48a of the grindstone part 48 is formed.
  • the concave surface portion 34 can be formed as in the case of the first embodiment, so that it is possible to reliably prevent galling between the wraps 14 and 16 and leakage of the refrigerant. Therefore, the compression efficiency and durability of the compressor can be improved.
  • the processing time in the concave surface processing is further shortened while ensuring the dimensional accuracy of the concave surface portion 34. Therefore, it is possible to improve the compression efficiency and durability of the compressor while further reducing the processing cost of the wrap 14 and thus the manufacturing cost of the compressor.
  • the concave surface processing jig 38 of the first embodiment in addition to the mutual pressing movement of the concave surface processing jig 40 and the clamp mechanism 44 in the concave surface processing, Since the rotational motion is added, the processing time in the concave surface processing can be further shortened.
  • the grindstone portion 48 is in surface contact only with the lap half region 52, compared to the case of the first embodiment, Since the contact area between the grindstone 48 and the lap 14 can be halved, the influence of machining accuracy error in the concave machining of the machining device 42 can be halved, and the concave machining is performed while ensuring the dimensional accuracy of the concave 34.
  • the processing time in can be shortened.
  • a concave surface portion 34 is formed using a lathe (processing device) 54 to which a cutting jig 60 is attached. Since the same configuration as that of the first embodiment is made, the lathe 54 and the concave surface machining process using the lathe 54 will be mainly described.
  • the concave surface processing step when the concave surface portion 34 is formed in the present embodiment will be described.
  • the end plate 6 made of an aluminum-based material is cut to form the wrap 14 having only the flat portion 30 whose tip is the flat surface 30a.
  • the end plate 10 is fixed to the clamp mechanism 56 of the lathe 54 shown in FIG. 6 (clamping process), and the cutting is provided with a blade portion 58 having a high hardness such as diamond on the inner peripheral side of the flat portion 30. Cutting with the processing jig 60 is performed (cutting mechanism, concave surface processing step).
  • cutting or polishing is performed with the spiral center O of the lap 14 as the processing center and pressing the cutting tool 60, for example, a lathe cutting tool bit or an insert tip blade 58 against the tip of the lap 14.
  • the flat line 30 is left only on the outermost peripheral side
  • the dotted line portion in FIG. 6 is cut into a bowl shape
  • the concave surface portion 34 having the concave surface 34 a is formed only on the innermost peripheral portion 32 side of the wrap 14.
  • the clamp mechanism 56 is pressed by a pressing mechanism (pressing means) 62 that presses the back surface 10b of the end plate 10 opposite to the end plate surface 10a toward the end plate surface 10a, and the pressing mechanism 62.
  • It comprises a support member 64 that supports the end plate 10 on the end plate surface 10a.
  • the support member 64 includes a side portion 64a that prevents the end plate 10 from moving in the radial direction, and a flange portion 64b that is bent from the side portion 64a toward the innermost peripheral portion 32 side of the wrap 14.
  • the pressing mechanism 62 connects the contact portion 62a that is in contact with the end surface 22a of the boss 22, the fixed portion 62b that is fixed to the inner periphery of the side portion 64a, and the contact portion 62a and the fixed portion 62b.
  • the spring 68 presses the end plate 10 against the support surface 66 with a predetermined elastic force via the contact portion 62a.
  • FIG. 7 is a plan view of the support member 64 as viewed from the direction A in FIG. 6.
  • the support member 64 has three flange portions 64b formed at substantially equal intervals, and a pressing mechanism.
  • the end plate 10 pressed by 62 is supported with its end plate surface 10 a abutting against the three support surfaces 66.
  • the inner diameter Di of the support member 64 is such that the end plate 10 can be inserted into the side portion 64a, and even if the end plate 10 is pressed by the pressing mechanism 62, the end plate 10 does not rattle in the radial direction. Fits that can be regulated and fixed. In order to prevent such rattling, the inner diameter Di may be set so that the outer periphery of the end plate 10 is slightly chucked.
  • the concave surface portion 34 can be formed in the same manner as in the first and second embodiments, it is possible to reliably prevent galling between the wraps 14 and 16 and leakage of the refrigerant. Therefore, the compression efficiency and durability of the compressor can be improved.
  • the lathe 54 includes a clamp mechanism 56 that restricts and fixes the end plate 10 only in the height direction of the lap 14, and in the concave surface machining step for machining the concave surface portion 34 by the lathe 54, the clamp mechanism The concave portion 34 is formed by processing the lap 14 of the end plate 10 fixed by 56 to a predetermined lap height using the same cutting jig 60.
  • the bending deformation of the end plate 10 by the clamp mechanism 56 can be prevented to at least flatten the processing reference surface of the cutting process, and the concave surface processing step is made one step using the same cutting jig 44. Therefore, it is possible to easily process the lap with high accuracy and to reduce the processing cost of the wrap 14.
  • the clamp mechanism 56 includes a pressing mechanism 62 and a supporting member 64 that supports the end plate 10 pressed by the pressing mechanism 62 in contact with three positions on the end plate surface 10a, thereby supporting the end plate 10 at three points.
  • the end plate surface 10a that has been flattened with high accuracy in advance can be used as the processing reference surface for cutting, so that the lap height is processed with higher accuracy. be able to.
  • the support member 64 includes a side portion 64a and a flange portion 64b.
  • the flange portion 64b has a support surface 66 with which the end plate surface 10a is brought into contact with the pressing mechanism 62, thereby allowing the end plate 10 to move in the radial direction. Since the end plate 10 can be supported by the surface contact with the support member 64 while blocking, the wrap height can be processed with higher accuracy.
  • the pressing mechanism 62 can easily adjust the pressing force against the end plate 10 by simply changing the spring 68 by pressing the end plate 10 toward the support surface 66 by a predetermined elastic force by the spring 68. It is preferable that the wrap height can be easily made and processing can be performed with high accuracy.
  • the concave surface portion 34 is formed on the wrap 14 of the movable scroll 6. However, it is sufficient that the thermal expansion of the wrap 14 is absorbed and the thrust direction gap G is appropriately maintained. May be formed only by the flat portion 30, and a concave surface portion may be formed on the wrap 16 of the fixed scroll 8. In this case as well, it is possible to improve the compression efficiency and durability while reducing the manufacturing cost of the compressor.
  • the support member 64 is provided with three flange portions 64 b in order to securely flatten and fix the end plate 10 by three-point support.
  • the present invention is not limited to this, and the end plate 10 may be formed at three or more locations as long as the end plate 10 can be reliably flattened and fixed. Further, the end plate 10 may be supported by point contact without forming the support surface 66.
  • the elastic force of the spring 68 is used for the pressing mechanism 62.
  • the present invention is not limited to this. For example, a pressurizing device using a pump is provided, and the end plate is pressed by a predetermined air pressure. Even if 10 is pressed toward the support surface 66, the pressing force on the end plate 10 can be easily adjusted by simply changing the setting of the air pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Disclosed is a scroll type fluid machine (1) comprising a fixed and a movable scrolls (8, 6) each of which is provided with a pair of spiral laps (14, 16) standing on the surfaces (10a, 12a) of end plates (10, 12), wherein by revolution movement of the movable scroll (6) around the fixed scroll (8), a compression chamber (20) for a working fluid is formed between the laps (14, 16) and the compression chamber (20) moves toward the innermost circumferential portions (32) of the laps (14, 16) while the volume thereof being reduced. The laps (14, 16) of at least one of the movable scroll (6) and the fixed scroll (8) have a concaved surface portion (34) where a surface formed by the tip ends of the laps (14, 16) becomes a spheroidal or spherical surface having a predetermined curvature.

Description

スクロール型流体機械及びその加工方法及びその加工装置Scroll type fluid machine, processing method thereof, and processing apparatus thereof
 本発明は、スクロール型流体機械及びその加工方法及びその加工装置に係り、詳しくは、冷凍空調機やヒートポンプ式給湯機に用いて好適なスクロール型流体機械及びその加工方法及びその加工装置に関する。 The present invention relates to a scroll type fluid machine, a processing method thereof, and a processing apparatus thereof, and more particularly to a scroll type fluid machine, a processing method thereof, and a processing apparatus thereof suitable for use in a refrigeration air conditioner and a heat pump type hot water heater.
 この種のスクロール型流体機械、例えば密閉型スクロール圧縮機は、ハウジング内で固定スクロールに対し可動スクロールが公転旋回運動することにより、作動流体の吸入、圧縮及び吐出の一連のプロセスを実施するスクロールユニットを備えている。
 詳しくは、可動及び固定スクロールの鏡板の鏡板面には、それぞれ渦巻き状のラップが立設され、これらラップが協働してラップ間に作動流体の圧縮室を形成し、この圧縮室がラップの最内周部に向けてその容積を減少させながら移動することにより上記一連のプロセスを実施している。
 そして、ラップに、ラップ高さをラップ中心に向け所定の傾斜角でラップの渦巻き状に沿って直線的に減少させた傾斜面を形成することにより、ラップが熱膨張してもラップの先端面と対向する鏡板面との間のスラスト方向ギャップを適正に保持する技術が公知である(例えば、日本国特許3046486号公報参照)。
A scroll type fluid machine of this type, for example, a hermetic scroll compressor, is a scroll unit that performs a series of processes of suction, compression, and discharge of a working fluid when a movable scroll revolves with respect to a fixed scroll in a housing. It has.
Specifically, spiral wraps are provided on the end plate surfaces of the movable and fixed scroll end plates, and the wraps cooperate to form a compression chamber for the working fluid between the wraps. The above-described series of processes is performed by moving toward the innermost periphery while reducing the volume.
Then, by forming an inclined surface on the lap that is linearly reduced along the spiral shape of the lap with a predetermined inclination angle toward the lap center, even if the lap is thermally expanded, the tip surface of the lap Is well known in the art to properly maintain a thrust direction gap between the surface and the opposite end plate surface (see, for example, Japanese Patent No. 3046486).
 しかしながら、上記従来技術では、ラップの連続する先端面に傾斜面とフラット面とを形成するため、これら面間に段差部が形成され、この段差部においてラップ間のかじりや作動流体の漏れが発生するとの問題がある。
 また、一般に、上記傾斜面をラップの渦巻き状に沿って直線的に加工するには、切削または研磨加工等により長時間を要するため、ラップの加工コスト、ひいては圧縮機の製造コストが増大するおそれがある。
 一方、上記従来技術では明確にされていないものの、一般に、上記ラップ高さ加工はラップの先端を研磨してラップ高さを高精度に加工するためのラッピング加工と、ラップの先端に上記傾斜面を形成するためのスパイラル加工とが異なる切削加工治具を有する異なる旋盤にて異なる切削加工工程にて行われる。
However, in the above prior art, since the inclined surface and the flat surface are formed on the leading end surface of the lap, a step portion is formed between these surfaces, and galling between the wraps and leakage of the working fluid occur at the step portion. Then there is a problem.
In general, it takes a long time to cut the inclined surface linearly along the spiral shape of the lap, such as cutting or polishing, which may increase the processing cost of the lap and thus the manufacturing cost of the compressor. There is.
On the other hand, although not clarified in the above prior art, in general, the lap height processing is performed by lapping for polishing the lap tip to process the lap height with high accuracy, and the inclined surface at the lap tip. The spiral machining for forming the film is performed in different cutting processes on different lathes having different cutting jigs.
 また、一般に、旋盤による切削加工では、少なくとも鏡板の外周を2箇所と、ラップの高さ方向を1箇所との合計3箇所をクランプによりチャック固定してから行われ、その加工基準面は鏡板の鏡板面の反対側の面である背面となってる。
 しかしながら、このような加工方法では、ラップ高さ加工に2工程を要する為にラップ高さを高精度に加工し難い。
 また、クランプによるチャック固定が上記3箇所により行われることにより、直交する2方向から鏡板が押圧されてたわみ変形し、このように鏡板が変形した状態において、精度を要求されない鏡板の背面がラップ高さ加工のための切削加工の加工基準面となるため、結果としてラップ高さに大幅な誤差が生じ、やはりラップ高さを高精度に加工できず、ラップの加工工程が煩雑になり、加工コストも増大するとの問題がある。
Further, in general, in the lathe cutting process, at least two outer periphery of the end plate and one place in the height direction of the lap are fixed with a clamp, and the processing reference plane is the end of the end plate. It is the back surface which is the surface opposite to the end plate surface.
However, in such a processing method, it is difficult to process the lap height with high accuracy because two steps are required for the lap height processing.
In addition, since the chuck fixing by the clamp is performed at the above three locations, the end plate is pressed and deformed in two orthogonal directions, and the end of the end plate that does not require accuracy is deformed in such a state that the end plate is deformed. As a result, a large error occurs in the lap height, and the lap height cannot be machined with high accuracy, resulting in a complicated lap machining process and machining costs. There is also a problem of increasing.
 本発明は、このような課題に鑑みてなされたもので、ラップ高さを容易にして高精度に加工することができ、ラップの加工コスト、ひいては流体機械の製造コストを低減しつつ圧縮効率及び耐久性を向上することができるスクロール型流体機械及びその加工方法及びその加工装置を提供することを目的とする。
 上記の目的を達成するべく、本発明のスクロール型流体機械は、鏡板の鏡板面に渦巻き状のラップが対をなしてそれぞれ立設された固定及び可動スクロールを備え、固定スクロールに対し可動スクロールが公転旋回運動することにより、ラップ間に作動流体の圧縮室を形成し、圧縮室がラップの最内周部に向けてその容積を減少させながら移動するスクロール型流体機械であって、可動スクロールまたは固定スクロールのうちの少なくとも一方のスクロールのラップは、ラップの先端により形成される面が所定の曲率となる回転楕円面または球面をなす凹面部を有することを特徴としている。
The present invention has been made in view of such a problem, and can easily process a lap with high accuracy, reduce the wrap processing cost, and thus reduce the manufacturing cost of the fluid machine, and reduce the compression efficiency and It is an object of the present invention to provide a scroll type fluid machine capable of improving durability, a processing method thereof, and a processing apparatus thereof.
In order to achieve the above object, a scroll type fluid machine according to the present invention includes a fixed scroll and a movable scroll each provided with a spiral wrap in pairs on the end plate surface of the end plate. A scroll-type fluid machine that forms a compression chamber of working fluid between laps by revolving orbiting and moves while reducing the volume of the compression chamber toward the innermost peripheral portion of the wrap, The wrap of at least one of the fixed scrolls is characterized in that the surface formed by the tip of the wrap has a spheroid or spherical concave surface having a predetermined curvature.
 上記したスクロール型流体機械によれば、凹面の曲率をスクロール型流体機械の圧縮運転時におけるラップの熱膨張量に合わせ、圧縮運転時のラップと対向する鏡板面との間のスラスト方向ギャップを段差無く適正に保持することができるため、ラップ間のかじりや作動流体の漏れを確実に防止することができる。
 しかも、凹面部を形成することにより、圧縮室の容積減少に伴い圧縮熱が高温となるラップの最内周部から最外周側に向けて鏡板を介して放射状に伝達されることを考慮すると、ラップの実際の熱膨張量に即したスラスト方向ギャップを保持することができるため、これらにより、スクロール型流体機械の圧縮効率及び耐久性を向上することができる。
 好適な態様として、上記したスクロール型流体機械において、凹面部は、凹面部を有するラップの最内周部が最小ラップ高さとなる。
According to the scroll type fluid machine described above, the curvature of the concave surface is matched with the thermal expansion amount of the lap during the compression operation of the scroll type fluid machine, and the thrust direction gap between the lap and the end plate surface facing the lap during the compression operation is stepped. Therefore, it is possible to reliably prevent galling between the wraps and leakage of the working fluid.
In addition, by forming the concave surface portion, considering that the compression heat is transmitted radially from the innermost peripheral portion of the wrap to the outermost peripheral side of the wrap, which becomes high temperature as the volume of the compression chamber decreases, Since the thrust gap in accordance with the actual thermal expansion amount of the wrap can be maintained, the compression efficiency and durability of the scroll type fluid machine can be improved thereby.
As a preferred aspect, in the scroll fluid machine described above, the concave surface portion has a minimum lap height at the innermost peripheral portion of the wrap having the concave surface portion.
 この構成によれば、圧縮室における圧縮熱により最も高温となるラップの最内周部を最も大きくなる熱膨張量に合わせてスラスト方向ギャップを適正に保持することができるため、スクロール型流体機械の圧縮効率及び耐久性を確実に向上することができる。
 好適な態様として、上記したスクロール型流体機械において、凹面部を有するラップは、凹面部よりも外周側に最大ラップ高さとなるフラット部を有し、所定の曲率は、ラップの先端において凹面部をフラット部と滑らかに連続させるべく予め設定される。
 この構成によれば、スラスト方向ギャップを確実に段差無く適正に保持することができるため、スクロール型流体機械の圧縮効率及び耐久性をより一層確実に向上することができる。
According to this configuration, the thrust direction gap can be appropriately maintained in accordance with the amount of thermal expansion that maximizes the innermost peripheral portion of the lap that becomes the highest temperature due to the compression heat in the compression chamber. Compression efficiency and durability can be reliably improved.
As a preferred embodiment, in the scroll type fluid machine described above, the wrap having the concave surface portion has a flat portion having a maximum lap height on the outer peripheral side of the concave surface portion, and the predetermined curvature has the concave surface portion at the tip of the wrap. It is set in advance so as to be smoothly continuous with the flat portion.
According to this configuration, the thrust direction gap can be reliably held without any step, so that the compression efficiency and durability of the scroll type fluid machine can be further reliably improved.
 また、上記の目的を達成するべく、本発明のスクロール型流体機械の加工方法は、鏡板の鏡板面に渦巻き状のラップが対をなしてそれぞれ立設された固定及び可動スクロールを備え、固定スクロールに対し可動スクロールが公転旋回運動することにより、ラップ間に作動流体の圧縮室を形成し、圧縮室がラップの最内周部に向けてその容積を減少させながら移動するスクロール型流体機械の加工方法であって、可動スクロールまたは固定スクロールのうちの少なくとも一方のスクロールのラップに、ラップの先端により形成される面が所定の曲率となる回転楕円面または球面をなす凹面部を加工することを特徴としている。
 上記したスクロール型流体機械の加工方法によれば、凹面の曲率をスクロール型流体機械の圧縮運転時におけるラップの熱膨張量に合わせ、圧縮運転時のラップと対向する鏡板面との間のスラスト方向ギャップを段差無く適正に保持することができるため、ラップ間のかじりや作動流体の漏れを確実に防止することができる。
In order to achieve the above object, a processing method of a scroll type fluid machine according to the present invention includes a fixed scroll and a fixed scroll each having a pair of spiral wraps standing on the end plate surface of the end plate. In contrast, the orbiting scroll revolves to form a compression chamber for the working fluid between the wraps, and the compression chamber moves toward the innermost periphery of the wrap while reducing its volume. A method of processing a spheroid or spherical surface having a predetermined curvature on a surface formed by a tip of a wrap on a wrap of at least one of a movable scroll and a fixed scroll. It is said.
According to the processing method of the scroll type fluid machine described above, the curvature of the concave surface is matched with the thermal expansion amount of the lap during the compression operation of the scroll type fluid machine, and the thrust direction between the lap and the facing end plate surface during the compression operation Since the gap can be properly held without a step, it is possible to reliably prevent galling between the wraps and leakage of the working fluid.
 好適な態様として、上記したスクロール型流体機械の加工方法は、凸面部を備えた凹面加工治具を使用し、凸面部とラップとの互いの押圧運動によってラップを切削または研磨することにより凹面部を形成する凹面加工工程を含む。
 この構成によれば、ラップの渦巻き状に沿ってその先端に加工を施す場合に比して凹面部を短時間で形成できるため、ラップの加工コスト、ひいてはスクロール型流体機械の製造コストを低減することができる。
 好適な態様として、上記したスクロール型流体機械の加工方法は、可動スクロールまたは固定スクロールのうち少なくとも一方の鏡板をラップの高さ方向のみで規制し固定するクランプ工程と、クランプ工程で固定された鏡板のラップを同一の切削加工治具にて所定のラップ高さに加工して凹面部を形成する凹面加工工程と、からなる。
As a preferred aspect, the above-described processing method of the scroll type fluid machine uses the concave surface processing jig provided with the convex surface portion, and cuts or polishes the lap by mutually pressing movement of the convex surface portion and the lap. Including a concave surface forming step.
According to this configuration, the concave surface portion can be formed in a shorter time than when the tip is processed along the spiral shape of the lap, thereby reducing the processing cost of the lap and consequently the manufacturing cost of the scroll type fluid machine. be able to.
As a preferred aspect, the above-described processing method of the scroll type fluid machine includes the clamping step of restricting and fixing at least one end plate of the movable scroll or the fixed scroll only in the height direction of the wrap, and the end plate fixed in the clamping step. And a concave surface processing step of forming a concave surface portion by processing the lap to a predetermined lap height using the same cutting jig.
 この構成によれば、クランプ工程によって鏡板のたわみ変形を防止して切削加工の加工基準面を少なくとも平坦化することができ、凹面加工工程によって切削加工を同一の切削加工治具を用いた1工程とすることができるため、ラップ高さを容易にして高精度に加工することができ、ひいてはラップの加工コストを低減することができる。
 更に、上記の目的を達成するべく、本発明のスクロール型流体機械の加工装置は、鏡板の鏡板面に渦巻き状のラップが対をなしてそれぞれ立設された固定及び可動スクロールを備え、固定スクロールに対し可動スクロールが公転旋回運動することにより、ラップ間に作動流体の圧縮室を形成し、圧縮室がラップの最内周部に向けてその容積を減少させながら移動するスクロール型流体機械の加工装置であって、可動スクロールまたは固定スクロールのうちの少なくとも一方のスクロールのラップに、ラップの先端により形成される面が所定の曲率となる回転楕円面または球面をなす凹面部を加工することを特徴としている。
According to this configuration, it is possible to prevent the bending deformation of the end plate by the clamping process and to at least flatten the machining reference surface of the cutting process, and to perform the cutting process by the concave surface machining process using one cutting jig. Therefore, it is possible to easily process the lap with high accuracy and to reduce the processing cost of the lap.
Furthermore, in order to achieve the above object, a processing apparatus for a scroll type fluid machine according to the present invention includes a fixed scroll and a fixed scroll each having a spiral wrap standing in pairs on the end plate surface of the end plate. In contrast, the orbiting scroll revolves to form a compression chamber for the working fluid between the wraps, and the compression chamber moves toward the innermost periphery of the wrap while reducing its volume. The apparatus is characterized in that a spheroid surface or a spherical concave surface having a predetermined curvature on a surface formed by a tip of the wrap is processed on a wrap of at least one of the movable scroll and the fixed scroll. It is said.
 上記したスクロール型流体機械の加工装置によれば、凹面の曲率をスクロール型流体機械の圧縮運転時におけるラップの熱膨張量に合わせ、圧縮運転時のラップと対向する鏡板面との間のスラスト方向ギャップを段差無く適正に保持することができるため、ラップ間のかじりや作動流体の漏れを確実に防止することができる。
 好適な態様として、上記したスクロール型流体機械の加工装置において、凸面部を備え、凸面部とラップとの互いの押圧運動によってラップを切削または研磨することにより凹面部を形成する凹面加工治具と、凹面部が形成されるラップを凹面加工治具側に向けた状態でスクロールを固定するクランプ機構とを備え、凹面加工治具及びクランプ機構は、押圧運動の方向に交差する向きに回転可能に構成され、凹面加工治具とクランプ機構との互いの押圧運動及び回転運動の合成によって、凸面部とラップとの一定の面接触状態を保ちながらラップを切削または研磨することにより凹面部を形成する。
According to the scroll type fluid machine processing apparatus described above, the curvature of the concave surface is matched to the thermal expansion amount of the lap during the compression operation of the scroll type fluid machine, and the thrust direction between the lap and the end plate surface facing the lap during the compression operation Since the gap can be properly held without a step, it is possible to reliably prevent galling between the wraps and leakage of the working fluid.
As a preferred embodiment, in the above-described processing apparatus of the scroll type fluid machine, a concave surface processing jig that includes a convex surface portion and forms the concave surface portion by cutting or polishing the lap by a mutual pressing movement between the convex surface portion and the lap. A clamping mechanism for fixing the scroll in a state where the lap where the concave surface portion is formed is directed to the concave surface processing jig side, and the concave surface processing jig and the clamping mechanism are rotatable in a direction crossing the direction of the pressing motion. The concave surface portion is formed by cutting or polishing the lap while maintaining a constant surface contact state between the convex surface portion and the lap by combining the pressing and rotating motions of the concave surface processing jig and the clamp mechanism. .
 この構成によれば、凸面部とラップとの互いの押圧運動によってラップを切削または研磨する場合に比して、凹面加工治具とクランプ機構との互いの回転運動が加わるため、凹面加工における加工時間を更に短縮することができるため、ラップの加工コスト、ひいてはスクロール型流体機械の製造コストを更に低減しつつスクロール型流体機械の圧縮効率及び耐久性を向上することができる。
 好適な態様として、上記したスクロール型流体機械の加工装置において、凹面加工治具は、押圧運動の方向から所定の傾斜角にて傾斜した状態でその軸心を中心として回転可能に構成され、凸面部は、ラップをその渦巻き中心を通過する境界線で分けたときのラップ半割領域のみに面接触される。
 この構成によれば、凸面部とラップとの接触領域を半減させることができるため、加工装置の凹面加工における加工精度の誤差の影響を半減することができ、凹面部の寸法精度を確保しつつ凹面加工における加工時間を短縮することができる。
According to this configuration, since the mutual rotational motion of the concave surface processing jig and the clamp mechanism is added as compared with the case where the lap is cut or polished by the mutual pressing motion of the convex surface portion and the lap, processing in concave surface processing Since the time can be further shortened, it is possible to improve the compression efficiency and durability of the scroll type fluid machine while further reducing the processing cost of the lap and consequently the manufacturing cost of the scroll type fluid machine.
As a preferred aspect, in the above-described processing device for the scroll type fluid machine, the concave surface processing jig is configured to be rotatable about its axis in a state inclined at a predetermined inclination angle from the direction of the pressing motion, The part is in surface contact only with the wrap half region when the wrap is divided by a boundary line passing through the spiral center.
According to this configuration, since the contact area between the convex surface portion and the lap can be halved, it is possible to halve the influence of processing accuracy errors in the concave surface processing of the processing apparatus, while ensuring the dimensional accuracy of the concave surface portion. Processing time in concave processing can be shortened.
 好適な態様として、上記したスクロール型流体機械の加工装置において、凹面加工治具は、クランプ機構の回転方向とは逆向きに回転される。
 この構成によれば、凸面部とラップとの単位時間あたりの総接触面積を倍増させることができるため、凹面加工における加工時間をより一層短縮することができる。
 好適な態様として、上記したスクロール型流体機械の加工装置は、可動スクロールまたは固定スクロールのうち少なくとも一方の鏡板をラップの高さ方向のみで規制し固定するクランプ機構と、クランプ機構により固定された鏡板のラップを同一の切削加工治具にて所定のラップ高さに加工して凹面部を形成する切削加工機構とを備える。
As a preferred aspect, in the above-described processing device of the scroll type fluid machine, the concave surface processing jig is rotated in the direction opposite to the rotation direction of the clamp mechanism.
According to this configuration, since the total contact area per unit time between the convex surface portion and the lap can be doubled, the processing time in the concave surface processing can be further shortened.
As a preferred aspect, the above-described processing apparatus for the scroll type fluid machine includes a clamp mechanism that restricts and fixes at least one end plate of the movable scroll or the fixed scroll only in the height direction of the wrap, and the end plate fixed by the clamp mechanism. And a cutting mechanism that forms a concave surface by processing the lap to a predetermined lap height using the same cutting jig.
 この構成によれば、クランプ機構による鏡板のたわみ変形を防止して切削加工の加工基準面を少なくとも平坦化することができ、ラップ高さを加工するための切削加工を同一の切削加工治具を用いた1工程とすることができるため、ラップ高さを容易にして高精度に加工することができ、ひいてはラップの加工コストを低減することができる。
 好適な態様として、上記したスクロール型流体機械の加工装置において、クランプ機構は、鏡板の鏡板面の反対側の面である背面を鏡板面側に向けて押圧する押圧手段と、押圧手段により押圧された鏡板を鏡板面の少なくとも3箇所以上に当接させて支持する支持部材とからなる。
According to this configuration, it is possible to prevent the bending deformation of the end plate by the clamp mechanism and to at least flatten the processing reference surface of the cutting process, and to perform the cutting process for processing the lap height using the same cutting jig. Since it can be used as one process, it is possible to easily process the lap with high accuracy and to reduce the wrap processing cost.
As a preferred aspect, in the above-described processing apparatus for the scroll type fluid machine, the clamping mechanism is pressed by the pressing means that presses the back surface, which is the surface opposite to the end plate surface of the end plate, toward the end plate surface side. And a support member that supports the end plate in contact with at least three locations on the end plate surface.
 この構成によれば、鏡板を3点支持にて確実に平坦化して固定することができ、更に、予め高精度に平坦化された鏡板面を切削加工の加工基準面とすることができるため、ラップ高さを更に高精度に加工することができる。
 好適な態様として、上記したスクロール型流体機械の加工装置において、支持部材は、鏡板の径方向の移動を阻止する側部と、側部からラップの最内周部に向けて屈曲される鍔部とから構成され、鍔部は押圧手段により鏡板面が当接される支持面を有する。
 この構成によれば、鏡板の径方向の移動を阻止しつつ支持部材による鏡板の支持を面接触により行うことができるため、ラップ高さをより一層高精度に加工することができる。
According to this configuration, the end plate can be surely flattened and fixed by three-point support, and the end plate surface flattened in advance with high accuracy can be used as a processing reference surface for cutting. The lap height can be processed with higher accuracy.
As a preferable aspect, in the processing apparatus for the scroll type fluid machine described above, the support member includes a side portion that prevents the end plate from moving in the radial direction, and a flange portion that is bent from the side portion toward the innermost peripheral portion of the wrap. The collar portion has a support surface against which the end plate surface comes into contact with the pressing means.
According to this configuration, since the end plate can be supported by the support member by surface contact while preventing the end plate from moving in the radial direction, the wrap height can be processed with higher accuracy.
 好適な態様として、上記したスクロール型流体機械の加工装置において、押圧手段は、ばねによる所定の弾性力により鏡板を支持面に向けて押圧する。
 また、好適な態様として、上記したスクロール型流体機械の加工装置において、押圧手段は、所定の空気圧により鏡板を支持面に向けて押圧する。
 これらの構成によれば、ばねや空気圧の設定を変えるだけで鏡板に対する押圧力を容易にして調整することができるため、ラップ高さを容易にして高精度に加工することができる。
As a preferred aspect, in the processing apparatus of the scroll type fluid machine described above, the pressing means presses the end plate toward the support surface by a predetermined elastic force by a spring.
As a preferred aspect, in the processing apparatus for the scroll type fluid machine, the pressing means presses the end plate toward the support surface with a predetermined air pressure.
According to these configurations, it is possible to easily adjust the pressing force against the end plate simply by changing the settings of the spring and the air pressure, so that the lap height can be easily made and processing can be performed with high accuracy.
本発明の第1実施形態に係るスクロール型圧縮機のスクロールユニットを示した縦断面図、The longitudinal cross-sectional view which showed the scroll unit of the scroll compressor which concerns on 1st Embodiment of this invention, 図1の可動スクロールを示した縦断面図、The longitudinal cross-sectional view which showed the movable scroll of FIG. 図2の可動スクロールを鏡板面側からみた平面図、The top view which looked at the movable scroll of FIG. 2 from the mirror-plate surface side, 図2の凹面部の加工方法を示した縦断面図、The longitudinal cross-sectional view which showed the processing method of the concave part of FIG. 本発明の第2実施形態に係るの凹面部の加工方法及びその加工装置を示した縦断面図、The longitudinal cross-sectional view which showed the processing method and its processing apparatus of the concave surface part which concern on 2nd Embodiment of this invention, 本発明の第3実施形態に係る凹面部の加工方法及び加工装置を示した縦断面図、The longitudinal cross-sectional view which showed the processing method and processing apparatus of the concave surface part which concern on 3rd Embodiment of this invention, 図6の支持部材を図6のA方向からみた平面図である。It is the top view which looked at the supporting member of FIG. 6 from the A direction of FIG.
 以下、図面により本発明の一実施形態について先ず第1実施形態から説明する。
 図1は、本実施形態に係るスクロール型流体機械の一例として、密閉型のスクロール圧縮機1のスクロールユニット2の縦断面図を示しており、当該ユニット2は、図示しない密閉容器内に収容され、回転軸4を介して図示しない電動モータにより駆動される。
 当該圧縮機1は、冷凍空調装置やヒートポンプ式給湯機などの冷凍回路に組み込まれ、当該回路は作動流体の一例である二酸化炭素冷媒(以下、冷媒という)が循環する経路を備え、圧縮機1は経路から冷媒を吸入し、圧縮して経路に向けて吐出する。この際、ユニット2は冷媒の吸入、圧縮及び吐出の一連のプロセスを実施する。
Hereinafter, an embodiment of the present invention will be described first from the first embodiment with reference to the drawings.
FIG. 1 shows a longitudinal sectional view of a scroll unit 2 of a hermetic scroll compressor 1 as an example of a scroll type fluid machine according to this embodiment, and the unit 2 is accommodated in a hermetic container (not shown). It is driven by an electric motor (not shown) through the rotating shaft 4.
The compressor 1 is incorporated in a refrigeration circuit such as a refrigeration air conditioner or a heat pump water heater, and the circuit includes a path through which a carbon dioxide refrigerant (hereinafter referred to as a refrigerant), which is an example of a working fluid, circulates. Sucks refrigerant from the path, compresses it, and discharges it toward the path. At this time, the unit 2 performs a series of processes of refrigerant suction, compression and discharge.
 詳しくは、ユニット2は可動スクロール6及び固定スクロール8から構成され、可動スクロール6は鏡板10を備え、この鏡板10の鏡板面10aには固定スクロール8の鏡板12に向けて延びる渦巻き状のラップ14が立設され、一方、固定スクロール8の鏡板12の鏡板面12aにも鏡板10に向けて延びる渦巻き状のラップ16が立設されている。
 そして、これらラップ14,16が互いに協働し、鏡板12の外周側に形成された冷媒の吸入ポート18から冷媒を吸入して圧縮室20を形成する。圧縮室20は、固定スクロール8に対する可動スクロール6の公転旋回運動により、これらラップ14,16の径方向の最外周側から中心である最内周側に向けて移動しながらその容積が減少される。
Specifically, the unit 2 includes a movable scroll 6 and a fixed scroll 8, and the movable scroll 6 includes a mirror plate 10. A spiral wrap 14 extending toward the mirror plate 12 of the fixed scroll 8 is provided on a mirror plate surface 10 a of the mirror plate 10. On the other hand, a spiral wrap 16 extending toward the end plate 10 is also set up on the end plate surface 12 a of the end plate 12 of the fixed scroll 8.
The wraps 14 and 16 cooperate with each other, and form a compression chamber 20 by sucking refrigerant from a refrigerant suction port 18 formed on the outer peripheral side of the end plate 12. The volume of the compression chamber 20 is reduced while moving from the radially outermost side in the radial direction of the wraps 14 and 16 toward the innermost circumferential side, which is the center, by the revolving orbiting motion of the movable scroll 6 with respect to the fixed scroll 8. .
 可動スクロール6に公転旋回運動を付与するため、鏡板10の背面側にはボス22が形成され、ボス22は軸受24を介して回転軸4の上端側に一体形成される偏心軸26に回転自在に支持されている。なお、可動スクロール6の自転は図示しない自転阻止ピンにより阻止されている。
 一方、固定スクロール8は密閉容器の内側に固定される図示しないフレームに支持、固定されており、固定スクロール8の中央部分には圧縮室20に連通可能な吐出孔28が穿設される。
A boss 22 is formed on the back side of the end plate 10 to impart a revolving orbiting motion to the movable scroll 6, and the boss 22 is rotatable about an eccentric shaft 26 formed integrally with the upper end side of the rotary shaft 4 via a bearing 24. It is supported by. The rotation of the movable scroll 6 is prevented by a rotation prevention pin (not shown).
On the other hand, the fixed scroll 8 is supported and fixed to a frame (not shown) fixed to the inside of the hermetic container, and a discharge hole 28 that can communicate with the compression chamber 20 is formed in the central portion of the fixed scroll 8.
 上述した圧縮機によれば、回転軸26の回転に伴って可動スクロール6が自転することなく公転旋回運動することにより、吸入ポート18を介してユニット2に吸入した冷媒をユニット2の内方に向けて移動させながら圧縮した後に吐出孔28から吐出する。そして、吐出孔28から吐出された冷媒は密閉容器内を循環した後に図示しない吐出ポートを介して圧縮機外へ送出される。
 ところで、図2の可動スクロール6の縦断面図に示されるように、本実施形態のラップ14はラップ14の最外周側に形成されるフラット部30と、ラップ14の最内周部32側に形成される凹面部34とから形成されている。
According to the compressor described above, the orbiting scroll 6 revolves without rotating along with the rotation of the rotary shaft 26, so that the refrigerant sucked into the unit 2 via the suction port 18 is brought inward of the unit 2. After being compressed while being moved, it is discharged from the discharge hole 28. Then, the refrigerant discharged from the discharge hole 28 circulates in the sealed container, and then is sent out of the compressor through a discharge port (not shown).
By the way, as shown in the longitudinal sectional view of the movable scroll 6 in FIG. 2, the wrap 14 of this embodiment is formed on the flat portion 30 formed on the outermost peripheral side of the wrap 14 and on the innermost peripheral portion 32 side of the wrap 14. It is formed from the concave surface portion 34 to be formed.
 図3に示される可動スクロール6の鏡板面10a側からみた平面図も参照すると、フラット部30はラップ14のうち、最外周側の1巻と略半巻目となる部分に該当し、鏡板面10aから先端までのラップ高さHが最大となり、その先端は平坦なフラット面30aとなっており、可動スクロール6を固定スクロール8と組合わせたときに、フラット面30aと固定スクロール8の鏡板面12aとの間には最小のスラスト方向ギャップGMINを残して最外周側の圧縮室20が形成される。
 一方、凹面部34はラップ14のうち、フラット部30よりも最内周部32側の全巻部分に該当し、図3中に斜線で示されており、ラップ14の先端により形成される面が所定の曲率kとなる回転楕円面または球面をなす凹面34aを形成している。
Referring also to the plan view of the movable scroll 6 shown in FIG. 3 seen from the side of the end plate surface 10a, the flat portion 30 corresponds to a portion of the wrap 14 that is the first and substantially half turn on the outermost periphery side. The lap height H from 10a to the tip is the maximum, the tip is a flat flat surface 30a, and when the movable scroll 6 is combined with the fixed scroll 8, the flat surface 30a and the end plate surface of the fixed scroll 8 The compression chamber 20 on the outermost peripheral side is formed with a minimum thrust direction gap G MIN between 12a and 12a.
On the other hand, the concave surface portion 34 corresponds to the entire winding portion of the wrap 14 closer to the innermost peripheral portion 32 than the flat portion 30 and is indicated by hatching in FIG. A concave surface 34a having a spheroidal surface or a spherical surface having a predetermined curvature k is formed.
 凹面部34におけるラップ14のラップ高さHはフラット部30から最内周部32にかけて滑らかに放物線状に減少し、最内周部32において最小となっている。換言すると、凹面34aと対向する鏡板面12aとのスラスト方向ギャップGはフラット部30から最内周部32にかけて滑らかに放物線状に増大し、最内周部32において最大のギャップGMAX(例えば6マイクロメートル程度)となる。
 また、図3に示される凹面部34とフラット部30との境界部36は凹面34aとフラット面30aとが段差無く滑らかに連続しており、曲率kはこのような境界部36を形成するべく予め設定される。なお、凹面部34からフラット部30にかけ曲率kを連続的に変化させて境界部36を形成しても良い。そして、可動スクロール6を固定スクロール8と組合わせたときには、可動スクロール6のラップ14と対向する固定スクロール8の鏡板面12aとの間のスラスト方向ギャップGがフラット部30から最内周部32にかけて滑らかに放物線状にて変化し、圧縮機の圧縮運転時におけるラップ14,16の熱膨張時には、フラット部30の場合と同様に、最小のスラスト方向ギャップGMINを残して最内周部32側の圧縮室20が形成される。
The wrap height H of the wrap 14 in the concave surface portion 34 smoothly decreases in a parabolic shape from the flat portion 30 to the innermost peripheral portion 32, and is minimum at the innermost peripheral portion 32. In other words, the thrust direction gap G between the concave surface 34a and the end plate surface 12a facing the surface increases smoothly in a parabolic shape from the flat portion 30 to the innermost peripheral portion 32, and the maximum gap G MAX (for example, 6 in the innermost peripheral portion 32). Micrometer).
Further, in the boundary portion 36 between the concave surface portion 34 and the flat portion 30 shown in FIG. 3, the concave surface 34a and the flat surface 30a are smoothly continuous without a step, and the curvature k is to form such a boundary portion 36. It is set in advance. The boundary portion 36 may be formed by continuously changing the curvature k from the concave surface portion 34 to the flat portion 30. When the movable scroll 6 is combined with the fixed scroll 8, the thrust direction gap G between the wrap 14 of the movable scroll 6 and the end plate surface 12 a of the fixed scroll 8 facing the flat scroll 30 extends from the innermost peripheral portion 32. It changes smoothly in a parabolic shape, and during the thermal expansion of the laps 14 and 16 during the compression operation of the compressor, as in the case of the flat portion 30, the minimum thrust direction gap GMIN is left and the innermost peripheral portion 32 side. The compression chamber 20 is formed.
 以下、図4に示される凹面部34を形成するための凹面加工工程について説明する。
 先ず、アルミ系材料からなる鏡板10に対して切削加工を施すことにより、先端がフラット面30aとなるフラット部30のみを有するラップ14を形成する。
 次に、フラット部30の内周側に対して、凹面34aと略同一となる曲率k’の凸加工面(凸面部)38aを有する凹面加工治具38による切削加工を施す。凹面加工治具38は例えば旋盤加工用のバイトやインサートチップであって、切削加工は例えば研削加工や旋削加工による凹面加工であり、ラップ14の渦巻き中心Oを加工中心とし、凸加工面38aをラップ14の先端に押圧しながら切削または研磨することにより、フラット部30を最外周側のみ残して図4中の点線部分が椀形状に削られ、ラップ14の最内周部32側のみに凹面34aを有する凹面部34を形成している。
Hereinafter, the concave surface processing step for forming the concave surface portion 34 shown in FIG. 4 will be described.
First, the end plate 10 made of an aluminum-based material is cut to form the wrap 14 having only the flat portion 30 whose tip is the flat surface 30a.
Next, the inner peripheral side of the flat portion 30 is cut by a concave surface processing jig 38 having a convex surface (convex surface portion) 38a having a curvature k ′ substantially the same as the concave surface 34a. The concave surface processing jig 38 is, for example, a lathe cutting tool or an insert chip. The cutting processing is, for example, a concave surface processing by grinding processing or turning processing, and the convex processing surface 38a is formed with the spiral center O of the lap 14 as a processing center. By cutting or polishing while pressing the tip of the lap 14, the dotted line portion in FIG. 4 is cut into a bowl shape leaving the flat portion 30 only on the outermost peripheral side, and concave only on the innermost peripheral portion 32 side of the lap 14. A concave surface portion 34 having 34a is formed.
 このように構成される圧縮機の圧縮運転開始初期には、各ラップ14,16はほぼ常温の状態にある。そして、フラット面30aが鏡板面12aとの間に最小となるスラスト方向ギャップGMINを介して対向しているから、吸入ポート18側への漏れがない状態で最外周側の圧縮室20に冷媒を確実に封じ込めることができる。
 次に、当該圧縮機が暖機され、定格状態となったときには、吸入ポート18から吸入された冷媒は、最外周側の圧縮室20から最内周部32側の圧縮室20に順次送り込まれて圧縮され、このときに発生する圧縮熱等により、ラップ14,16は最外周側の1巻目から最内周部32側の4巻目に亘って放射状に高温をなした温度分布となる。
At the beginning of the compression operation of the compressor configured as described above, each of the laps 14 and 16 is in a state of substantially normal temperature. Since the flat surface 30a is opposed to the end plate surface 12a via the minimum thrust direction gap GMIN , the refrigerant is supplied to the outermost compression chamber 20 without leakage to the suction port 18 side. Can be securely contained.
Next, when the compressor is warmed up and reaches a rated state, the refrigerant sucked from the suction port 18 is sequentially sent from the outermost peripheral compression chamber 20 to the innermost peripheral portion 32 side compression chamber 20. Due to the compression heat generated at this time, the laps 14 and 16 have a temperature distribution in which the temperature is increased radially from the first volume on the outermost circumference side to the fourth volume on the innermost circumference section 32 side. .
 詳しくは、各圧縮室20内の圧力は最外周側の圧縮室20から最内周部32側の圧縮室20に向けて圧力が順次高くなるため、最内周部32側の圧縮室20は最外周側の圧縮室20よりも高温になり、各ラップ14,16も最外周側から最内周部32側にかけて徐々に温度が高くなる。
 また、ユニット2や軸受24等を潤滑するための高温高圧の潤滑油が回転軸26内を軸線方向に穿孔される図示しない給油路を上昇し、回転軸26の上端から供給されることも、各ラップ14,16の最内周部32側が最外周側よりも高温になる要因の1つである。そして、この温度上昇により各ラップ部14,16は熱膨張し、特にラップ14の凹面部34は最内周部32側にかけて漸次大きく熱膨張し、最内周部32近傍は最大の熱膨張量となる。
Specifically, since the pressure in each compression chamber 20 increases sequentially from the compression chamber 20 on the outermost peripheral side toward the compression chamber 20 on the innermost peripheral portion 32 side, the compression chamber 20 on the innermost peripheral portion 32 side The temperature becomes higher than the compression chamber 20 on the outermost peripheral side, and the temperatures of the laps 14 and 16 also gradually increase from the outermost peripheral side to the innermost peripheral portion 32 side.
In addition, high-temperature and high-pressure lubricating oil for lubricating the unit 2, the bearing 24, and the like rises through an oil supply passage (not shown) that is drilled in the axial direction in the rotating shaft 26 and is supplied from the upper end of the rotating shaft 26. This is one of the factors that cause the innermost peripheral portion 32 side of each lap 14, 16 to be hotter than the outermost peripheral side. The lap portions 14 and 16 are thermally expanded by this temperature rise, and in particular, the concave surface portion 34 of the wrap 14 is gradually expanded greatly toward the innermost peripheral portion 32 side, and the vicinity of the innermost peripheral portion 32 has a maximum thermal expansion amount. It becomes.
 以上のように、本実施形態では、ラップ14の先端により形成される面が所定の曲率kとなる回転楕円面または球面をなす凹面部34を有することにより、凹面部34の凹面34aの曲率kを圧縮機の圧縮運転時におけるラップ14の熱膨張量に合わせ、圧縮運転時のラップ14と対向する鏡板面12aとの間のスラスト方向ギャップGを段差無く適正に保持することができ、ラップ14,16間のかじりや冷媒の漏れを確実に防止することができるため、圧縮機の圧縮効率及び耐久性を向上することができる。
 ここで、上述したように、圧縮室20の圧縮熱や潤滑油の熱により、ラップ14の最内周部32が最も高温となることから、ラップ14、ひいては鏡板10をラップ14の熱膨張に係る伝熱部と捉え、ラップ14の熱膨張に当該伝熱部を介して伝達される熱量が影響していると考えることもできる。そして、伝熱部の大きさに鑑みると、ラップ14の渦巻状に沿って伝達される熱量よりも鏡板10を介して最内周部32から放射状に伝達される熱量の方が多いことが想定される。従って、凹面部34を形成することにより、ラップ14の熱膨張量に即したスラスト方向ギャップGを保持することができ、ひいては圧縮機の圧縮効率及び耐久性の向上に大きく貢献する。
As described above, in the present embodiment, the curvature k of the concave surface 34a of the concave surface portion 34 is obtained by having the concave surface portion 34 having a spheroidal surface or a spherical surface in which the surface formed by the tip of the wrap 14 has a predetermined curvature k. Is matched to the thermal expansion amount of the wrap 14 during the compression operation of the compressor, and the thrust direction gap G between the wrap 14 and the end plate surface 12a facing the lap 14 during the compression operation can be properly maintained without any step. , 16 and the leakage of the refrigerant can be reliably prevented, so that the compression efficiency and durability of the compressor can be improved.
Here, as described above, the innermost peripheral portion 32 of the wrap 14 becomes the highest temperature due to the compression heat of the compression chamber 20 and the heat of the lubricating oil, so that the wrap 14 and eventually the end plate 10 are thermally expanded. It can be considered that the heat transfer part is concerned, and it can be considered that the heat quantity transmitted through the heat transfer part influences the thermal expansion of the wrap 14. In view of the size of the heat transfer section, it is assumed that the amount of heat transmitted radially from the innermost peripheral portion 32 via the end plate 10 is greater than the amount of heat transmitted along the spiral shape of the wrap 14. Is done. Therefore, by forming the concave surface portion 34, it is possible to maintain the thrust direction gap G in accordance with the thermal expansion amount of the wrap 14, which contributes greatly to improving the compression efficiency and durability of the compressor.
 また、凹面部34はラップ14の最内周部32が最小高さとなることにより、圧縮室20における圧縮熱により最も高温となるラップ14の最内周部32を最も大きくなる熱膨張量に合わせてスラスト方向ギャップGを更に適正に保持することができる。
 更に、曲率kは凹面部34がフラット部30と滑らかに連続するべく予め設定されることにより、スラスト方向ギャップGを確実に段差無く適正に保持することができる。
 更にまた、凹面部34は凹面加工治具38の凸加工面38aをラップ14の先端に押圧しながらラップ14を切削または研磨することにより形成されるため、ラップ14の渦巻き状に沿ってその先端に加工を施す場合に比して凹面部34を短時間で形成できるため、ラップ14の加工コスト、ひいては圧縮機の製造コストを低減しつつ圧縮機の圧縮効率及び耐久性を向上することができる。
Further, the concave portion 34 has the innermost peripheral portion 32 of the wrap 14 having the minimum height, so that the innermost peripheral portion 32 of the wrap 14 having the highest temperature due to the compression heat in the compression chamber 20 is matched with the largest amount of thermal expansion. Thus, the thrust direction gap G can be held more appropriately.
Furthermore, the curvature k is set in advance so that the concave surface portion 34 and the flat portion 30 are smoothly connected, so that the thrust direction gap G can be reliably held without any step.
Furthermore, since the concave surface portion 34 is formed by cutting or polishing the lap 14 while pressing the convex processing surface 38a of the concave processing jig 38 against the distal end of the wrap 14, the distal end thereof is formed along the spiral shape of the lap 14. Since the concave surface portion 34 can be formed in a short time compared with the case where the processing is performed, the compression efficiency and durability of the compressor can be improved while reducing the processing cost of the wrap 14 and thus the manufacturing cost of the compressor. .
 次に、本発明の第2実施形態について説明する。
 当該第2実施形態は、上記第1実施形態とは異なる凹面加工治具40が装着された凹面加工装置(加工装置)42を使用して、砥石による研削により凹面部34を形成するものであり、他は上記第1実施形態と同様の構成をなすため、主として凹面加工治具40及び凹面加工装置42について説明する。
 図5は、凹面加工装置42の要部を示した縦断面図であり、凹面加工装置42は、凹面加工治具40とクランプ機構44とから構成されている。
 クランプ機構44は、凹面加工治具40の下側において可動スクロール6をチャック固定した状態で回転しながら鉛直方向に上下運動可能に構成されている。
Next, a second embodiment of the present invention will be described.
In the second embodiment, a concave surface portion 34 is formed by grinding with a grindstone using a concave surface processing device (processing device) 42 equipped with a concave surface processing jig 40 different from the first embodiment. Other than that, the concave surface processing jig 40 and the concave surface processing apparatus 42 will be mainly described because the configuration is the same as that of the first embodiment.
FIG. 5 is a longitudinal sectional view showing the main part of the concave surface processing device 42, and the concave surface processing device 42 is composed of a concave surface processing jig 40 and a clamp mechanism 44.
The clamp mechanism 44 is configured to be movable up and down in the vertical direction while rotating in a state where the movable scroll 6 is fixed to the chuck below the concave surface processing jig 40.
 凹面加工治具40は、回転軸46とその加工先端に装着された砥石部(凸面部)48とから構成され、鉛直方向から所定の傾斜角θ(例えば約45°程度)にて傾斜した状態で回転軸46の軸心を中心としてクランプ機構44の回転方向とは逆向きに回転可能に構成されている。
 砥石部48は、例えばCBN(Cubic
Boron Nitride(立方晶窒化硼素))などのダイヤモンド並みの高硬度を有する材料から椀形状をなして形成され、砥石部48の径方向中心O’の周囲に凹面加工に際して生じる切削及び研磨くずの逃げ空間として中空部50が設けられている。
The concave surface processing jig 40 includes a rotating shaft 46 and a grindstone portion (convex surface portion) 48 attached to the processing tip, and is inclined at a predetermined inclination angle θ (for example, about 45 °) from the vertical direction. Thus, it is configured to be rotatable about the axis of the rotation shaft 46 in the direction opposite to the rotation direction of the clamp mechanism 44.
The grindstone 48 is, for example, CBN (Cubic
Boron Nitride (Cubic Boron Nitride), etc., is formed in a bowl shape from a material having a hardness as high as that of diamond, and escapes of cutting and polishing debris generated during concave processing around the radial center O ′ of the grindstone 48 A hollow portion 50 is provided as a space.
 このように構成される加工装置42は、クランプ機構44の回転運動、押圧運動、及び凹面加工治具40の回転運動の3運動の合成により、凹面加工治具40と可動スクロール6のラップ14とが一定の面接触状態を保ちながら凹面部34を形成する。
 詳しくは、先ず、可動スクロール6をラップ14が上側に向いた状態で鏡板10の外周面10bにてクランプ機構44にチャック固定する。このときの凹面加工治具40とラップ14とは、砥石部48がラップ14をその渦巻き中心Oを通過する境界線で分けたときのラップ半割領域52のみに面接触可能な位置関係を有している。
The processing apparatus 42 configured in this manner is configured by combining the concave surface processing jig 40 and the wrap 14 of the movable scroll 6 by combining the three motions of the rotational motion of the clamp mechanism 44, the pressing motion, and the rotational motion of the concave surface processing jig 40. The concave surface portion 34 is formed while maintaining a constant surface contact state.
Specifically, first, the movable scroll 6 is chuck-fixed to the clamp mechanism 44 on the outer peripheral surface 10b of the end plate 10 with the wrap 14 facing upward. The concave surface processing jig 40 and the lap 14 at this time have a positional relationship in which surface contact can be made only with the lap halved region 52 when the grindstone 48 divides the lap 14 by a boundary line passing through the spiral center O. is doing.
 次に、凹面加工治具40に向けてクランプ機構44を回転上昇させることにより、ラップ半割領域52が回転中の砥石部48に対して接触、押圧され、この押圧運動と同時にクランプ機構44が回転することによって、ラップ14が異なる領域において砥石部48と一定の面接触状態を保ちながら研削される。これにより、砥石部48の凸面48aの曲率k’と略同一となる曲率kの凹面34aを有する凹面部34が形成される。
 以上のように、第2実施形態では、上記第1実施形態の場合と同様に凹面部34を形成することができるため、ラップ14,16間のかじりや冷媒の漏れを確実に防止することができるため、圧縮機の圧縮効率及び耐久性を向上することができる。
Next, by rotating and raising the clamp mechanism 44 toward the concave surface processing jig 40, the lap halved area 52 is brought into contact with and pressed against the rotating grindstone 48, and simultaneously with this pressing movement, the clamp mechanism 44 is By rotating, the lap 14 is ground while maintaining a constant surface contact state with the grindstone 48 in different regions. Thereby, the concave surface part 34 which has the concave surface 34a of the curvature k which becomes substantially the same as the curvature k 'of the convex surface 48a of the grindstone part 48 is formed.
As described above, in the second embodiment, the concave surface portion 34 can be formed as in the case of the first embodiment, so that it is possible to reliably prevent galling between the wraps 14 and 16 and leakage of the refrigerant. Therefore, the compression efficiency and durability of the compressor can be improved.
 特に当該第2実施形態では、凹面加工治具40が装着された加工装置42を用いて凹面部34を形成することにより、凹面部34の寸法精度を確保しつつ凹面加工における加工時間を更に短縮することができるため、ラップ14の加工コスト、ひいては圧縮機の製造コストを更に低減しつつ圧縮機の圧縮効率及び耐久性を向上することができる。
 具体的には、上記第1実施形態の凹面加工治具38を使用する場合に比して、凹面加工において凹面加工治具40とクランプ機構44との互いの押圧運動に加え、これらの互いの回転運動が加わるため、凹面加工における加工時間を更に短縮することができる
 また、砥石部48がラップ半割領域52のみに面接触されることにより、上記第1実施形態の場合に比して、砥石部48とラップ14との接触領域を半減させることができるため、加工装置42の凹面加工における加工精度の誤差の影響を半減することができ、凹面部34の寸法精度を確保しつつ凹面加工における加工時間を短縮することができる。
In particular, in the second embodiment, by forming the concave surface portion 34 using the processing device 42 to which the concave surface processing jig 40 is mounted, the processing time in the concave surface processing is further shortened while ensuring the dimensional accuracy of the concave surface portion 34. Therefore, it is possible to improve the compression efficiency and durability of the compressor while further reducing the processing cost of the wrap 14 and thus the manufacturing cost of the compressor.
Specifically, in comparison with the case where the concave surface processing jig 38 of the first embodiment is used, in addition to the mutual pressing movement of the concave surface processing jig 40 and the clamp mechanism 44 in the concave surface processing, Since the rotational motion is added, the processing time in the concave surface processing can be further shortened. Further, when the grindstone portion 48 is in surface contact only with the lap half region 52, compared to the case of the first embodiment, Since the contact area between the grindstone 48 and the lap 14 can be halved, the influence of machining accuracy error in the concave machining of the machining device 42 can be halved, and the concave machining is performed while ensuring the dimensional accuracy of the concave 34. The processing time in can be shortened.
 更に、凹面加工治具40がクランプ機構44の回転方向とは逆向きに回転されることにより、砥石部48とラップ14との単位時間あたりの総接触面積を倍増させることができるため、凹面加工における加工時間をより一層短縮することができる。
 次に、本発明の第3実施形態について説明する。
 当該第3実施形態は、上記第1、第2実施形態とは異なり、切削加工治具60が装着された旋盤(加工装置)54を使用して凹面部34を形成するものであり、他は上記第1実施形態と同様の構成をなすため、主として旋盤54とこれによる凹面加工工程について説明する。
Further, since the concave surface processing jig 40 is rotated in the direction opposite to the rotation direction of the clamp mechanism 44, the total contact area per unit time between the grindstone portion 48 and the lap 14 can be doubled. The processing time in can be further reduced.
Next, a third embodiment of the present invention will be described.
In the third embodiment, unlike the first and second embodiments, a concave surface portion 34 is formed using a lathe (processing device) 54 to which a cutting jig 60 is attached. Since the same configuration as that of the first embodiment is made, the lathe 54 and the concave surface machining process using the lathe 54 will be mainly described.
 以下、本実施形態にて凹面部34を形成する場合の凹面加工工程について説明する。
 先ず、アルミ系材料からなる鏡板6に対して切削加工を施すことにより、先端がフラット面30aとなるフラット部30のみを有するラップ14を形成する。
 次に、図6に示される旋盤54のクランプ機構56に鏡板10を固定し(クランプ工程)、フラット部30の内周側に対して、ダイヤモンドなどの高硬度を有する刃部58を備えた切削加工治具60による切削加工を施す(切削加工機構、凹面加工工程)。
 この切削加工では、ラップ14の渦巻き中心Oを加工中心とし、切削加工治具60である例えば旋盤加工用のバイトやインサートチップの刃部58をラップ14の先端に押圧しながら切削または研磨することにより、フラット部30を最外周側のみ残して図6中の点線部分が椀形状に削られ、ラップ14の最内周部32側のみに凹面34aを有する凹面部34を形成している。
Hereinafter, the concave surface processing step when the concave surface portion 34 is formed in the present embodiment will be described.
First, the end plate 6 made of an aluminum-based material is cut to form the wrap 14 having only the flat portion 30 whose tip is the flat surface 30a.
Next, the end plate 10 is fixed to the clamp mechanism 56 of the lathe 54 shown in FIG. 6 (clamping process), and the cutting is provided with a blade portion 58 having a high hardness such as diamond on the inner peripheral side of the flat portion 30. Cutting with the processing jig 60 is performed (cutting mechanism, concave surface processing step).
In this cutting process, cutting or polishing is performed with the spiral center O of the lap 14 as the processing center and pressing the cutting tool 60, for example, a lathe cutting tool bit or an insert tip blade 58 against the tip of the lap 14. Thus, the flat line 30 is left only on the outermost peripheral side, the dotted line portion in FIG. 6 is cut into a bowl shape, and the concave surface portion 34 having the concave surface 34 a is formed only on the innermost peripheral portion 32 side of the wrap 14.
 ここで、クランプ機構56は、鏡板10の鏡板面10aの反対側の面である背面10bを鏡板面10a側に向けて押圧する押圧機構(押圧手段)62と、この押圧機構62により押圧された鏡板10を鏡板面10aにて支持する支持部材64とから構成されている。
 支持部材64は、鏡板10の径方向の移動を阻止する側部64aと、側部64aからラップ14の最内周部32側に向けて屈曲される鍔部64bとから構成され、鍔部64bは押圧機構62により鏡板面10aが当接される支持面66を有している。
 一方、押圧機構62は、ボス22の端面22aに当接される当接部62aと、側部64aの内周に固定される固定部62bと、当接部62aと固定部62bとを連結し、当接部62aを介して鏡板10を支持面66に対して所定の弾性力で押圧するばね68とから構成されている。
Here, the clamp mechanism 56 is pressed by a pressing mechanism (pressing means) 62 that presses the back surface 10b of the end plate 10 opposite to the end plate surface 10a toward the end plate surface 10a, and the pressing mechanism 62. It comprises a support member 64 that supports the end plate 10 on the end plate surface 10a.
The support member 64 includes a side portion 64a that prevents the end plate 10 from moving in the radial direction, and a flange portion 64b that is bent from the side portion 64a toward the innermost peripheral portion 32 side of the wrap 14. Has a support surface 66 against which the end plate surface 10a abuts by the pressing mechanism 62.
On the other hand, the pressing mechanism 62 connects the contact portion 62a that is in contact with the end surface 22a of the boss 22, the fixed portion 62b that is fixed to the inner periphery of the side portion 64a, and the contact portion 62a and the fixed portion 62b. The spring 68 presses the end plate 10 against the support surface 66 with a predetermined elastic force via the contact portion 62a.
 図7は支持部材64を図6のA方向からみた平面図であり、この図から明らかなように、支持部材64には鍔部64bが略等間隔に3箇所に形成されており、押圧機構62により押圧された鏡板10はその鏡板面10aが3箇所の支持面66に当接されて支持される。また、支持部材64の内径Diは側部64a内に鏡板10を挿入可能な大きさであって、押圧機構62によって鏡板10が押圧されても鏡板10をその径方向にがたつかない程度に規制して固定可能なはめあいに設定されている。なお、このようながたつきを防止するために、鏡板10の外周を若干チャック固定する効果が得られるように内径Diを設定しても良い。 FIG. 7 is a plan view of the support member 64 as viewed from the direction A in FIG. 6. As is clear from this figure, the support member 64 has three flange portions 64b formed at substantially equal intervals, and a pressing mechanism. The end plate 10 pressed by 62 is supported with its end plate surface 10 a abutting against the three support surfaces 66. The inner diameter Di of the support member 64 is such that the end plate 10 can be inserted into the side portion 64a, and even if the end plate 10 is pressed by the pressing mechanism 62, the end plate 10 does not rattle in the radial direction. Fits that can be regulated and fixed. In order to prevent such rattling, the inner diameter Di may be set so that the outer periphery of the end plate 10 is slightly chucked.
 以上のように、第3実施形態では、上記第1、第2実施形態の場合と同様に凹面部34を形成することができるため、ラップ14,16間のかじりや冷媒の漏れを確実に防止することができるため、圧縮機の圧縮効率及び耐久性を向上することができる。
 特に当該第3実施形態では、旋盤54は鏡板10をラップ14の高さ方向のみで規制し固定するクランプ機構56を備え、旋盤54により凹面部34を加工するための凹面加工工程では、クランプ機構56により固定された鏡板10のラップ14を同一の切削加工治具60を用いて所定のラップ高さに加工して凹面部34を形成する。これにより、クランプ機構56による鏡板10のたわみ変形を防止して切削加工の加工基準面を少なくとも平坦化することができ、凹面加工工程を同一の切削加工治具44を用いた1工程とすることができるため、ラップ高さを容易にして高精度に加工することができ、ひいてはラップ14の加工コストを低減することができる。
As described above, in the third embodiment, since the concave surface portion 34 can be formed in the same manner as in the first and second embodiments, it is possible to reliably prevent galling between the wraps 14 and 16 and leakage of the refrigerant. Therefore, the compression efficiency and durability of the compressor can be improved.
In particular, in the third embodiment, the lathe 54 includes a clamp mechanism 56 that restricts and fixes the end plate 10 only in the height direction of the lap 14, and in the concave surface machining step for machining the concave surface portion 34 by the lathe 54, the clamp mechanism The concave portion 34 is formed by processing the lap 14 of the end plate 10 fixed by 56 to a predetermined lap height using the same cutting jig 60. Thereby, the bending deformation of the end plate 10 by the clamp mechanism 56 can be prevented to at least flatten the processing reference surface of the cutting process, and the concave surface processing step is made one step using the same cutting jig 44. Therefore, it is possible to easily process the lap with high accuracy and to reduce the processing cost of the wrap 14.
 また、クランプ機構56が押圧機構62と、この押圧機構62により押圧された鏡板10を鏡板面10aの3箇所に当接させて支持する支持部材64とからなることにより、鏡板10を3点支持にて確実に平坦化して固定することができ、更に、予め高精度に平坦化された鏡板面10aを切削加工の加工基準面とすることができるため、ラップ高さを更に高精度に加工することができる。
 更に、支持部材64が側部64aと鍔部64bとから構成され、鍔部64bは押圧機構62により鏡板面10aが当接される支持面66を有することにより、鏡板10の径方向の移動を阻止しつつ支持部材64による鏡板10の支持を面接触により行うことができるため、ラップ高さをより一層高精度に加工することができる。
The clamp mechanism 56 includes a pressing mechanism 62 and a supporting member 64 that supports the end plate 10 pressed by the pressing mechanism 62 in contact with three positions on the end plate surface 10a, thereby supporting the end plate 10 at three points. The end plate surface 10a that has been flattened with high accuracy in advance can be used as the processing reference surface for cutting, so that the lap height is processed with higher accuracy. be able to.
Further, the support member 64 includes a side portion 64a and a flange portion 64b. The flange portion 64b has a support surface 66 with which the end plate surface 10a is brought into contact with the pressing mechanism 62, thereby allowing the end plate 10 to move in the radial direction. Since the end plate 10 can be supported by the surface contact with the support member 64 while blocking, the wrap height can be processed with higher accuracy.
 更にまた、押圧機構62は、ばね68による所定の弾性力により鏡板10を支持面66に向けて押圧することにより、ばね68を変えるだけで鏡板10に対する押圧力を容易に調整することができるため、ラップ高さを容易にして高精度に加工することができて好ましい。
 以上で本発明の一実施形態についての説明を終えるが、本発明は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
 例えば、上記各実施形態では、可動スクロール6のラップ14に凹面部34を形成することとしているが、ラップ14の熱膨張が吸収され、スラスト方向ギャップGが適正に保持されれば良く、ラップ14をフラット部30のみで形成し、固定スクロール8のラップ16に凹面部を形成しても良い。この場合にも上記と同様に圧縮機の製造コストを低減しつつその圧縮効率及び耐久性を向上することができるという効果を奏する。
Furthermore, the pressing mechanism 62 can easily adjust the pressing force against the end plate 10 by simply changing the spring 68 by pressing the end plate 10 toward the support surface 66 by a predetermined elastic force by the spring 68. It is preferable that the wrap height can be easily made and processing can be performed with high accuracy.
Although the description of one embodiment of the present invention has been completed above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
For example, in each of the above-described embodiments, the concave surface portion 34 is formed on the wrap 14 of the movable scroll 6. However, it is sufficient that the thermal expansion of the wrap 14 is absorbed and the thrust direction gap G is appropriately maintained. May be formed only by the flat portion 30, and a concave surface portion may be formed on the wrap 16 of the fixed scroll 8. In this case as well, it is possible to improve the compression efficiency and durability while reducing the manufacturing cost of the compressor.
 また、上記第3実施形態では、図7に示されるように、鏡板10を3点支持にて確実に平坦化して固定するために、支持部材64には鍔部64bが3箇所に形成されているが、これに限らず、鏡板10を確実に平坦化して固定することができるのであれば、3箇所以上に形成しても良い。また、支持面66を形成せずに点接触にて鏡板10を支持するようにしても良い。
 更に、上記第3実施形態では、押圧機構62にばね68による弾性力を利用しているが、これに限らず、例えばポンプによる加圧装置を設け、これにより加圧された所定の空気圧により鏡板10を支持面66に向けて押圧するようにしても、空気圧の設定を変えるだけで鏡板10に対する押圧力を容易にして調整することができる。
Further, in the third embodiment, as shown in FIG. 7, the support member 64 is provided with three flange portions 64 b in order to securely flatten and fix the end plate 10 by three-point support. However, the present invention is not limited to this, and the end plate 10 may be formed at three or more locations as long as the end plate 10 can be reliably flattened and fixed. Further, the end plate 10 may be supported by point contact without forming the support surface 66.
Furthermore, in the third embodiment, the elastic force of the spring 68 is used for the pressing mechanism 62. However, the present invention is not limited to this. For example, a pressurizing device using a pump is provided, and the end plate is pressed by a predetermined air pressure. Even if 10 is pressed toward the support surface 66, the pressing force on the end plate 10 can be easily adjusted by simply changing the setting of the air pressure.

Claims (15)

  1.  鏡板の鏡板面に渦巻き状のラップが対をなしてそれぞれ立設された固定及び可動スクロールを備え、前記固定スクロールに対し前記可動スクロールが公転旋回運動することにより、前記ラップ間に作動流体の圧縮室を形成し、該圧縮室が前記ラップの最内周部に向けてその容積を減少させながら移動するスクロール型流体機械であって、
     前記可動スクロールまたは前記固定スクロールのうちの少なくとも一方のスクロールの前記ラップは、該ラップの先端により形成される面が所定の曲率となる回転楕円面または球面をなす凹面部を有することを特徴とするスクロール型流体機械。
    A fixed and movable scroll each having a pair of spiral wraps standing on the end plate surface of the end plate are provided, and the movable scroll revolves with respect to the fixed scroll to compress the working fluid between the wraps. A scroll type fluid machine that forms a chamber and moves while reducing its volume toward the innermost peripheral portion of the wrap,
    The wrap of at least one of the movable scroll and the fixed scroll has a spheroid surface or a concave surface portion having a spherical surface with a predetermined curvature on a surface formed by a tip of the wrap. Scroll type fluid machine.
  2.  前記凹面部は、該凹面部を有する前記ラップの前記最内周部が最小ラップ高さとなることを特徴とする請求項1に記載のスクロール型流体機械。 The scroll fluid machine according to claim 1, wherein the concave surface portion has a minimum lap height at the innermost peripheral portion of the wrap having the concave surface portion.
  3.  前記凹面部を有する前記ラップは、前記凹面部よりも外周側に最大ラップ高さとなるフラット部を有し、
     前記所定の曲率は、前記ラップの先端において前記凹面部を前記フラット部と滑らかに連続させるべく予め設定されることを特徴とする請求項1または2に記載のスクロール型流体機械。
    The wrap having the concave surface portion has a flat portion having a maximum lap height on the outer peripheral side than the concave surface portion,
    3. The scroll fluid machine according to claim 1, wherein the predetermined curvature is set in advance so that the concave surface portion is smoothly continuous with the flat portion at a tip end of the wrap.
  4.  鏡板の鏡板面に渦巻き状のラップが対をなしてそれぞれ立設された固定及び可動スクロールを備え、前記固定スクロールに対し前記可動スクロールが公転旋回運動することにより、前記ラップ間に作動流体の圧縮室を形成し、該圧縮室が前記ラップの最内周部に向けてその容積を減少させながら移動するスクロール型流体機械の加工方法であって、
     前記可動スクロールまたは前記固定スクロールのうちの少なくとも一方のスクロールの前記ラップに、該ラップの先端により形成される面が所定の曲率となる回転楕円面または球面をなす凹面部を加工することを特徴とするスクロール型流体機械の加工方法。
    A fixed and movable scroll each having a pair of spiral wraps standing on the end plate surface of the end plate are provided, and the movable scroll revolves with respect to the fixed scroll to compress the working fluid between the wraps. Forming a chamber, wherein the compression chamber moves toward the innermost periphery of the wrap while reducing its volume,
    The wrap of at least one of the movable scroll and the fixed scroll is processed with a spheroid or spherical concave surface having a predetermined curvature on the surface formed by the tip of the wrap. Method of processing a scroll type fluid machine.
  5.  凸面部を備えた凹面加工治具を使用し、該凸面部と前記ラップとの互いの押圧運動によって該ラップを切削または研磨することにより前記凹面部を形成する凹面加工工程を含むことを特徴とする請求項4に記載のスクロール型流体機械の加工方法。 Using a concave surface processing jig having a convex surface portion, and including a concave surface processing step of forming the concave surface portion by cutting or polishing the lap by a pressing motion between the convex surface portion and the lap. A processing method for a scroll type fluid machine according to claim 4.
  6.  前記可動スクロールまたは前記固定スクロールのうち少なくとも一方の前記鏡板を前記ラップの高さ方向のみで規制し固定するクランプ工程と、
     該クランプ工程で固定された該鏡板の該ラップを同一の切削加工治具にて所定のラップ高さに加工して前記凹面部を形成する凹面加工工程と、からなることを特徴とする請求項4に記載のスクロール型流体機械の加工方法。
    A clamping step of restricting and fixing at least one of the end plates of the movable scroll or the fixed scroll only in the height direction of the wrap;
    The concave surface processing step of forming the concave surface portion by processing the lap of the end plate fixed in the clamping step to a predetermined lap height with the same cutting processing jig. 5. A processing method of the scroll type fluid machine according to 4.
  7.  鏡板の鏡板面に渦巻き状のラップが対をなしてそれぞれ立設された固定及び可動スクロールを備え、前記固定スクロールに対し前記可動スクロールが公転旋回運動することにより、前記ラップ間に作動流体の圧縮室を形成し、該圧縮室が前記ラップの最内周部に向けてその容積を減少させながら移動するスクロール型流体機械の加工装置であって、
     前記可動スクロールまたは前記固定スクロールのうちの少なくとも一方のスクロールの前記ラップに、該ラップの先端により形成される面が所定の曲率となる回転楕円面または球面をなす凹面部を加工することを特徴とするスクロール型流体機械の加工装置。
    A fixed and movable scroll each having a pair of spiral wraps standing on the end plate surface of the end plate are provided, and the movable scroll revolves with respect to the fixed scroll to compress the working fluid between the wraps. Forming a chamber, and the compression chamber moves toward the innermost peripheral portion of the wrap while reducing its volume, and is a processing device for a scroll type fluid machine,
    The wrap of at least one of the movable scroll and the fixed scroll is processed with a spheroid or spherical concave surface having a predetermined curvature on the surface formed by the tip of the wrap. Scroll type fluid machine processing equipment.
  8.  凸面部を備え、該凸面部と前記ラップとの互いの押圧運動によって該ラップを切削または研磨することにより前記凹面部を形成する凹面加工治具と、前記凹面部が形成される前記ラップを前記凹面加工治具側に向けた状態で前記スクロールを固定するクランプ機構とを備え、
     前記凹面加工治具及び前記クランプ機構は、前記押圧運動の方向に交差する向きに回転可能に構成され、
     前記凹面加工治具と前記クランプ機構との互いの前記押圧運動及び回転運動の合成によって、前記凸面部と前記ラップとの一定の面接触状態を保ちながら前記ラップを切削または研磨することにより前記凹面部を形成することを特徴とする請求項7に記載のスクロール型流体機械の加工装置。
    A concave surface processing jig provided with a convex surface portion, and forming the concave surface portion by cutting or polishing the lap by a mutual pressing movement between the convex surface portion and the lap, and the lap on which the concave surface portion is formed A clamp mechanism for fixing the scroll in a state facing the concave surface processing jig side,
    The concave surface processing jig and the clamp mechanism are configured to be rotatable in a direction crossing the direction of the pressing motion,
    The concave surface is obtained by cutting or polishing the lap while maintaining a constant surface contact state between the convex surface portion and the lap by combining the pressing motion and the rotational motion of the concave surface processing jig and the clamp mechanism. The processing device of the scroll type fluid machine according to claim 7, wherein a part is formed.
  9.  前記凹面加工治具は、前記押圧運動の方向から所定の傾斜角にて傾斜した状態でその軸心を中心として回転可能に構成され、
     前記凸面部は、前記ラップをその渦巻き中心を通過する境界線で分けたときのラップ半割領域のみに面接触されることを特徴とする請求項8に記載のスクロール型流体機械の加工装置。
    The concave surface processing jig is configured to be rotatable about its axis in a state inclined at a predetermined inclination angle from the direction of the pressing motion,
    9. The processing device for a scroll type fluid machine according to claim 8, wherein the convex surface portion is in surface contact only with a wrap half-split region when the wrap is divided by a boundary line passing through the spiral center.
  10.  前記凹面加工治具は、前記クランプ機構の回転方向とは逆向きに回転されることを特徴とする請求項8または9に記載のスクロール型流体機械の加工装置。 The processing apparatus for a scroll type fluid machine according to claim 8 or 9, wherein the concave surface processing jig is rotated in a direction opposite to a rotation direction of the clamp mechanism.
  11.  前記可動スクロールまたは前記固定スクロールのうち少なくとも一方の前記鏡板を前記ラップの高さ方向のみで規制し固定するクランプ機構と、該クランプ機構により固定された該鏡板の該ラップを同一の切削加工治具にて所定のラップ高さに加工して前記凹面部を形成する切削加工機構とを備えることを特徴とする請求項7に記載のスクロール型流体機械の加工装置。 A clamp mechanism that restricts and fixes at least one of the end plate of the movable scroll or the fixed scroll only in the height direction of the wrap, and the same cutting jig for the lap of the end plate fixed by the clamp mechanism The processing apparatus of the scroll type fluid machine according to claim 7, further comprising: a cutting mechanism configured to form the concave surface portion by machining to a predetermined lap height.
  12.  前記クランプ機構は、前記鏡板の前記鏡板面の反対側の面である背面を該鏡板面側に向けて押圧する押圧手段と、該押圧手段により押圧された該鏡板を該鏡板面の少なくとも3箇所以上に当接させて支持する支持部材とからなることを特徴とする請求項11に記載のスクロール型流体機械の加工装置。 The clamp mechanism includes: a pressing unit that presses a back surface of the end plate opposite to the end plate surface toward the end plate surface side; and the end plate pressed by the pressing unit is at least three places on the end plate surface. The processing apparatus for a scroll type fluid machine according to claim 11, comprising: a support member that contacts and supports the above.
  13.  前記支持部材は、前記鏡板の径方向の移動を阻止する側部と、該側部から前記ラップの前記最内周部に向けて屈曲される鍔部とから構成され、該鍔部は前記押圧手段により前記鏡板面が当接される支持面を有することを特徴とする請求項12に記載のスクロール型流体機械の加工装置。 The support member includes a side portion that prevents the end plate from moving in the radial direction, and a flange portion that is bent from the side portion toward the innermost peripheral portion of the wrap. The processing apparatus for a scroll type fluid machine according to claim 12, further comprising a support surface with which the end plate surface is brought into contact with the means.
  14.  前記押圧手段は、ばねによる所定の弾性力により前記鏡板を前記支持面に向けて押圧することを特徴とする請求項13に記載のスクロール型流体機械の加工装置。 14. The processing apparatus for a scroll type fluid machine according to claim 13, wherein the pressing means presses the end plate toward the support surface by a predetermined elastic force by a spring.
  15.  前記押圧手段は、所定の空気圧により前記鏡板を前記支持面に向けて押圧することを特徴とする請求項13に記載のスクロール型流体機械の加工装置。 14. The processing apparatus for a scroll type fluid machine according to claim 13, wherein the pressing means presses the end plate toward the support surface with a predetermined air pressure.
PCT/JP2009/051980 2008-02-14 2009-02-05 Scroll type fluid machine, and processing method and processing equipment therefor WO2009101894A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008033026 2008-02-14
JP2008-033026 2008-02-14
JP2008-080520 2008-03-26
JP2008080520A JP2009235939A (en) 2008-03-26 2008-03-26 Processing equipment and processing method for scroll type fluid machine
JP2008265216A JP2009216079A (en) 2008-02-14 2008-10-14 Scroll type fluid machine, processing method and processing device therefor
JP2008-265216 2008-10-14

Publications (1)

Publication Number Publication Date
WO2009101894A1 true WO2009101894A1 (en) 2009-08-20

Family

ID=40956926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051980 WO2009101894A1 (en) 2008-02-14 2009-02-05 Scroll type fluid machine, and processing method and processing equipment therefor

Country Status (1)

Country Link
WO (1) WO2009101894A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105834797A (en) * 2015-01-13 2016-08-10 吴昊劼 Machining tooling for scroll plate of scroll compressor
CN108856733A (en) * 2018-08-17 2018-11-23 安徽纽威吉新能源汽车技术有限公司 A kind of air compressor processing unit (plant)
EP4219947A3 (en) * 2023-06-15 2024-02-07 Pfeiffer Vacuum Technology AG Scroll pump with optimized scroll geometry

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997284U (en) * 1982-12-21 1984-07-02 株式会社豊田自動織機製作所 Joint structure of scroll members in scroll compressor
JPS6429283U (en) * 1987-08-18 1989-02-21
JPH04322957A (en) * 1991-04-17 1992-11-12 Terutoshi Yomo Internal spherical surface honing method
JP2000317782A (en) * 1998-07-06 2000-11-21 Yoshiaki Nagaura Piezoelectric element and its machining method
JP2001150320A (en) * 1999-11-24 2001-06-05 Olympus Optical Co Ltd Grinding wheel for creating spherical surface
JP2005214174A (en) * 2004-02-02 2005-08-11 Nobuo Abe Sealed scroll compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997284U (en) * 1982-12-21 1984-07-02 株式会社豊田自動織機製作所 Joint structure of scroll members in scroll compressor
JPS6429283U (en) * 1987-08-18 1989-02-21
JPH04322957A (en) * 1991-04-17 1992-11-12 Terutoshi Yomo Internal spherical surface honing method
JP2000317782A (en) * 1998-07-06 2000-11-21 Yoshiaki Nagaura Piezoelectric element and its machining method
JP2001150320A (en) * 1999-11-24 2001-06-05 Olympus Optical Co Ltd Grinding wheel for creating spherical surface
JP2005214174A (en) * 2004-02-02 2005-08-11 Nobuo Abe Sealed scroll compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105834797A (en) * 2015-01-13 2016-08-10 吴昊劼 Machining tooling for scroll plate of scroll compressor
CN105834797B (en) * 2015-01-13 2018-01-30 吴昊劼 A kind of processing tool of Machining of Vortex Disk of Vortex Compressor
CN108856733A (en) * 2018-08-17 2018-11-23 安徽纽威吉新能源汽车技术有限公司 A kind of air compressor processing unit (plant)
EP4219947A3 (en) * 2023-06-15 2024-02-07 Pfeiffer Vacuum Technology AG Scroll pump with optimized scroll geometry

Similar Documents

Publication Publication Date Title
JP3829607B2 (en) Oscillating piston compressor and method for manufacturing the piston
WO2006006297A1 (en) Rotary fluid machine
WO2009101894A1 (en) Scroll type fluid machine, and processing method and processing equipment therefor
US7540726B2 (en) Scroll compressor and method for machining scroll wrap
CN108397388A (en) Scroll compressor
JP3398795B2 (en) Processing method of piston for compressor
JP2010084592A (en) Scroll fluid machine
JP2009216079A (en) Scroll type fluid machine, processing method and processing device therefor
JP2009024664A (en) Scroll fluid machine
JP2009235939A (en) Processing equipment and processing method for scroll type fluid machine
JP4754988B2 (en) Scroll compressor
JP2014001678A (en) Scroll fluid machine
JPH11190287A (en) Scroll type fluid machine
JP2005030232A (en) Rotary compressor, and method for processing cylinder therein
JP7503932B2 (en) Tool holder, machining machine having the tool holder, and method for machining scroll compressor parts using the tool holder
KR100186846B1 (en) Wave cam type compressor
EP0435815B1 (en) Lapping of involute spiral scroll element
JP3797048B2 (en) Hermetic compressor and method of processing shoe
CN113653722B (en) Shaft, apparatus including the same, and machining method for the same
KR0179672B1 (en) Manufacturing method of wave cam for a compressor
CN1073236A (en) The end mill that sealed compressor driven by electric-motor, scroll compressor and processing vortex guide blade are used
JP2000205153A (en) Scroll compressor
JP2003003967A (en) Rotary piston type compressor and refrigerator or air conditioner using this compressor
JP2013141736A (en) Spherical surface grinding device and grinding method
JP2021171827A (en) Tool holder, processing machine including tool holder and method for processing scroll compressor component using tool holder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09709909

Country of ref document: EP

Kind code of ref document: A1