JPH04293529A - Production of hollow fiber membrane - Google Patents

Production of hollow fiber membrane

Info

Publication number
JPH04293529A
JPH04293529A JP13078991A JP13078991A JPH04293529A JP H04293529 A JPH04293529 A JP H04293529A JP 13078991 A JP13078991 A JP 13078991A JP 13078991 A JP13078991 A JP 13078991A JP H04293529 A JPH04293529 A JP H04293529A
Authority
JP
Japan
Prior art keywords
hollow fiber
gas
porous
fiber membrane
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13078991A
Other languages
Japanese (ja)
Other versions
JP2592725B2 (en
Inventor
Yasushi Shimomura
下村 泰志
Masahiko Yamaguchi
正彦 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP13078991A priority Critical patent/JP2592725B2/en
Publication of JPH04293529A publication Critical patent/JPH04293529A/en
Application granted granted Critical
Publication of JP2592725B2 publication Critical patent/JP2592725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To simply and efficiently produce a hollow fiber membrane used in the separation of gas in the gas replacement or oxygen enrichment in an oxygenator. CONSTITUTION:Hollow fiber composed of a thermoplastic resin is partially dissolved in the vicinity of the outer surface thereof and subsequently solidified to be stretched to produce a hollow fiber membrane composed of a double-layer structure of a porous layer and a pore free dense layer and extremely excellent in gas replacing capacity and gas separating capacity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、人工肺等に於けるガス
交換或いは酸素富化等に於けるガス分離などに用いられ
る中空糸膜を簡便に、且つ、効率よく製造する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for simply and efficiently producing hollow fiber membranes used for gas exchange in oxygenators and gas separation in oxygen enrichment.

【0002】0002

【従来の技術】熱可塑性樹脂からなる中空糸の管壁に多
数の微細孔が形成された多孔質中空糸膜は、例えば、水
処理等に於ける濾過膜、血漿分離等に於ける分離膜或い
は人工肺等に於けるガス分離膜など各種技術分野に於い
て利用されている。多孔質中空糸膜の製法としては、例
えば、易溶解性物質を混合分散した樹脂を中空糸に成形
した後、溶媒により易溶解性物質を溶解除去して管壁に
多数の微細孔を形成する方法或いは熱可塑性の結晶性樹
脂を中空糸とし、これを熱処理した後延伸することによ
り、管壁に多数の微細孔を形成する方法などがよく知ら
れている。
[Prior Art] Porous hollow fiber membranes, in which a large number of micropores are formed in the tube wall of hollow fibers made of thermoplastic resin, are used, for example, as filtration membranes in water treatment, separation membranes in plasma separation, etc. Alternatively, it is used in various technical fields such as gas separation membranes in artificial lungs and the like. Porous hollow fiber membranes can be manufactured by, for example, forming a resin in which easily soluble substances are mixed and dispersed into hollow fibers, and then dissolving and removing the easily soluble substances with a solvent to form a large number of micropores in the tube wall. A well-known method is to form a large number of micropores in a tube wall by forming a thermoplastic crystalline resin into a hollow fiber, heat treating the fiber, and then stretching the fiber.

【0003】種々の中空糸膜の中で、人工肺用のガス交
換膜として、ポリプロピレンからなる多孔質中空糸膜が
よく知られている。それらのポリプロピレン製多孔質中
空糸膜は、その微細孔が、透過する気体分子に比して著
しく大きいため、気体は体積流として微細孔を透過する
。又、人工肺用のガス交換膜としては、均質膜もよく知
られており、透過する気体分子が膜に溶解、拡散するこ
とによってガスの移動が行われる。その代表的なものに
ポリジメチルシロキサンゴムからなる均質膜があり、製
品化されている。更に、膜素材の持つ気体の種類による
分離度の差を利用したガス分離膜もあり、これらは極め
て複雑な湿式紡糸法により製造されている。
Among various hollow fiber membranes, porous hollow fiber membranes made of polypropylene are well known as gas exchange membranes for oxygenators. Since the micropores of these polypropylene porous hollow fiber membranes are significantly larger than the gas molecules that permeate, the gas passes through the micropores as a volumetric flow. Homogeneous membranes are also well known as gas exchange membranes for oxygenators, and gas movement is performed by dissolving and diffusing gas molecules passing through the membrane. A typical example is a homogeneous membrane made of polydimethylsiloxane rubber, which has been commercialized. Furthermore, there are also gas separation membranes that utilize the difference in separation degree depending on the type of gas possessed by the membrane material, and these are manufactured using extremely complicated wet spinning methods.

【0004】0004

【発明の解決すべき課題】開心術の際等に応用される人
工肺として、多孔質中空糸膜を用いた膜型人工肺が広く
普及している。これらの多孔質中空糸膜を用いた人工肺
は、開心術時のように比較的短時間の使用では全く問題
なく使用されている。しかし、肺不全の治療のように人
工肺の使用が長期に渡る場合は、その管壁の微細孔から
血漿が漏洩するという問題がある。
[Problems to be Solved by the Invention] Membrane type oxygenators using porous hollow fiber membranes are widely used as oxygenators used in open heart surgery and the like. Artificial lungs using these porous hollow fiber membranes have been used without any problems for relatively short periods of time, such as during open heart surgery. However, when an artificial lung is used for a long period of time, such as in the treatment of lung failure, there is a problem that plasma leaks from the micropores in the tube wall.

【0005】又、膜素材の持つ気体の種類による分離度
の差を利用したガス分離膜は、そのガス分離効率を上げ
るため、ガス分離を行う層を可能な限り薄くする必要が
あり、且つ、機械的強度を維持する必要もあり、多孔質
層(コア層)と緻密層(スキン層)とが必要となる。そ
のような膜を製造するためには、複雑な工程及び複雑な
条件による湿式紡糸法を採用しなければならない。
[0005] In addition, in a gas separation membrane that utilizes the difference in separation degree depending on the type of gas possessed by the membrane material, in order to increase its gas separation efficiency, the layer for gas separation must be made as thin as possible, and It is also necessary to maintain mechanical strength, and a porous layer (core layer) and a dense layer (skin layer) are required. In order to manufacture such membranes, a wet spinning method with complicated processes and complicated conditions must be employed.

【0006】[0006]

【課題を解決するための手段】本発明の中空糸膜の製造
法は、中空糸を延伸することにより管壁に多数の微細孔
を形成する工程を含む中空糸膜の製造法に於いて、紡糸
した中空糸の外表面を溶剤と接触させることにより部分
的に溶解させ、凝固後、延伸することを特徴とする。こ
の製造法により、多孔質中空糸膜の外表面に、無孔又は
極めて孔の存在が少ない層或いは多孔質層に比して径の
小さい孔が存在する緻密層が形成される。
[Means for Solving the Problems] The method for manufacturing a hollow fiber membrane of the present invention includes the step of forming a large number of micropores in a tube wall by drawing a hollow fiber. It is characterized in that the outer surface of the spun hollow fibers is brought into contact with a solvent to partially dissolve it, solidified, and then stretched. By this manufacturing method, a layer with no pores or very few pores, or a dense layer with pores smaller in diameter than a porous layer is formed on the outer surface of the porous hollow fiber membrane.

【0007】本発明は、延伸法により多孔質中空糸膜を
製造する場合、原中空糸の配向状態が、多孔質膜の空孔
率或いは微細孔の形状、大きさ等に強く影響を及ぼすと
いう知見に基づいている。この観点から、配向状態の良
好な原中空糸を製造し、その外表面を一旦溶剤に溶解し
た後、凝固することにより、外表面近傍のみを無配向或
いは極めて低い配向状態としているものである。このよ
うな原中空糸を延伸すれば、外表面近傍は無孔等の状態
となり、内部の通常の多孔質状態となる。
[0007] The present invention is based on the fact that when a porous hollow fiber membrane is produced by a stretching method, the orientation state of the raw hollow fibers has a strong influence on the porosity of the porous membrane or the shape and size of the micropores. Based on knowledge. From this point of view, raw hollow fibers with good orientation are produced, and the outer surface is once dissolved in a solvent and then solidified, so that only the vicinity of the outer surface has no orientation or extremely low orientation. When such raw hollow fibers are stretched, the vicinity of the outer surface becomes non-porous, and the inside becomes normally porous.

【0008】人工肺用の中空糸膜の場合、緻密層は無孔
としてもよいが、ガス交換能と血漿漏洩との兼ね合いで
必ずしも無孔にする必要はない。又、ガス分離用の膜の
場合は無孔であることが好ましい。緻密層は無孔の場合
は可能な限り薄いものが好ましく、0.1〜20ミクロ
ン、更には0.1〜10ミクロンの範囲が望ましい。
[0008] In the case of a hollow fiber membrane for an oxygenator, the dense layer may be non-porous, but it is not necessarily necessary to make it non-porous due to the balance between gas exchange ability and plasma leakage. Further, in the case of a membrane for gas separation, it is preferable that the membrane is non-porous. When the dense layer is non-porous, it is preferably as thin as possible, and is preferably in the range of 0.1 to 20 microns, more preferably 0.1 to 10 microns.

【0009】中空糸膜を形成する素材として使用される
熱可塑性樹脂としては、低密度ポリエチレン、高密度ポ
リエチレン、ポリプロピレン、ポリ(4−メチル−ペン
テン−1)等のポリオレフィンが好適である。使用する
熱可塑性樹脂の分子量は紡糸可能であれば特に限定され
ないが、原中空糸の紡糸効率、生産性等を考慮すると、
例えば、ポリプロピレンの場合、メルトフローインデッ
クスで表して0.5〜40g/10分程度のものが好ま
しい。
As the thermoplastic resin used as the material for forming the hollow fiber membrane, polyolefins such as low density polyethylene, high density polyethylene, polypropylene, and poly(4-methyl-pentene-1) are suitable. The molecular weight of the thermoplastic resin used is not particularly limited as long as it can be spun, but considering the spinning efficiency, productivity, etc. of the raw hollow fiber,
For example, in the case of polypropylene, the melt flow index is preferably about 0.5 to 40 g/10 minutes.

【0010】原中空糸は従来公知の方法によって製造で
きる。望ましい構造の中空糸膜を得るための紡糸温度は
熱可塑性樹脂の種類によって異なるが、例えば、ポリプ
ロピレンでは通常170〜300℃、好ましくは190
〜270℃、高密度ポリエチレンでは通常150〜30
0℃、好ましくは160〜270℃、ポリ(4−メチル
−ペンテン−1)では通常260〜330℃、好ましく
は270〜300℃の範囲である。
[0010] Raw hollow fibers can be produced by conventionally known methods. The spinning temperature for obtaining a hollow fiber membrane with a desired structure varies depending on the type of thermoplastic resin, but for example, for polypropylene, it is usually 170 to 300°C, preferably 190°C.
~270℃, usually 150-30℃ for high density polyethylene
For poly(4-methyl-pentene-1), the temperature is usually 260-330°C, preferably 270-300°C.

【0011】原中空糸を延伸する方法としては、特定の
温度範囲で一段又は多段延伸する方法、例えば、室温近
傍で延伸した後、熱可塑性樹脂の融点より数℃〜十数℃
低い温度範囲、例えば、ポリプロピレンでは140〜1
50℃の温度で更に延伸する方法或いは特定の温度範囲
、特定の延伸歪速度で延伸する方法等を挙げることがで
きる。
[0011] As a method for stretching the raw hollow fiber, a method of drawing in one stage or in multiple stages at a specific temperature range is used, for example, after stretching at around room temperature, the temperature is several degrees Celsius to several tens of degrees Celsius below the melting point of the thermoplastic resin.
Lower temperature ranges, e.g. 140-1 for polypropylene
Examples include a method of further stretching at a temperature of 50° C., a method of stretching within a specific temperature range, and a specific stretching strain rate.

【0012】上記の方法によって得られる中空糸膜の、
多孔質層の空孔率は、優れたガス交換能或いはガス分離
能を実現するためには大であることが好ましい。空孔率
は実用的な延伸倍率の範囲内では延伸倍率に比例して大
きくなる。延伸倍率としては50〜400%、好ましく
は200〜300%程度が好適であり、それらの延伸倍
率に対応した空孔率は30〜80%及び60〜75%程
度となる。延伸倍率が400%を越えて大であると、得
られる中空糸の糸径が細くなったり、孔径が寧ろ小さく
なったりして好ましくない。
[0012] The hollow fiber membrane obtained by the above method,
The porosity of the porous layer is preferably large in order to achieve excellent gas exchange ability or gas separation ability. The porosity increases in proportion to the stretching ratio within a practical stretching ratio range. The stretching ratio is preferably about 50 to 400%, preferably about 200 to 300%, and the porosity corresponding to these stretching ratios is about 30 to 80% and 60 to 75%. If the stretching ratio is greater than 400%, the fiber diameter of the resulting hollow fibers becomes thinner or the pore diameter becomes smaller, which is not preferable.

【0013】原中空糸の外表面を部分溶解するための溶
剤は、素材である熱可塑性樹脂を溶解するものであれば
何れであってもよい。例えば、ポリプロピレンでは13
0℃以上のシクロヘキサン、デカリン、キシレン、14
0℃以上のトリクロルベンゼン等が、又、高密度ポリエ
チレン及びポリ(4−メチルペンテン−1)では90℃
以上のパークロロエチレン、100℃以上のトルエン、
キシレン、130℃以上のアミルアセテート、150℃
以上のデカリン等が挙げられる。更に、低密度ポリエチ
レンでは90℃以上のトリクロロエチレン、パークロロ
エチレン、100℃以上のトルエン、キシレン、130
℃以上のアミルアセテート等が挙げられる。
The solvent for partially dissolving the outer surface of the raw hollow fibers may be any solvent as long as it dissolves the thermoplastic resin material. For example, in polypropylene, 13
Cyclohexane, decalin, xylene, 14 above 0℃
Trichlorobenzene etc. at 0℃ or higher, and high density polyethylene and poly(4-methylpentene-1) at 90℃
Perchloroethylene at a temperature of 100℃ or higher, toluene at a temperature of 100℃ or higher,
Xylene, amyl acetate above 130℃, 150℃
Examples include the above-mentioned decalin. Furthermore, for low density polyethylene, trichlorethylene, perchlorethylene at 90°C or higher, toluene, xylene, 130°C or higher at 100°C or higher
Examples include amyl acetate and the like.

【0014】上記部分溶解処理の時間は、処理温度或い
は緻密層を無孔等どのような状態にするかといったこと
によって変わってくるが、0.5秒以上20分以下、好
ましくは0.5秒以上10分以下の範囲が好適である。
[0014] The time for the above partial dissolution treatment varies depending on the treatment temperature and the state in which the dense layer is to be made non-porous, etc., but is 0.5 seconds or more and 20 minutes or less, preferably 0.5 seconds. A range of 10 minutes or less is preferable.

【0015】溶剤によって部分的に溶解した個所を凝固
させた後、延伸する。凝固は、溶剤を溶解部分から蒸発
させるか、使用した溶剤と相溶性のある貧溶媒に浸漬す
ることにより実施できる。凝固後、延伸工程に供する前
に、例えば、ポリプロピレンでは原中空糸を100〜1
55℃程度の温度範囲で熱処理することが好ましい。更
に、延伸後、例えば、ポリプロピレンでは100〜15
0℃程度の温度範囲で、中空糸に張力を加えたまま、熱
固定処理することも好ましい。
[0015] After the partially dissolved portions are solidified by the solvent, they are stretched. Coagulation can be carried out by evaporating the solvent from the dissolved portion or by immersing it in a poor solvent that is compatible with the solvent used. After coagulation, for example, in the case of polypropylene, the raw hollow fibers are
It is preferable to perform the heat treatment in a temperature range of about 55°C. Furthermore, after stretching, for example, in polypropylene, 100 to 15
It is also preferable to heat-set the hollow fibers in a temperature range of about 0° C. while applying tension to the hollow fibers.

【0016】このようにして得られた中空糸膜は、原中
空糸の部分溶解しなかった層が多孔質層となり、部分溶
解した層が無孔等の層となった複層構造となる。本発明
の方法では、原中空糸の部分溶解の程度を任意に制御す
ることができ、従って、複層構造の厚み構成、多孔質層
の空孔率或いは緻密層の状態等を任意に制御できる。
The hollow fiber membrane thus obtained has a multilayer structure in which the partially undissolved layer of the original hollow fiber becomes a porous layer, and the partially dissolved layer becomes a non-porous layer. In the method of the present invention, the degree of partial dissolution of the raw hollow fiber can be arbitrarily controlled, and therefore the thickness structure of the multilayer structure, the porosity of the porous layer, the state of the dense layer, etc. can be arbitrarily controlled. .

【0017】[0017]

【実施例】以下に本発明を実施例によって詳しく説明す
る。 実施例1 ポリプロピレン〔宇部興産株式会社製、MFI=9g/
10分〕を直径33mm、内径27mmの気体供給管を
備えた中空糸製造用ノズルを使用し、紡糸温度200℃
、引取速度116m/分で紡糸して、内径230μ、外
径350μの原中空糸を得た。この原中空糸を145℃
のm−キシレン槽に2分間浸漬した後、取り出してメチ
ルアルコールによってm−キシレンを除去し凝固させた
。この原中空糸を乾燥した後、135℃、歪速度8.3
3%/分の条件で初期長さに対して300%延伸し、延
伸状態を保ったまま150℃の加熱空気槽内で2分間熱
処理した。得られた中空糸膜の外表面側約5μの厚さは
無孔であり、それ以外の部分は多孔質となっていた。 多孔質層の平均孔径は70μ、空孔率は60%であった
[Examples] The present invention will be explained in detail below with reference to Examples. Example 1 Polypropylene [manufactured by Ube Industries, Ltd., MFI=9g/
10 minutes] using a hollow fiber manufacturing nozzle equipped with a gas supply pipe with a diameter of 33 mm and an inner diameter of 27 mm, at a spinning temperature of 200°C.
The fibers were spun at a take-up speed of 116 m/min to obtain raw hollow fibers with an inner diameter of 230 μm and an outer diameter of 350 μm. This raw hollow fiber was heated to 145°C.
After being immersed in a m-xylene bath for 2 minutes, the sample was taken out, m-xylene was removed with methyl alcohol, and the sample was coagulated. After drying this raw hollow fiber, the temperature was 135°C and the strain rate was 8.3.
The film was stretched to 300% of its initial length at a rate of 3%/min, and heat-treated in a heated air tank at 150° C. for 2 minutes while maintaining the stretched state. The outer surface of the obtained hollow fiber membrane had a thickness of approximately 5 μm and was non-porous, and the other portion was porous. The average pore diameter of the porous layer was 70μ, and the porosity was 60%.

【0018】実施例2 高密度ポリエチレン〔昭和電工株式会社製、MI=8g
/10分〕を直径33mm、内径27mmの気体供給管
を備えた中空糸製造用ノズルを使用し、紡糸温度150
℃、引取速度116m/分で紡糸して、内径220μ、
外径330μの原中空糸を得た。この原中空糸を145
℃のm−キシレン槽に3分間浸漬した後、取り出してメ
チルアルコールによってm−キシレンを除去し凝固させ
た。この原中空糸を乾燥した後、80℃、歪速度8.3
3%/分の条件で初期長さに対して400%延伸し、延
伸状態を保ったまま100℃の加熱空気槽内で2分間熱
処理した。得られた中空糸膜の外表面側約10μの厚さ
は、孔径が数μ〜20μ程度の微細孔が少数存在する状
態であり、それ以外の部分は多孔質となっていた。多孔
質層の平均孔径は80μ、空孔率は70%であった。
Example 2 High-density polyethylene [manufactured by Showa Denko K.K., MI=8g
/10 minutes] using a hollow fiber production nozzle equipped with a gas supply pipe with a diameter of 33 mm and an inner diameter of 27 mm, and the spinning temperature was 150.
℃, spinning at a take-up speed of 116 m/min, inner diameter 220 μ,
A raw hollow fiber having an outer diameter of 330μ was obtained. This raw hollow fiber is 145
After being immersed in an m-xylene bath at 0.degree. C. for 3 minutes, it was taken out, m-xylene was removed with methyl alcohol, and the material was coagulated. After drying this raw hollow fiber, the temperature was 80°C and the strain rate was 8.3.
The film was stretched by 400% of its initial length at a rate of 3%/min, and heat-treated in a heated air tank at 100° C. for 2 minutes while maintaining the stretched state. The outer surface side of the obtained hollow fiber membrane had a thickness of about 10 microns, in which a small number of micropores with a pore diameter of about several microns to 20 microns existed, and the other part was porous. The average pore diameter of the porous layer was 80μ, and the porosity was 70%.

【0019】[0019]

【発明の効果】本発明の中空糸膜の製造法によれば、熱
可塑性樹脂製の中空糸の外表面近傍を溶剤によって部分
的に溶解し、凝固させた後延伸するという極めて簡便な
方法により、多孔質層と無孔等の緻密層との複層構造か
らなる中空糸膜を得ることができる。得られた複層の中
空糸膜は、人工肺等に用いるガス交換膜或いは酸素富化
等に用いるガス分離膜として極めて有用である。
[Effects of the Invention] According to the method for producing a hollow fiber membrane of the present invention, the vicinity of the outer surface of a hollow fiber made of thermoplastic resin is partially dissolved with a solvent, solidified, and then stretched, which is an extremely simple method. , it is possible to obtain a hollow fiber membrane having a multilayer structure of a porous layer and a dense layer such as a non-porous layer. The obtained multilayer hollow fiber membrane is extremely useful as a gas exchange membrane used in an oxygenator or the like, or a gas separation membrane used in oxygen enrichment or the like.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】中空糸を延伸することにより管壁に多数の
微細孔を形成する工程を含む中空糸膜の製造法に於いて
、紡糸した中空糸の外表面を溶剤と接触させることによ
り部分的に溶解させ、凝固後、延伸することを特徴とす
る中空糸膜の製造法。
[Claim 1] A method for producing a hollow fiber membrane, which includes a step of forming a large number of micropores in a tube wall by drawing a hollow fiber, in which the outer surface of the spun hollow fiber is brought into contact with a solvent. A method for producing a hollow fiber membrane, which comprises melting the membrane, solidifying it, and then stretching it.
JP13078991A 1991-03-22 1991-03-22 Manufacturing method of hollow fiber membrane Expired - Fee Related JP2592725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13078991A JP2592725B2 (en) 1991-03-22 1991-03-22 Manufacturing method of hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13078991A JP2592725B2 (en) 1991-03-22 1991-03-22 Manufacturing method of hollow fiber membrane

Publications (2)

Publication Number Publication Date
JPH04293529A true JPH04293529A (en) 1992-10-19
JP2592725B2 JP2592725B2 (en) 1997-03-19

Family

ID=15042728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13078991A Expired - Fee Related JP2592725B2 (en) 1991-03-22 1991-03-22 Manufacturing method of hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP2592725B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878276B2 (en) 2001-12-11 2005-04-12 Zenon Environmental Inc. Methods of making stretched filtering membranes and modules
US9643129B2 (en) 2011-12-22 2017-05-09 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298833A (en) 2006-05-01 2007-11-15 Fujifilm Corp Method for preparing photosensitive resin composition and relief pattern using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878276B2 (en) 2001-12-11 2005-04-12 Zenon Environmental Inc. Methods of making stretched filtering membranes and modules
US9643129B2 (en) 2011-12-22 2017-05-09 Bl Technologies, Inc. Non-braided, textile-reinforced hollow fiber membrane

Also Published As

Publication number Publication date
JP2592725B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
JPH05212255A (en) Hollow fiber membrane
JPS63116723A (en) Method of forming hollow fiber irregular gas separating film
US5290448A (en) Polyacrylonitrile membrane
JPH0647066B2 (en) Porous separation membrane and method for producing the same
JPH04265132A (en) Production of porous hollow fiber membrane
JP2592725B2 (en) Manufacturing method of hollow fiber membrane
KR100581206B1 (en) Polyvinylidene fluoride Porous Hollow Fiber Membrane and the Manufacturing Process thereof
JP2572895B2 (en) Manufacturing method of porous hollow fiber membrane
JPH03258330A (en) Porous hollow fiber membrane
JPS63296939A (en) Polyvinylidene fluoride resin porous film and its manufacture
JP2622629B2 (en) Manufacturing method of hollow fiber membrane
JPH0468010B2 (en)
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
JP2553248B2 (en) Method for producing porous hollow fiber membrane
JPS61408A (en) Hollow yarn composite membrane
JPS62117811A (en) Production of conjugated hollow fiber membrane
JPS6297980A (en) Composite hollow fiber membrane
JPH04267934A (en) Method for producing hollow capillary membrane, membrane for supporting gas separating membrane and unsymmetrical perfect gas separating membrane
JPS60261510A (en) Manufacture of laminated hollow yarn
JPH01184001A (en) Porous membrane of polysulfone
JPH01258724A (en) Production of gas separation membrane
JPH0398625A (en) Preparation of carbon fiber-based porous hollow fiber membrane
JPH02152528A (en) Production of porous hollow fiber
JPH1052631A (en) Manufacture of hollow fiber membrane
JPS63205108A (en) Coating of hollow filament

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees