JPH03258330A - Porous hollow fiber membrane - Google Patents

Porous hollow fiber membrane

Info

Publication number
JPH03258330A
JPH03258330A JP5934690A JP5934690A JPH03258330A JP H03258330 A JPH03258330 A JP H03258330A JP 5934690 A JP5934690 A JP 5934690A JP 5934690 A JP5934690 A JP 5934690A JP H03258330 A JPH03258330 A JP H03258330A
Authority
JP
Japan
Prior art keywords
hollow fiber
membrane
fiber membrane
dense layer
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5934690A
Other languages
Japanese (ja)
Other versions
JP2899347B2 (en
Inventor
Kensaku Komatsu
賢作 小松
Takehiko Okamoto
岡本 健彦
Osamu Kusudo
楠戸 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13110643&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03258330(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2059346A priority Critical patent/JP2899347B2/en
Publication of JPH03258330A publication Critical patent/JPH03258330A/en
Application granted granted Critical
Publication of JP2899347B2 publication Critical patent/JP2899347B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Abstract

PURPOSE:To obtain a hydrophilic hollow fiber membrane having high water permeability, excellent fractionating property and small reduction of flux by forming such a porous structure comprising a dense layer of the inner surface and a reticular structure in a manner that the reticular structure partially has openings to give pores to the outer surface, and specifying the permeation rate for pure water to a certain value or larger. CONSTITUTION:The porous hollow fiber membrane contains 0.5-10% hydrophilic polymers (e.g. polyvinylpyrrolidone) to hydrophobic polymers (preferably, polysulfone or polyethersulfone). This membrane has a porous structure comprising 0.5-5mum-thick dense layer having fine pores of various shapes with 10-50% porosity and a reticular structure formed continuously to the dense layer. The outer surface of the membrane has pores with the maximum pore diameter of 0.5-5mum which are formed by partial opening of the reticular structure. The permeation rate for pure water of the membrane at 25 deg.C is specified to >=800l/m<2>.hr.kg/cm<2>. The obtd. porous hollow fiber membrane is excellent in water permeability and fractionating property, and moreover, it is hydrophilic.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は多孔性中空糸膜、特に高い透水性と優れた分画
性を有し、かつ親水性に優れた多孔性中空糸膜に関する
ものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a porous hollow fiber membrane, particularly a porous hollow fiber membrane having high water permeability, excellent fractionation properties, and excellent hydrophilicity. It is.

(従来の技術) 近年、分離操作において選択的な透過性を有する膜を用
いる技術の進展はめざオしく、各種の分野において実用
化されている。特に中空糸形状の膜は、占有体積当りの
膜面積が多くとれるためtζ戸適量が多く工業的に有利
である。中空糸膜の素材としては、セルロース系、ポリ
アミド系、ポリアクリルニトリル系、ポリビニルアルコ
ール系。
(Prior Art) In recent years, the technology of using selectively permeable membranes in separation operations has made remarkable progress and has been put into practical use in various fields. In particular, hollow fiber-shaped membranes are industrially advantageous because they have a large membrane area per occupied volume and can be used in large quantities. Materials for hollow fiber membranes include cellulose, polyamide, polyacrylonitrile, and polyvinyl alcohol.

ポリスルホン系等の樹脂か使用されている。中でもポリ
スルホン系樹脂は、耐熱性、耐酸性、耐アルカリ性、耐
酸化剤性等の物理的及び化学的性質に優れ、また製膜が
容易な点から、各種用途において使用されている。
Resins such as polysulfone are used. Among them, polysulfone resins are used in various applications because they have excellent physical and chemical properties such as heat resistance, acid resistance, alkali resistance, and oxidizing agent resistance, and are easy to form into films.

しかし、ポリスルホン系樹脂のような疎水性高分子から
なる中空糸膜の欠点として、中空糸膜を乾燥させると透
過速度が著しく減少することが挙げられる。この欠点を
解決する方法として、例えば特開昭58−104940
号公報や特開昭61−93801号公報に膜中に親水性
のポリビニルピロリドンを含有させた親水化ポリスルホ
ン膜が記載されてい、る。また、特開昭61−2383
06号公報及び時開61−238834号公報にはポリ
スルホン樹脂、ポリビニルピロリドン、膨潤剤、溶媒よ
り構成される紡糸原液を使用して、膜の両堀面に平均孔
径が500A以上の細孔tVする透水性の高い親水化ポ
リスルホン膜か記載されている。
However, a drawback of hollow fiber membranes made of hydrophobic polymers such as polysulfone resins is that the permeation rate decreases significantly when the hollow fiber membranes are dried. As a method to solve this drawback, for example, Japanese Patent Application Laid-Open No. 58-104940
Hydrophilized polysulfone membranes containing hydrophilic polyvinylpyrrolidone in the membrane are described in Japanese Patent Application Laid-Open No. 61-93801. Also, JP-A-61-2383
No. 06 and Jikai No. 61-238834 use a spinning dope consisting of polysulfone resin, polyvinylpyrrolidone, a swelling agent, and a solvent to form pores tV with an average pore diameter of 500 A or more on both moat surfaces of the membrane. A hydrophilic polysulfone membrane with high water permeability has been described.

(発明が解決しようとする課題) しかしながら前者の親水化ポリスルホン膜は孔径0.0
01〜0.O5l1mの微小な細孔を有するスキン層を
有する非対称膜であるため透水性が極めて低いという問
題があった0 また後者の親水化ポリスルホン膜は膜表面の微細孔が平
均500λ以上であるため、透水性は高いが、分画性が
大きいため濾過によるFLUXの低下が大きいという問
題があった。
(Problem to be solved by the invention) However, the former hydrophilized polysulfone membrane has a pore size of 0.0
01~0. Since it is an asymmetric membrane with a skin layer having micropores of O5l1m, it has a problem of extremely low water permeability.In addition, the latter hydrophilized polysulfone membrane has micropores on the membrane surface with an average size of 500λ or more, so it has low water permeability. However, there was a problem in that the FLUX decreased significantly due to filtration due to the high fractionability.

したがって、本発明の目的は高い透水性と優れた分画性
を有し、使用時におけるFLUX低下が小さい親水性の
中空糸膜を提供することにある0(課題を解決するため
の手段) 本発明は、疎水性高分子に対して0.5〜10チの親水
性高分子を含有した多孔性中空糸膜であって、該多孔性
中空糸膜は内表面に不定形の微細孔を開孔率10〜50
%の割合で有する、厚さ0.5〜5pの緻密層と、該緻
密j−に一体に連続して形成された網状組織とからなる
多孔構造であり、かつ外表面は該網状組織の一部が開孔
してできた最大孔径0.5〜5−の孔を有し、25℃に
おける純水透過速度が800 t/♂・hr−kp/−
以上であることを特徴とする多孔性中空糸膜である。
Therefore, an object of the present invention is to provide a hydrophilic hollow fiber membrane that has high water permeability and excellent fractionation properties and exhibits a small decrease in FLUX during use. The present invention is a porous hollow fiber membrane containing 0.5 to 10 of a hydrophilic polymer to a hydrophobic polymer, the porous hollow fiber membrane having irregularly shaped micropores on its inner surface. Porosity 10-50
It has a porous structure consisting of a dense layer with a thickness of 0.5 to 5p and a network structure integrally and continuously formed in the dense layer, and the outer surface is one part of the network structure. It has pores with a maximum pore diameter of 0.5 to 5-5, and the pure water permeation rate at 25°C is 800 t/♂・hr-kp/-.
This is a porous hollow fiber membrane characterized by the above.

中空糸膜の内表面に形成場れる微細孔の形状は特に制限
はなく、例えば単独微細孔、孔が連続につながった多孔
性微細孔、スリット状微細孔、網状微細孔等が挙げられ
る。か〃・る微細孔の平均孔径は0.2txn以下が望
ましく、これ以上の孔径では膜の表面強度が小ζ〈なり
好ましくない。ここでいう平均孔径とは、表面の電子顕
微鏡写真より存在する全ての不足形微細孔の最大内接円
の直径を測定して総和したものを細孔の総数で割った値
である。この不定形微細孔の開孔至FilO〜50チの
割合で存在し、厚さ0.5〜5Iinの緻密IMを形成
している。本発明でいう開孔率とは、内表面に開孔して
いる微細孔の全孔面積の外表面積に対する割合を百分率
で示したものである。開孔率が10チ未満であると透水
性が低くなり、50mを越えると表面強度が小さくなり
膜の取り扱いが悪くなるため好ましくない。開孔率が1
0〜30チであると膜の透過性能と機械的強度のバラン
スの点で好ましい。また、この微細孔の分布密度はでき
るだけ均一であることが好ましいが、不均一であっても
よい。
The shape of the micropores formed on the inner surface of the hollow fiber membrane is not particularly limited, and examples thereof include individual micropores, porous micropores in which pores are continuously connected, slit-like micropores, network micropores, and the like. The average pore diameter of such micropores is preferably 0.2txn or less; a pore diameter larger than this is not preferred because the surface strength of the membrane becomes small. The average pore diameter here is the value obtained by dividing the sum of the diameters of the maximum inscribed circles of all missing micropores measured from an electron micrograph of the surface by the total number of pores. These irregularly shaped micropores are present at a ratio of 50 to 50 mm, forming a dense IM with a thickness of 0.5 to 5 inches. In the present invention, the porosity refers to the ratio of the total pore area of micropores formed on the inner surface to the outer surface area, expressed as a percentage. If the porosity is less than 10 m, the water permeability will be low, and if it exceeds 50 m, the surface strength will decrease and the membrane will be difficult to handle, which is not preferable. Open area ratio is 1
A range of 0 to 30 is preferable in terms of the balance between membrane permeability and mechanical strength. Further, although it is preferable that the distribution density of the micropores be as uniform as possible, it may be non-uniform.

また、本発明の中空糸膜は内表面に形成された緻密層に
一体に連続して網状組織の多孔構造が形成され、かつ外
表面は該網状組織の一部が開孔してできた最大孔径0.
1〜5Piの孔を有している。
In addition, the hollow fiber membrane of the present invention has a porous network structure formed integrally and continuously in the dense layer formed on the inner surface, and the outer surface has the largest pore structure formed by opening a part of the network structure. Pore diameter 0.
It has pores of 1 to 5 Pi.

かかる膜内部に形成された網状組織は、平均1〜5虜の
多数の連続孔を有し、かつ10−以上の巨大空洞は存在
しない。このため、長期間の使用時における圧密化性が
優れ、さらには強度も優れている。外表面の孔の形状や
開孔率は特に制限はないが、開孔率は内表面と同程度の
10〜50係が望ましい。最大孔径に5Ixn以上にな
ると耐圧性の点で問題になるばかりではなく、外圧で濾
過した場合に膜内部に残留物が堆積し易くなって透過速
度の低下が早く、まt薬洗や逆洗による膜の再生が十分
性われないという傾向があり好ましくない。
The network formed inside such a membrane has a large number of continuous pores, on average 1 to 5 holes, and there are no large cavities of 10 or more. Therefore, it has excellent compactability during long-term use and also has excellent strength. There are no particular restrictions on the shape or porosity of the pores on the outer surface, but it is desirable that the porosity is about the same as that on the inner surface, 10-50. If the maximum pore diameter exceeds 5Ixn, not only will pressure resistance become a problem, but when filtration is performed under external pressure, residue will easily accumulate inside the membrane, resulting in a rapid decrease in permeation rate, and chemical washing and backwashing will be difficult. This is undesirable because it tends to result in insufficient regeneration of the membrane.

逆に最大孔径が0.11inより小さくなると透水性が
小さくなる。
Conversely, if the maximum pore diameter is smaller than 0.11 inch, the water permeability will be reduced.

本発明の中空糸1[11[は緻密層と網状組織からなる
多孔構造で構成されている。そして緻密層の厚みが0.
5〜5Afriと薄いため、例えば、135Aの粒子を
90チ以上阻止するにもかかわらず25℃の純水透過速
度が8004/ra’−hr−に?/−以上と高い透水
性を示す。また実際に水を濾過した場合、外圧濾過では
、外表面でサブミクロンオーダー以上の粒子を補捉し膜
内部、または内表面の緻密層で溶解ポリマー等のサブミ
クロン以下の物質を補捉する。すなわち外表面及び膜内
部がブレフィルター的な役割を果たすため、透過速度の
低下が少なく高い透過速度を維持することができる。逆
に内圧濾過では、内表面に緻密層を有しているためクロ
スフロ一方式の濾過に有効であり、膜を透過し念物質は
膜内部で留まりにくいため汚染されにくい0 甘だ本発明の中空糸膜は、緻密層と多孔構造が一体化し
ており、コーディング法などで得られる複合膜のように
緻密層のピンホールや緻密層と支持層との剥離の問題i
l″i、まったくない。
The hollow fiber 1[11[ of the present invention] has a porous structure consisting of a dense layer and a network structure. And the thickness of the dense layer is 0.
Because it is as thin as 5~5Afri, for example, the pure water permeation rate at 25°C is 8004/ra'-hr- even though it blocks more than 90 particles of 135A? /- or more, showing high water permeability. Furthermore, when water is actually filtered, in external pressure filtration, particles of submicron order or larger are captured on the outer surface, and submicron or smaller substances such as dissolved polymers are captured inside the membrane or in a dense layer on the inner surface. That is, since the outer surface and the inside of the membrane play the role of a blur filter, a high permeation rate can be maintained with little decrease in permeation rate. On the other hand, internal pressure filtration has a dense layer on the inner surface, so it is effective for cross-flow one-way filtration, and the substances that pass through the membrane are difficult to remain inside the membrane, so they are less likely to be contaminated. Thread membranes have a dense layer and a porous structure integrated, and unlike composite membranes obtained by coating methods, there are problems with pinholes in the dense layer and peeling between the dense layer and the support layer.
l″i, not at all.

さらに、本発明の中空糸膜は膜中に疎水性高分子に対し
て05〜10チの親水性高分子を台上′″!る。そのた
め、親水性に優れ、タンパク等の吸着が少なく、沖過に
よる透過性能の低下が小さい。
Furthermore, the hollow fiber membrane of the present invention has a hydrophilic polymer of 0.5 to 10 times more than a hydrophobic polymer in the membrane. Therefore, it has excellent hydrophilicity and adsorption of proteins, etc. is small. There is little decrease in permeation performance due to offshore passage.

また、乾燥によって実質的な透水性の低下や中空糸膜の
寸法変化がなく、完全なドライ膜を作製することができ
る。これは、中空糸膜の扱い、モジュール化、モジュー
・ルの輸送等多数の面で有利であり5作業性や生産性を
向上させることができる。
In addition, a completely dry membrane can be produced without any substantial decrease in water permeability or dimensional change of the hollow fiber membrane due to drying. This is advantageous in many aspects such as handling of hollow fiber membranes, modularization, and transportation of modules, and can improve workability and productivity.

次に、本発明の多孔性中壁糸膜の製造方法について説明
する○ 本発明の中空糸膜を製造するための紡糸原液は、疎水性
高分子、親水性高分子、微孔形成剤及びこれらを溶解す
る極性溶媒から構成される。
Next, the method for producing the porous mid-wall fiber membrane of the present invention will be explained.○ The spinning stock solution for producing the hollow fiber membrane of the present invention includes a hydrophobic polymer, a hydrophilic polymer, a pore-forming agent, and It consists of a polar solvent that dissolves

疎水性高分子は、例えば、ポリスルボン、ポリj−チッ
トスルホン、ポリフッ化ビニリチン、ボl;エチレン、
塩化ビニル等が挙げられる。甲でもポリスルホンやポリ
エーテルスルポンに耐熱性、耐薬品性、耐酸化剤性、強
度に優れ、、  1.、、かも分子間凝集力が強いため
に製膜が容易であり好適である0、親水性高分子は、例
えばポリビニA・ビ「コリトン、平%a分子12O10
00以−トのポリ]ヂレング11コ・−ノtハホリヒニ
ルアルコーA、=、X→−1/ン伊ビニルアルコ一ル共
重合体等やこれらの変性ポリマーが挙げられるがこれら
に限定さねるものてケユない。〃だし、疎水性高分子・
と溶媒中での相溶性が優れているものが望筺しく、また
ポリビニルヒロリドン′等の水溶性高分子の場合は架橋
等で容易に不溶化できるものが望ましい。親水性高分子
の添加量は高分子量であるほど少なくですむ。%に水溶
性高分子の場合は膜中に残存I7やすく、水洗、熱水処
理中や膜を使用時に溶出も少なくなるため好1m。
Hydrophobic polymers include, for example, polysulfone, polyj-titsulfone, polyvinyritine fluoride, vol; ethylene,
Examples include vinyl chloride. The former also has excellent heat resistance, chemical resistance, oxidizing agent resistance, and strength compared to polysulfone and polyether sulfone. 1. Hydrophilic polymers are suitable because they have a strong intermolecular cohesive force and are therefore easy to form into films.
Examples include, but are not limited to, poly]dilene 11 co--not haholyl alcohol copolymers of 00 or more and vinyl alcohol copolymers and modified polymers thereof. I don't care. 〃Dashi, hydrophobic polymer・
It is desirable that the polymer has excellent compatibility with the polymer in the solvent, and in the case of water-soluble polymers such as polyvinylhydrolidone', it is desirable that the polymer can be easily made insolubilized by crosslinking or the like. The higher the molecular weight, the smaller the amount of hydrophilic polymer added. In the case of water-soluble polymers, I7 is more likely to remain in the membrane, and there is less elution during water washing, hot water treatment, or when the membrane is used, so 1 m is preferable.

い。これら親水性高分子はS製造プロセス、各用途にお
ける適合性等を考慮にいれて選択フることができる。
stomach. These hydrophilic polymers can be selected taking into account the S manufacturing process, suitability for each application, and the like.

本発明の中空糸膜はミクロ相分離によって微孔六\ ・形成されるが、微孔形成剤はそのミクロ相分離を起こ
〔2やすくする目的で添加する。従来エリ、微孔形成剤
と17でメタノール、エタノール等のアルコール類、エ
チレングリコール、フロピレンゲリコール、平均分子f
i400〜20,000の低分子量のポリエチレングリ
コール等のグリコール類、Liα、ZnO2等の無機塩
類、水等多数用いられており、本発明においても上記微
孔形成剤が使用できる。微孔形成剤の添加iは紡糸原液
が均一透明を保つ範囲内に抑える必要があるが、微孔形
成剤が孔の核となると推定されるために添加itはでき
るだけ多い方が望ましい。分子@400〜20,000
の低分子量のポリエチレングリコールは紡糸原液への添
加量を多くすることができるため好適である。また、こ
の低分子量のポリエチレングリコールは微細孔形成に優
れ、かつ紡糸原液の増粘効果を有しているため紡糸の安
定性を向上させる利点がある。
In the hollow fiber membrane of the present invention, micropores are formed by microphase separation, and the micropore-forming agent is added for the purpose of facilitating the microphase separation. Conventional Eri, pore-forming agent and 17 alcohols such as methanol and ethanol, ethylene glycol, phlopylene gelicol, average molecular f
Many glycols such as polyethylene glycol with a low molecular weight of i400 to 20,000, inorganic salts such as Liα and ZnO2, and water are used, and the above-mentioned pore-forming agents can also be used in the present invention. The addition i of the pore-forming agent must be kept within a range that allows the spinning dope to remain uniform and transparent, but since the pore-forming agent is presumed to form the core of the pores, it is desirable to add it as much as possible. Molecules @400~20,000
Low molecular weight polyethylene glycol is suitable because it can be added in a large amount to the spinning dope. In addition, this low molecular weight polyethylene glycol is excellent in forming micropores and has the effect of thickening the spinning dope, so it has the advantage of improving the stability of spinning.

極性溶媒は、疎水性高分子、親水性高分子および微孔形
成剤を溶解するものであれば肴に制限はなく1.例えば
、N、N−ジメチルホルムアミド、ジメチルアセトアミ
ド、N−メチルピロリドン、ジメチルスルホキシド等が
挙げられる。
There are no restrictions on polar solvents as long as they can dissolve hydrophobic polymers, hydrophilic polymers, and pore-forming agents.1. Examples include N,N-dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, and the like.

こt′Lら4棟類の組成はそれぞれ任意の割合で選択す
ることができるが、本発明の中空糸膜を製造するために
は、紡糸原液をある一足の温度以下で相分離を起こす(
低温相分離型)、あるいはある一定温度以上で相分離を
起こ−t(高温相分離型)ように調製−することが好ブ
しい。
The compositions of these four groups can be selected in any proportion, but in order to produce the hollow fiber membrane of the present invention, the spinning stock solution is subjected to phase separation at a temperature below a certain temperature (
It is preferable to prepare the phase separation type (low-temperature phase separation type) or to cause phase separation at a certain temperature or higher (high-temperature phase separation type).

本発明の中空糸膜は、上記の紡糸原液を使用し公知の乾
湿式法によって製造される。紡糸原液と共にノズル中心
部より吐出される内部凝固液は、例えば、水、水と極性
溶媒の混合液、アルコール類、グリコール類等の単独、
あるいはそれらの2攬類以上の混合物を使用する。この
内部凝固液の組成を変えることにより内表面の微細孔の
形状、平均孔径、開孔率および緻密層の厚み等の内表面
近傍の構造が制御できる。
The hollow fiber membrane of the present invention is manufactured by a known dry-wet method using the above-mentioned spinning dope. The internal coagulating liquid discharged from the center of the nozzle together with the spinning dope may be, for example, water, a mixture of water and a polar solvent, alcohols, glycols, etc. alone,
Or use a mixture of two or more of them. By changing the composition of this internal coagulation liquid, the structure near the inner surface, such as the shape of the micropores on the inner surface, the average pore diameter, the porosity, and the thickness of the dense layer, can be controlled.

ノズルより吐出させた紡糸原液は、気中(ドライゾーン
)を走行させたのちに、水を主成分とした外部凝固液中
に浸漬される。本発明ではこのドライゾーンの長さ、ド
ライゾーン中の雰囲気湿度や温度を変化させることによ
り、ドライゾーン中に存在する微・の水分量を調節して
、中空糸膜の外表面の孔形成のための制御を行う。この
ドライゾーンの長さは紡糸安定性と膜性能のバランスの
点で0.1〜200cM−通常1〜5051が適当であ
る。また、ドライゾーンの雰囲気は湿度が高いほど大き
な孔が形成されやすく、開孔!も多くなる。
The spinning stock solution discharged from the nozzle travels in the air (dry zone), and then is immersed in an external coagulation liquid mainly composed of water. In the present invention, by changing the length of this dry zone and the atmospheric humidity and temperature in the dry zone, the amount of moisture present in the dry zone is adjusted, thereby reducing the formation of pores on the outer surface of the hollow fiber membrane. Perform control for The length of this dry zone is suitably 0.1 to 200 cM, usually 1 to 5,051 cM, from the viewpoint of the balance between spinning stability and membrane performance. Also, the higher the humidity in the dry zone atmosphere, the more large pores are likely to form, leading to open pores! There will also be more.

凝固液で裏腹した中空糸膜は、次いで、溶媒やさせるた
めに、水を主成分とした浴中で湿熱処理される。親水性
高分子とj−て水溶性高分子を用いた場合は、膜中に過
剰に残存する親水性高分子の抽出も水洗や湿熱処理で同
時に行うことができる。
The hollow fiber membrane coated with the coagulating liquid is then subjected to a moist heat treatment in a water-based bath to remove the solvent. When a water-soluble polymer is used as the hydrophilic polymer, the excess hydrophilic polymer remaining in the membrane can be extracted at the same time by water washing or moist heat treatment.

ただし、この抽出効果は親水性高分子の種類や分子量に
よって異なるために、場合によっては別の抽出操作を行
い、最終的に膜に残存させる親水性高分子量を調節する
ことが好ましい。抽出後に膜中に残存する親水性高分子
・使用中に溶出することはほとんどないが医療用途等用
途によっては、親水性高分子を物理的またに化学的に不
溶化きせて親水性高分子の溶出を完全に防止することが
望ましい。この親水性高分子の定量は、重量法や元素分
析等の適当な手段で容易に行うことができる。
However, since this extraction effect differs depending on the type and molecular weight of the hydrophilic polymer, it is preferable to perform another extraction operation in some cases to adjust the weight of the hydrophilic polymer ultimately remaining in the membrane. Hydrophilic polymers that remain in the membrane after extraction - They rarely elute during use, but depending on the application, such as medical applications, the hydrophilic polymers may be physically or chemically insolubilized to elute the hydrophilic polymers. It is desirable to completely prevent this. Quantification of this hydrophilic polymer can be easily carried out by appropriate means such as gravimetric method or elemental analysis.

上記の方法で得られた中空糸膜は、疎水性高分子に対し
て05〜10係の親水性高分子を含有する。親水性高分
子の含有量が10チを越えると、疎水性高分子の持つ特
性を親水性高分子が阻害してしまう可能性があり、また
0、5チ未満では親水効果を得ることができない。親水
性高分子の含有量は、膜に親水性を与えることができる
最少の量が望ましい。また、中空糸膜中の親水性高分子
の分散状態は特に制限がないが、膜に親水性を与えるた
めにはできるだけ均一に分散させることが望ましい。
The hollow fiber membrane obtained by the above method contains a hydrophilic polymer having a ratio of 05 to 10 relative to a hydrophobic polymer. If the content of the hydrophilic polymer exceeds 10%, the hydrophilic polymer may inhibit the properties of the hydrophobic polymer, and if the content is less than 0.5%, no hydrophilic effect can be obtained. . The content of the hydrophilic polymer is preferably the minimum amount that can impart hydrophilicity to the membrane. Further, although there is no particular restriction on the dispersion state of the hydrophilic polymer in the hollow fiber membrane, it is desirable to disperse it as uniformly as possible in order to impart hydrophilicity to the membrane.

(実施例) 以下実施例により本発明を更に具体的に説明する。なお
、純水透過速度および分画性の測定は以下の方法で行っ
た。
(Example) The present invention will be explained in more detail with reference to Examples below. Note that the pure water permeation rate and fractionability were measured by the following method.

(1)純水透過速度 25本の中空糸で有効長20αの外圧濾過型のラボモジ
ュールを作製し、25℃の純水を濾過圧1 kf/−で
膜外部より透過させ、一定時間中に中空部よりでてくる
純水の量を測定した。
(1) Pure water permeation rate An external pressure filtration type lab module with an effective length of 20α was made using 25 hollow fibers, and pure water at 25°C was permeated from the outside of the membrane at a filtration pressure of 1 kf/- for a certain period of time. The amount of pure water coming out of the hollow part was measured.

(11)分画性 測定液として135λのコロイダルシリカ(触媒化成工
業 5I−30)の1チ分散液を調製し、濾過圧O15
kf/i、循環線速0.3 rrVsecで外圧濾過を
行い、採取した透過液と測定液の蒸発残査の重量を測定
し除去率を算出した。
(11) As a fractionation measurement liquid, a 1-ti dispersion of 135λ colloidal silica (catalyst chemical industry 5I-30) was prepared, and the filtration pressure was O15.
External pressure filtration was performed at kf/i and circulation linear velocity of 0.3 rrVsec, and the weight of the collected permeate and the evaporation residue of the measurement solution was measured to calculate the removal rate.

実施例1 ポリスルホン樹脂(アモコ製UDEL P−1700)
19重量部、平均分子量120万のポリビニルピロリド
ン(GAF製 K−90)1.9重量部、平均分子量6
00のポリエチレングリコール(三洋化成製 PEGφ
600)30.4重量部、ジメチルホルムアミド48,
7重量部を120℃で6時間加熱溶解した。この紡糸原
液は75℃以上と29℃以下で相分離をおこす原液であ
った。この紡糸原液を45℃に保ち、2重環状ノズルよ
り内部凝固液として同じ温度に保ったジメチルホルムア
ミド/水: 80/20を同時に吐出させ、長さlOc
!1K、雰囲気温度45℃、芥囲気相対湿度85%のド
ライゾーン全通した後に、45℃の水に浸して外径0.
6閣、内径0.4■の中空糸膜を得た。この中空糸膜を
90℃の水で2時間湿熱処理を行ない洗浄したのちに、
60℃で8時間乾燥させた。得られた中空糸膜の純水透
過速度は、3500 t/d−hr −ke/cd、1
35λのコロイダルシリカの除去率Fi40チであった
。走査型電子顕微鏡写真から求めた内表面の平均孔径は
600^、開孔率は25優、緻密層の厚さは1.5即り
外表面の最大孔径は1,5岬、膜内部は平均孔1岬の網
状多孔構造でめった。また、元素分析で膜中のポリとニ
ルピロリドン量を測定したところ、ポリスルホンに対し
て4チであった。
Example 1 Polysulfone resin (UDEL P-1700 manufactured by Amoco)
19 parts by weight, polyvinylpyrrolidone with an average molecular weight of 1.2 million (GAF K-90) 1.9 parts by weight, average molecular weight 6
00 polyethylene glycol (manufactured by Sanyo Chemical PEGφ
600) 30.4 parts by weight, dimethylformamide 48,
7 parts by weight were heated and dissolved at 120°C for 6 hours. This spinning stock solution caused phase separation at temperatures above 75°C and below 29°C. This spinning stock solution was kept at 45°C, and dimethylformamide/water: 80/20 kept at the same temperature was simultaneously discharged as an internal coagulation liquid from a double annular nozzle to a length of lOc.
! After passing through a dry zone at 1K, an ambient temperature of 45°C, and a relative humidity of 85%, it was immersed in water at 45°C to reduce the outer diameter to 0.
A hollow fiber membrane with a diameter of 6 mm and an inner diameter of 0.4 mm was obtained. After washing this hollow fiber membrane with water at 90°C for 2 hours through moist heat treatment,
It was dried at 60°C for 8 hours. The pure water permeation rate of the obtained hollow fiber membrane was 3500 t/d-hr-ke/cd, 1
The removal rate Fi of 35λ colloidal silica was 40chi. The average pore diameter on the inner surface determined from scanning electron micrographs is 600^, the porosity is 25, the thickness of the dense layer is 1.5, the maximum pore diameter on the outer surface is 1.5, and the inside of the membrane is average. This occurred due to the network-like porous structure of Cape 1. Further, when the amount of poly and nylpyrrolidone in the film was measured by elemental analysis, it was found to be 4% relative to polysulfone.

この中空糸膜に通水したのちに再乾燥して透水性5図に
示す。第1図は中空糸膜の外表面、第2図は内表面、第
3図は外表面側の断面、第4図は11Jぼ中央部の断面
及び第5図に内表面側の断面を示している。
After passing water through this hollow fiber membrane, it was re-dried and the water permeability is shown in Figure 5. Figure 1 shows the outer surface of the hollow fiber membrane, Figure 2 shows the inner surface, Figure 3 shows the cross section of the outer surface, Figure 4 shows the cross section of the central part of the hollow fiber membrane, and Figure 5 shows the cross section of the inner surface. ing.

実施例2〜8 紡糸条件を変えて実施例1と同様に1.で中空糸膜を製
造した。表−1に示すように限外濾過1ノベルから精密
濾過レベルまでの広い範囲の性能を持つ中空糸膜が得ら
れ几。
Examples 2 to 8 1. Same as Example 1 with different spinning conditions. A hollow fiber membrane was manufactured. As shown in Table 1, hollow fiber membranes with a wide range of performance from the ultrafiltration level to the precision filtration level were obtained.

以下、蒼白 実施例9 ポリスルホンts31111部、ポリビニルビ0917
2重量部、無水塩化リチウム1重重部、ジメチルホルム
アミド79重重部を60℃で8時間加熱溶解し紡糸原液
とした。この原液は45℃で相分離する高温分離型の原
液であった。この原液を用いて実施例1と同一条件で中
空糸膜を製造した。
Below, pallor Example 9 Polysulfone TS31111 parts, Polyvinyl vinyl 0917
2 parts by weight, 1 part by weight of anhydrous lithium chloride, and 79 parts by weight of dimethylformamide were dissolved by heating at 60° C. for 8 hours to obtain a spinning stock solution. This stock solution was a high temperature separation type stock solution that undergoes phase separation at 45°C. A hollow fiber membrane was produced using this stock solution under the same conditions as in Example 1.

得られた中空糸膜の純水透過速度は、t、800t/n
i’ −hr −’q/d、135Xのコロイダルシリ
カの除去率は964であった。走査型電子顕微鏡写真か
ら求めた内表館の平均孔径は200λ、開孔率は15チ
、緻密層の厚さt/′13Afn、外表面の最大孔径は
1.5IIl′n1膜の内部は平均孔径ll1nの網状
多孔構造であった。また、元素分析に二る膜中のポリビ
ニルピロリドン量にポリスルホンに対して45壬であっ
た。
The pure water permeation rate of the obtained hollow fiber membrane was t, 800t/n.
The removal rate of colloidal silica of i'-hr-'q/d, 135X was 964. The average pore diameter of the inner surface, determined from scanning electron micrographs, is 200λ, the porosity is 15cm, the thickness of the dense layer is t/'13Afn, and the maximum pore diameter on the outer surface is 1.5IIl'n1. It had a network-like porous structure with a pore diameter of 11n. In addition, the amount of polyvinylpyrrolidone in the membrane based on elemental analysis was 45 mm compared to polysulfone.

比較例1 ドライブーンfOの(湿式紡糸)とした以外は実施例1
と同一条件で中空糸膜を製造した。得られた中空糸膜の
純水透過速度はs  400 Z/a!−hr・kf1
51と低いものであった。また走査型電子顕微鏡写真よ
り、外表面・孔径0.1μm以上の孔に存在しておらず
、また内表面と外表面に緻密層が認められた。
Comparative Example 1 Example 1 except that dry yarn fO (wet spinning) was used.
Hollow fiber membranes were manufactured under the same conditions. The pure water permeation rate of the obtained hollow fiber membrane was s 400 Z/a! -hr・kf1
It was as low as 51. In addition, scanning electron micrographs showed that it was not present on the outer surface or in pores with a pore diameter of 0.1 μm or more, and dense layers were observed on the inner and outer surfaces.

実施例10 実施例1および比較例1の中空糸膜を使用して、有効膜
面積1rr!の外圧濾過型モジュールを作製した。この
モジュールを用いて水道水をr過圧Q、 5呻/dで外
圧全濾過を行った0透過速度が半減したときの濾過量を
測定したところ、比較例1の中空糸膜を収容したモジュ
ールが25ftIl″T:あったのに対して実施例1の
中空糸膜を収容したモジュールは60rrlであった0 (発明の効果) 本発明の多孔性中空糸膜は、特定の構造を有しているた
めに透水性、分画性、目詰まり、耐汚染性等に優れ、し
かも親水性であるため、長期間の使用に適しており、経
済的である。そのため、中工業用途や血液、腹水濾 過等のメディカル用途等幅広い分野で使用することがで
きる。
Example 10 Using the hollow fiber membranes of Example 1 and Comparative Example 1, the effective membrane area was 1rr! An external pressure filtration type module was fabricated. Using this module, tap water was subjected to external pressure total filtration at r overpressure Q and 5 m/d, and the filtration amount when the zero permeation rate was halved was measured. was 25ftIl''T: whereas the module containing the hollow fiber membrane of Example 1 had a capacity of 60rrl. It has excellent water permeability, fractionation, clogging and stain resistance, etc., and is hydrophilic, making it suitable for long-term use and economical. It can be used in a wide range of fields including medical applications such as filtration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図に実施例1において得られたポリスルホ
ン中空糸膜の走査型電子顕微鏡写真であり、第1図は中
空糸膜の外表面の構造(倍率5.000)、第2図は中
空糸膜の内表面の構造(倍率5,000)、第3図は中
空糸膜の外表面側の断面構造(倍率5.000)、第4
図は中空糸膜の内部(はぼ中央部)の構造(倍率5.0
00)および第5図は中空糸膜の内表面側の断面構造(
倍率5,000)を示す。
Figures 1 to 5 are scanning electron micrographs of the polysulfone hollow fiber membrane obtained in Example 1. Figure 1 is the structure of the outer surface of the hollow fiber membrane (magnification: 5.000), and Figure 2 is a scanning electron micrograph of the polysulfone hollow fiber membrane obtained in Example 1. Figure 3 shows the structure of the inner surface of the hollow fiber membrane (magnification 5,000), Figure 3 shows the cross-sectional structure of the outer surface of the hollow fiber membrane (magnification 5,000), Figure 4
The figure shows the structure of the inside (center part) of the hollow fiber membrane (magnification: 5.0
00) and Figure 5 show the cross-sectional structure of the inner surface side of the hollow fiber membrane (
Magnification: 5,000).

Claims (1)

【特許請求の範囲】[Claims] (1)疎水性高分子に対して0.5〜10%の親水性高
分子を含有した多孔性中空糸膜であつて、該多孔性中空
糸膜は内表面に不定形の微細孔を開孔率10〜50%の
割合で有する、厚さ0.5〜5μmの緻密層と、該緻密
層に一体に連続して形成された網状組織とからなる多孔
構造であり、かつ外表面は該網状組織の一部が開孔して
できた最大孔径0.5〜5μmの孔を有し、25℃にお
ける純水透過速度が800l/m^2・hr・kg/c
m^2以上であることを特徴とする多孔性中空糸膜。
(1) A porous hollow fiber membrane containing 0.5 to 10% of a hydrophilic polymer to a hydrophobic polymer, the porous hollow fiber membrane having irregularly shaped micropores on its inner surface. It has a porous structure consisting of a dense layer having a porosity of 10 to 50% and a thickness of 0.5 to 5 μm, and a network structure integrally and continuously formed in the dense layer, and the outer surface is It has pores with a maximum pore diameter of 0.5 to 5 μm created by opening a part of the network, and the pure water permeation rate at 25°C is 800 l/m^2・hr・kg/c.
A porous hollow fiber membrane characterized by having a porous hollow fiber membrane of m^2 or more.
JP2059346A 1990-03-09 1990-03-09 Porous hollow fiber membrane Expired - Lifetime JP2899347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2059346A JP2899347B2 (en) 1990-03-09 1990-03-09 Porous hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2059346A JP2899347B2 (en) 1990-03-09 1990-03-09 Porous hollow fiber membrane

Publications (2)

Publication Number Publication Date
JPH03258330A true JPH03258330A (en) 1991-11-18
JP2899347B2 JP2899347B2 (en) 1999-06-02

Family

ID=13110643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2059346A Expired - Lifetime JP2899347B2 (en) 1990-03-09 1990-03-09 Porous hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP2899347B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034687A1 (en) * 1996-03-21 1997-09-25 Kaneka Corporation Hollow yarn membrane used for blood purification and blood purifier
KR100426328B1 (en) * 2001-04-24 2004-04-08 학교법인 한양학원 Method for manufacturing microporous chlorinated poly(vinyl chloride) membrane using poly(vinyl pyrrolidone) and microporous chlorinated poly(vinyl chloride) membrane manufactured thereby
WO2010035754A1 (en) * 2008-09-26 2010-04-01 旭化成ケミカルズ株式会社 Porous membrane, process for producing porous membrane, process for producing clarified liquid, and porous-membrane module
JP2011050914A (en) * 2009-09-04 2011-03-17 Toray Ind Inc Method of manufacturing separation membrane
JP2014073487A (en) * 2012-09-11 2014-04-24 Toray Ind Inc Porous membrane, water purifier incorporating porous membrane and method for producing porous membrane
WO2014156644A1 (en) * 2013-03-28 2014-10-02 東レ株式会社 Porous membrane and water purifier
CN104208766A (en) * 2014-08-26 2014-12-17 东华大学 High-stain-resistance polyether sulfone blood purifier and manufacturing method thereof
JP2016083647A (en) * 2014-10-29 2016-05-19 株式会社クラレ Hollow fiber membrane module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006214581B2 (en) 2005-02-14 2012-03-01 Johnson & Johnson Vision Care, Inc. A comfortable ophthalmic device and methods of its production

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042783A (en) * 1996-03-21 2000-03-28 Kaneka Corporation Hollow yarn membrane used for blood purification and blood purifier
WO1997034687A1 (en) * 1996-03-21 1997-09-25 Kaneka Corporation Hollow yarn membrane used for blood purification and blood purifier
KR100426328B1 (en) * 2001-04-24 2004-04-08 학교법인 한양학원 Method for manufacturing microporous chlorinated poly(vinyl chloride) membrane using poly(vinyl pyrrolidone) and microporous chlorinated poly(vinyl chloride) membrane manufactured thereby
US9126148B2 (en) 2008-09-26 2015-09-08 Asahi Kasei Chemicals Corporation Porous membrane, process for producing porous membrane, process for producing clarified liquid, and porous-membrane module
WO2010035754A1 (en) * 2008-09-26 2010-04-01 旭化成ケミカルズ株式会社 Porous membrane, process for producing porous membrane, process for producing clarified liquid, and porous-membrane module
JP5431347B2 (en) * 2008-09-26 2014-03-05 旭化成ケミカルズ株式会社 Porous membrane, method for producing porous membrane, method for producing clarified liquid, and porous membrane module
US9174172B2 (en) 2008-09-26 2015-11-03 Asahi Kasei Chemicals Corporation Porous membrane, process for producing porous membrane, process for producing clarified liquid, and porous-membrane module
US8883066B2 (en) 2008-09-26 2014-11-11 Asahi Kasei Chemicals Corporation Porous membrane, process for producing porous membrane, process for producing clarified liquid, and porous-membrane module
JP2011050914A (en) * 2009-09-04 2011-03-17 Toray Ind Inc Method of manufacturing separation membrane
JP2014073487A (en) * 2012-09-11 2014-04-24 Toray Ind Inc Porous membrane, water purifier incorporating porous membrane and method for producing porous membrane
WO2014156644A1 (en) * 2013-03-28 2014-10-02 東レ株式会社 Porous membrane and water purifier
JPWO2014156644A1 (en) * 2013-03-28 2017-02-16 東レ株式会社 Porous membrane and water purifier
JP2019048297A (en) * 2013-03-28 2019-03-28 東レ株式会社 Porous membrane
CN104208766A (en) * 2014-08-26 2014-12-17 东华大学 High-stain-resistance polyether sulfone blood purifier and manufacturing method thereof
JP2016083647A (en) * 2014-10-29 2016-05-19 株式会社クラレ Hollow fiber membrane module

Also Published As

Publication number Publication date
JP2899347B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
US4612119A (en) Hollow fiber filter medium and process for preparing the same
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
JP3117575B2 (en) Polysulfone-based hollow fiber membrane and method for producing the same
WO1995033549A1 (en) Porous polysulfone membrane and process for producing the same
JPS6356802B2 (en)
JPH03258330A (en) Porous hollow fiber membrane
KR100557264B1 (en) Hollow fiber membrane and process for producing the same
JP2899352B2 (en) Porous hollow fiber membrane
JPS61164602A (en) Hllow yarn membrane made of polysulfone resin and its preparation
JPH05317664A (en) Porous hollow fiber membrane
JPH053335B2 (en)
JPH0929078A (en) Production of hollow yarn membrane
JPS63296939A (en) Polyvinylidene fluoride resin porous film and its manufacture
JP2882658B2 (en) Method for producing polysulfone-based semipermeable membrane
KR20120077011A (en) Water treatment membrane of poly(ethylenechlorotrifluoroethylene) and manufacturing method thereof
JPH0468010B2 (en)
JP2899348B2 (en) Porous hollow fiber
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
JP3250808B2 (en) Polysulfone porous membrane and method for producing the same
JPH0468011B2 (en)
JPH119977A (en) Polyethylene composite microporous hollow fiber membrane
JP3524637B2 (en) Method for producing polymer porous membrane
JP2675197B2 (en) Manufacturing method of high strength and porous polysulfone hollow fiber membrane
JPH09253463A (en) Manufacture of polysulfone type ultrafiltration film
JPH01184001A (en) Porous membrane of polysulfone

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

EXPY Cancellation because of completion of term