JPH0398625A - Preparation of carbon fiber-based porous hollow fiber membrane - Google Patents

Preparation of carbon fiber-based porous hollow fiber membrane

Info

Publication number
JPH0398625A
JPH0398625A JP23618989A JP23618989A JPH0398625A JP H0398625 A JPH0398625 A JP H0398625A JP 23618989 A JP23618989 A JP 23618989A JP 23618989 A JP23618989 A JP 23618989A JP H0398625 A JPH0398625 A JP H0398625A
Authority
JP
Japan
Prior art keywords
gas
membrane
treatment
hollow fiber
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23618989A
Other languages
Japanese (ja)
Inventor
Hiroaki Yoneyama
米山 弘明
Yoshihiro Nishihara
良浩 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP23618989A priority Critical patent/JPH0398625A/en
Publication of JPH0398625A publication Critical patent/JPH0398625A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make hollow fiber membrane porous, improve permeation speed, and elevate heat resistance and chemical stability of the membrane by processing an acrylic hollow fiber for carbonization treatment in an inert gas and treatment in an acidic gas after carrying out flame resistant treatment in an oxidative gas. CONSTITUTION:A hollow fiber to be used is comprised of an acrylic copolymer containing at least 90% of acrylonitrile and it is drawn to at least 3 time-length and subjected to flame resistant treatment in an oxidative gas containing O2, S, etc., at 200-300 deg.C. Then carbonization is carried out in an inert gas such as N2, Ar, He, etc., at 300-1000 deg.C. Further, treatment in atmosphere containing an acidic gas, e.g. steam, air, CO2, etc., at 600-1200 deg.C is carried out to make the membrane porous. As another method, after flame resistant treatment, treatment in atmosphere containing an acidic gas and an inert gas at 400-800 deg.C is carried out for carbonizing the membrane and making it porous simultaneously. In this way, a membrane having high gas permeation speed and high heat resistance and chemical stability is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスを分離するための炭素練維糸多孔質中空糸
膜の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a carbon fiber porous hollow fiber membrane for gas separation.

〔従来の技術〕[Conventional technology]

安価でかつ省エネルギープロセスのための分離膜の開発
が行なわれているが、現在工業化されている分離膜は液
体を対象としたものが多く、電気透析膜、精密e過膜、
限外e過膜、逆浸透膜等がある。
Separation membranes are being developed for inexpensive and energy-saving processes, but currently industrialized separation membranes are mostly for liquids, such as electrodialysis membranes, precision e-filtration membranes,
There are ultra-e membranes, reverse osmosis membranes, etc.

これ等に比較して気体を対象としたものは開発段階にあ
り、実用例は石油精製等の化学工業でのバージガスから
の水素の分離、石油三次回収における炭酸ガスの分離及
び空気からの窒素又は酸素の富化(濃TJ)等であって
少ない。
Compared to these, those that target gases are still at the development stage, and practical examples include separation of hydrogen from barge gas in chemical industries such as oil refining, separation of carbon dioxide gas in tertiary oil recovery, and separation of nitrogen or gas from air. Oxygen enrichment (concentrated TJ), etc. is small.

気体分離用の膜としては、ボリスルホン膜、ゲリコン膜
、ポリアミド膜及びテフロン膜等に代表される合成高分
子膜があり、これ等の高分子膜はそれぞれ固有のガス分
離特性を有して居り、概してガスの分離特性は大きいが
、透過性が小さいことが知られている。これらの膜はほ
とんど均質膜(非多孔質膜)である。
Membranes for gas separation include synthetic polymer membranes such as borisulfone membranes, gelicon membranes, polyamide membranes, and Teflon membranes. Each of these polymer membranes has its own unique gas separation characteristics. It is generally known that gas separation properties are high, but permeability is low. These membranes are almost homogeneous membranes (non-porous membranes).

均質膜の場合、気体の透過速度は膜の面積と圧力に比例
して大きくなり、膜の厚さに逆比例することが知られて
居る。従って、単位体積当りの膜面積を増大させる手段
として膜の中空繊維化、更に膜の厚さを薄くする為の手
段として非対称膜と称される多孔質の補強層+ロ奇捲表
面の片側に極めて薄い均質層からなる構造の膜が開発さ
れ、膜によるガス分離の技術が大きく飛躍した。
It is known that in the case of a homogeneous membrane, the gas permeation rate increases in proportion to the area and pressure of the membrane, and is inversely proportional to the thickness of the membrane. Therefore, as a means to increase the membrane area per unit volume, we use hollow fiber membranes, and as a means to further reduce the thickness of the membrane, we use a porous reinforcing layer, called an asymmetric membrane, on one side of the irregular surface. A membrane with a structure consisting of an extremely thin homogeneous layer was developed, and the technology for gas separation using membranes made a great leap forward.

1たガスの分離技術の一方法に分子篩活性炭(M80)
を吸着剤として圧力スイング吸着法(psA法)で大童
のガス空気から連続的に窒素を分離する技術があるが、
粒状の吸着剤を用いるため分離工程が吸着一脱着の繰り
返し等繁雑な工程となってbる。特開昭60−1791
02号及び特開昭60−202703号公報では炭素膜
製造の提案が行われている。具体的には気体もしくは液
体分離用の微多孔性炭素膜が、実質的に延伸を行わずに
作威した高分子膜を焼或することによって製造されてか
り、その実施例ではガスの透過速度は高いが、分M係数
(2穐のガスの透過速度比)は何れも2以下と低い。
Molecular sieve activated carbon (M80) is one of the gas separation technologies.
There is a technology to continuously separate nitrogen from Daido's gas air using the pressure swing adsorption method (psA method) using nitrogen as an adsorbent.
Since a granular adsorbent is used, the separation process becomes a complicated process such as repeating adsorption and desorption. Japanese Patent Publication No. 1791/1986
No. 02 and Japanese Unexamined Patent Publication No. 60-202703 propose the production of carbon membranes. Specifically, microporous carbon membranes for gas or liquid separation have been produced by firing a stretched polymer membrane without substantial stretching, and in this example, the gas permeation rate has been increased. are high, but the M coefficients (ratio of gas permeation rates between two gases) are both low at 2 or less.

會た膜の配向係数が低いため極めて脆弱な膜となり易く
その取扱いには細心の注意を必要とするものである, 〔発明が解決しようとする課題〕 本発明の第一の目的は膜構造を多孔質化することによっ
てガスの透過速度を高めることにある。
Because the orientation coefficient of the assembled film is low, it tends to become an extremely fragile film and requires great care when handling it. [Problems to be Solved by the Invention] The first purpose of the present invention is to improve the film structure. The aim is to increase the gas permeation rate by making it porous.

膜を多孔質化した場合、気体の拡散分離機構はKnul
senの理論に基づく。即ち、多孔質構造の細孔径が気
体の平均自由行程(数千〜数百A)よりもはるかに小さ
いとき(100▲以下)、即ち、気体の平均自由行程値
を膜の細孔径で除したi! (Knudsen数)が1
より大きい場合、一定温度で細孔内を通過する気体の透
過速度は、分子量の平方根の逆数に比例し分子量の小さ
いものほど大きく、均質膜の場合と比較して104〜1
07と大きーことが知られている。
When the membrane is made porous, the gas diffusion separation mechanism is Knul
Based on the theory of sen. That is, when the pore diameter of the porous structure is much smaller (100▲ or less) than the mean free path of the gas (several thousand to several hundred A), that is, when the mean free path value of the gas is divided by the pore diameter of the membrane. i! (Knudsen number) is 1
When larger, the permeation rate of gas passing through the pores at a constant temperature is proportional to the reciprocal of the square root of the molecular weight, and the smaller the molecular weight is, the higher the rate is.
It is known to be as large as 07.

!たKnudsen流にかける理想的な分離係数は気体
分子量の平方根の逆数の比であり分子量の異なる気体ほ
ど分離係数が大きいことも公知である。
! It is also known that the ideal separation coefficient applied to the Knudsen flow is the ratio of the reciprocal of the square root of the gas molecular weight, and that the separation coefficient is larger for gases with different molecular weights.

本発明の第二の目的は高度のガス透過性と分離性を有す
ると共に耐熱性及び化学的安定性に優れた炭素繊維系多
孔質中空糸膜を提供することにある。
A second object of the present invention is to provide a carbon fiber-based porous hollow fiber membrane that has a high degree of gas permeability and separability, as well as excellent heat resistance and chemical stability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の要旨はアクリロニトリル90モル優以上のアク
リル系重合体からなう、且つ3倍以上の延伸を施したア
クリル中空繊維を200〜300℃の酸化性ガス中で耐
炎化処理後、イ、300〜1000℃の不活性ガス中で
炭素化処理し、次いで600〜1200℃の酸性ガスを
含有する雰囲気中で処理する、 又は ロ、400〜1000℃の酸性ガスを含有する雰囲気中
で処理することを特徴とする 繊維の内径が50μm以上、内径と膜厚の比が満の貫通
した微細孔を有する炭素繊維系多孔質中空糸膜の製法に
ある。
The gist of the present invention is that acrylic hollow fibers made of an acrylic polymer containing at least 90 moles of acrylonitrile and stretched three times or more are flame-retardantly treated in an oxidizing gas at 200 to 300°C. Carbonization treatment in an inert gas at ~1000°C, followed by treatment in an atmosphere containing acidic gas at 600~1200°C, or (b) treatment in an atmosphere containing acidic gas at 400~1000°C. A method for producing a carbon fiber porous hollow fiber membrane having penetrating micropores with an inner diameter of 50 μm or more and a ratio of inner diameter to membrane thickness of 50 μm or more.

本発明に用いるFAN糸中空繊維はアクリロニトリル(
以下、ANと略)90モル係以上とANと共重合可能な
公知の単量体1乃至2種類を10モル係以下含むアクリ
ル系共重合体から製造されたものである。
The FAN yarn hollow fiber used in the present invention is made of acrylonitrile (
It is manufactured from an acrylic copolymer containing 90 or more molar mass (hereinafter abbreviated as AN) and 10 molar mass or less of one or two types of known monomers copolymerizable with AN.

ANと共重合する単量体が10モル憾を越えると、高温
度での焼成工程にかいて軟化,分解し易くなり、繊維同
志が融着を生じ易くなり、甚だしい場合には##雑は切
断して焼成工程を通過1−ない等のトラブルを生ずるこ
とがあるので好一まし〈ない。
If the amount of the monomer copolymerized with AN exceeds 10 moles, it becomes easy to soften and decompose during the firing process at high temperatures, and the fibers tend to fuse together, and in severe cases, ## miscellaneous problems occur. This is not preferable as it may cause problems such as cutting and not passing through the firing process.

共重合可能な単看体としてはアクリル酸、メタクリル酸
、イタコン酸及びそれらの誘導体、例えばメタクリル酸
メチルやアクリル酸メチル、1たアクリルアミドやメタ
クリルアミド等のアミド誘導体、酢酸ビニル更に塩化ビ
ニリデン等ノハロケン化単i 体、メタリルスルホン酸
ソーダやスチレンスルホン酸ンーダ等のスルホン酸誘導
体等が挙げられるが、必ずしもこれ等に限定されるもの
ではない。重合体の重合度は、比粘度α2〜a5の範囲
が好しb0 PAN糸中空繊維を賦型するための溶剤としてはジメチ
ルホルムアミド(DMF) 、ジメチルアセトアミド(
DMAO)及びジメチルスルホキシド(DM日O)等の
有機溶剤、塩化亜鉛、ロダン塩、硝酸等の無機濃厚水溶
液を用いることかできる。
Copolymerizable monomers include acrylic acid, methacrylic acid, itaconic acid and their derivatives, such as methyl methacrylate, methyl acrylate, amide derivatives such as monoacrylamide and methacrylamide, vinyl acetate and vinylidene chloride, etc. Examples include, but are not limited to, sulfonic acid derivatives such as monomer, sodium methallylsulfonate, and sodium styrenesulfonate. The degree of polymerization of the polymer is preferably in the range of specific viscosity α2 to a5 b0.As the solvent for shaping the PAN yarn hollow fibers, dimethylformamide (DMF), dimethylacetamide (
Organic solvents such as DMAO) and dimethyl sulfoxide (DMAO), and inorganic concentrated aqueous solutions such as zinc chloride, rhodan salt, and nitric acid can be used.

重合体溶液の濃度及び粘度は共重合体の組戒、比粘度、
用hる溶剤の種類によって異るが高濃度でかつ比較的低
粘度の紡糸原液を得る意味からは、有機系溶剤の方が無
機系溶剤よりは好しい。有機系溶剤を用いる場合、重合
体濃度20〜30%,50℃での落球法粘度300〜8
00ボイズの範囲が原液の安定性及びP過や紡糸の操作
性の面から好しい。
The concentration and viscosity of the polymer solution are determined by the copolymer composition, specific viscosity,
Although it depends on the type of solvent used, organic solvents are preferable to inorganic solvents in terms of obtaining a spinning dope with high concentration and relatively low viscosity. When using an organic solvent, the polymer concentration is 20-30% and the falling ball viscosity at 50°C is 300-8.
A range of 0.00 voids is preferable from the viewpoint of stability of the stock solution and operability of P filtering and spinning.

中空繊維への賦型は環状スリット或は鞘芯型ノズルを用
い鞘部より重合体溶液を芯部より凝固性流体を吐出して
、bつたん空気中を流下させた後、凝固浴中に導いて凝
固させる。凝固浴は比較的凝固の遅いものが均質なフイ
ブリル構造が形戒され易い。
To shape the hollow fibers, use an annular slit or sheath-core nozzle to discharge the polymer solution from the sheath and coagulate fluid from the core, let it flow down in the air, and then put it into a coagulation bath. Guide and solidify. A coagulation bath that coagulates relatively slowly is likely to have a homogeneous fibrillar structure.

一方芯部より吐出する凝固性流体の凝固力を調整するこ
とによって、均質構造の膜から異方構造の膜1で製造で
きる。即ち芯部に空気,窒素等のガスを徽圧で吐出させ
る場合は中空糸膜の厚さ方向に均質な膜が製造され、芯
部に凝固速度の早い水、エチレングリコール、低級アル
コール等を用いると中空内壁は比較的多孔構造となり外
壁が均質な薄い膜構造となる。bづれの膜も本発明に用
いることができる。
On the other hand, by adjusting the coagulation force of the coagulable fluid discharged from the core, a membrane 1 having an anisotropic structure can be manufactured from a homogeneous membrane. In other words, when a gas such as air or nitrogen is discharged from the core under pressure, a membrane that is homogeneous in the thickness direction of the hollow fiber membrane is manufactured, and water, ethylene glycol, lower alcohol, etc., which has a fast solidification rate, is used for the core. The hollow inner wall has a relatively porous structure, and the outer wall has a homogeneous thin membrane structure. Membranes of the same type can also be used in the present invention.

次いで常法により残存溶剤量が繊&1重量に対してCL
 O 1 vrtl以下になる會で60〜80℃の温水
で洗浄し、更に98℃の温水で洗浄する。
Next, the amount of residual solvent is determined by the conventional method to CL per fiber & 1 weight.
Wash with warm water of 60 to 80°C at a temperature below O 1 vrtl, and further wash with warm water of 98°C.

洗浄と同時に繊雄ぱ延伸され、延伸は2段以上の延伸で
徐々に全延伸倍率3倍以上の延伸が施される。紡糸浴条
件及び延伸によって形成される膜中のフイブリル構造は
後の多孔質構造に関連して重要である。
At the same time as washing, the fibers are stretched, and the stretching is carried out in two or more stages, gradually increasing the total stretching ratio to 3 times or more. The spinning bath conditions and the fibrillar structure in the membrane formed by stretching are important in relation to the subsequent porous structure.

即ち、後の多孔質化工程Vct?してフイブリルの間隙
が優先的に浸蝕され多孔質化されるものと考えられる。
That is, the subsequent porous formation step Vct? It is thought that the gaps between the fibrils are preferentially eroded and become porous.

従って細孔構造の大きさはこれら紡糸条件によって決定
される。
Therefore, the size of the pore structure is determined by these spinning conditions.

その後乾燥されて本発明に用いるPAN糸中空繊雑が製
造される。中空繊維の大きさはノズルの大きさ、重合体
溶液の吐出量及び延伸条件等によって決る。
Thereafter, it is dried to produce a PAN yarn hollow fiber used in the present invention. The size of the hollow fibers is determined by the size of the nozzle, the amount of polymer solution discharged, the stretching conditions, etc.

本発明の中空繊維は内径が大きく膜厚が薄い方が好しい
。しかし中空lV胃k蕃に処尤〈(y!厚)S/(中空
半径)真に比例する。従って膜厚が一定の場合、中空繊
維は中空半径が太き〈なると指数函数的につぶれ易〈i
る。
It is preferable that the hollow fiber of the present invention has a large inner diameter and a thin film thickness. However, in the hollow lV stomach k, the thickness is exactly proportional to (y!thickness)S/(hollow radius). Therefore, when the film thickness is constant, hollow fibers are more likely to collapse exponentially as the hollow radius becomes larger.
Ru.

PAN系中空繊維も内径50μm以上である。The PAN-based hollow fiber also has an inner diameter of 50 μm or more.

補強用炭素繊維及び活性炭素繊維の製造捻用いられるP
AN糸繊維ぱ通常3デニール以下、好!し〈は1.5デ
ニール以下であるが、本発明に用いるPAN系中空Mi
雄は20デニール以上の太い繊維である。従って焼或に
際しては、分解ガスの発生を極力抑えるような焼成条件
を採用することが必要である。
P used in the production of reinforcing carbon fibers and activated carbon fibers
AN yarn fiber is usually less than 3 denier, good! is less than 1.5 denier, but the PAN-based hollow Mi used in the present invention
Male fibers are thicker than 20 deniers. Therefore, during firing, it is necessary to adopt firing conditions that suppress the generation of decomposed gas as much as possible.

本発明の耐炎化処理は、PAN糸中空lII.維を温度
200〜300℃の酸化性ガス(0**Ose日,No
, 80,等を含むガス)中、通常は空気中で行う。繊
維は実質上収縮が生じないように制御される。繊雑が過
度に収縮すると機械的性能が低下する,,1た過度の伸
張は、糸条の切断を生ず酸化反応により縮合環構造の発
達に伴って繊維密度が上昇する。密度の範囲は1.35
〜1.50fl /cm”好11, < fit 4 
0 〜1. 4 5 f /cm”である。
The flame-retardant treatment of the present invention is applied to the PAN yarn hollow lII. The fibers were exposed to an oxidizing gas at a temperature of 200 to 300°C (0**Ose days, No.
, 80, etc.), usually in air. The fibers are controlled so that virtually no shrinkage occurs. Excessive shrinkage of the filament reduces mechanical performance, and excessive stretching causes yarn breakage and increases fiber density as a condensed ring structure develops due to oxidation reaction. The density range is 1.35
~1.50fl/cm” good 11, < fit 4
0 to 1. 4 5 f/cm”.

補強用[iの場合1. 5 5 〜t 4 0 f/c
m’であるのに比較して、中空繊維の場合炭素化工程で
の発生ガス量を抑制する意味で充分に反応を進めること
が必要である。
For reinforcement [in case of 1. 5 5 ~t 4 0 f/c
m', in the case of hollow fibers, it is necessary to sufficiently advance the reaction in order to suppress the amount of gas generated in the carbonization process.

耐炎化での密度がt 3 5 f/.1より低−と炭素
化工程での脱ガス量が増加し中空繊維内部に充満し、場
合によっては破裂を生ずる場合がある。1た密度が1.
 5 0 t/cm3より高くなると多孔質化工程で多
孔質化され鑓くなると共に繊維の機械的性能が低下する
ので好しくなb6連続工程での耐炎化工程では200℃
から300℃の範囲で数段に分割された炉中で低温から
高温に徐凌に行う必要がある。高温度からの表面の部分
的な過度の酸化反応は内部への酸素の拡散を妨げ、後の
炭素化工程での融着の要因となるばかりか、反応熱の暴
走を生じ易く、繊雑の燃焼切断を招く恐れがあるので好
しくない。
The density when flame resistant is t 3 5 f/. If the carbon content is lower than 1, the amount of gas degassed during the carbonization process will increase, filling the inside of the hollow fibers, and in some cases may cause rupture. 1 density is 1.
If the temperature is higher than 50 t/cm3, the fiber becomes porous and becomes loose in the porous process, and the mechanical performance of the fiber decreases.
It is necessary to gradually increase the temperature from a low temperature to a high temperature in a furnace divided into several stages in the range from 300°C to 300°C. Partially excessive oxidation reactions on the surface caused by high temperatures will not only prevent oxygen from diffusing into the interior, causing fusion in the subsequent carbonization process, but also tend to cause runaway reaction heat, resulting in the formation of delicate This is not preferable because it may cause combustion and cutting.

耐炎化処理時間は、処理炉長と処理速度の相対的セ関係
で決定されるが滞在時間1〜24時間ゆつ〈りと処理さ
れる。
The flameproofing treatment time is determined by the relative relationship between the treatment furnace length and the treatment speed, but the treatment is performed with a residence time of 1 to 24 hours.

次の炭素化処理は300〜1000℃の温度の不活性ガ
ス( Nl . A.r, He )中、通常は酸素濃
度1 0 ppm以下の窒素(Nハ中で0〜10優の範
囲の伸張条件で耐炎化糸を処理する。
The next carbonization treatment is carried out in an inert gas (Nl.A.r, He) at a temperature of 300 to 1000°C, usually with an oxygen concentration of 10 ppm or less in nitrogen (N), with an elongation in the range of 0 to 10%. Treat the flame-retardant yarn under the following conditions.

伸張が10優を越えて過度になると毛羽,糸切れの発生
が認められるように々る。伸張が0優より小、即ち収縮
サイドになると、分子の配向が乱れるためか強度が低下
の傾向を示す。この過程で窒素,酸素.水素等、炭素以
外の元素が主としてH O He N H3 − Nス
, cot, Hgoとして放出され繊雄重量は約27
3に減少する。
If the stretching is excessive (more than 10 degrees), fluffing and thread breakage may occur. When the elongation is less than 0, that is, on the contraction side, the strength tends to decrease, probably because the molecular orientation is disturbed. During this process, nitrogen and oxygen are released. Elements other than carbon, such as hydrogen, are mainly released as H O He N H3 - N, Cot, and Hgo, and the weight is approximately 27
Reduced to 3.

炭素化工程の処理時間は耐炎化工程に比較すれば、はる
かに短く1〜10分で充分である。
The treatment time for the carbonization step is much shorter than that for the flameproofing step, and 1 to 10 minutes is sufficient.

次いで多孔質化を目的として600〜1 200℃の酸
性ガス(水蒸気、空気、003、NH4等)を含有する
雰囲気中で得られた炭素繊維を処理する。
Next, the obtained carbon fibers are treated in an atmosphere containing an acidic gas (steam, air, 003, NH4, etc.) at 600 to 1200° C. for the purpose of making them porous.

酸性ガスは反応が比較的かだやかな水蒸気を使用するの
がよい。酸性ガス1004でも処理可能であるが、好し
〈は酸性ガス濃度・20〜80vol優、更には30〜
7 0 vot4、不活性ガス80〜2 0 vot4
、更には70〜5 0 vot優の混合ガスで処理する
。酸性ガス供給量は繊雑に対して1 〜5 1g H,
0 /k9f1berの範囲がよい。
As the acidic gas, it is preferable to use water vapor, which has a relatively rapid reaction. Although it is possible to treat with acidic gas 1004, it is preferable to use an acidic gas concentration of 20 to 80 vol, more preferably 30 to 80 vol.
70 vot4, inert gas 80~20 vot4
, and further treated with a mixed gas of 70 to 50 vot. Acid gas supply amount is 1 to 5 1g H for delicates,
A range of 0/k9f1ber is good.

多孔質化の処理が進み過ぎると収率は低下し繊維の機械
的性質は低下の傾向を示す。1た気体の透過速度は増加
するが分離性能は低下する傾向にある。
If the porosity treatment progresses too much, the yield decreases and the mechanical properties of the fibers tend to decrease. Although the permeation rate of other gases increases, the separation performance tends to decrease.

従って機械的性質、分離性能が向上しかつ透過速度も比
較的早いバランスのとれた最適条件を選択する必要があ
る。
Therefore, it is necessary to select well-balanced optimal conditions that provide improved mechanical properties and separation performance and a relatively fast permeation rate.

あるいは別の方法として耐炎化処理後、400〜800
℃の上記した酸性ガスを20〜80vot%好し< !
−t5 0 〜7 0 voL4含有する酸性ガスと不
活性ガスからなる雰囲気中で炭素化と多孔質化とを同時
に行うことによって本発明の炭素繊維系多孔質中空糸膜
を得ることも可能である。
Alternatively, after flame-retardant treatment, 400 to 800
The above acidic gas at ℃ is preferably 20 to 80 vot%<!
It is also possible to obtain the carbon fiber-based porous hollow fiber membrane of the present invention by simultaneously performing carbonization and porosity formation in an atmosphere consisting of an acidic gas containing -t50 to 70voL4 and an inert gas. .

〔実施例〕〔Example〕

以下具体的に実施例で本発明を説明する。 The present invention will be specifically described below with reference to Examples.

(1》  比粘度は重合体(11PをalNのロダンソ
ーダを含むジメチルホルムアミドioos/!に溶解し
25℃で測定した。
(1) Specific viscosity was measured at 25° C. by dissolving the polymer (11P) in dimethylformamide ioos/! containing alN rhodan soda.

(2)比表面積はメタノール等温吸着曲線からBIT式
に基づいて計算した。
(2) The specific surface area was calculated from the methanol isothermal adsorption curve based on the BIT formula.

(3》  細孔容積、細孔分布はメタノール等温吸着曲
線から浦野ら(「表面J vo4 13, N○12,
P73B)  の方法で求めた。
(3) Pore volume and pore distribution were determined from the methanol isothermal adsorption curve by Urano et al.
P73B).

(4)透過率の測定は長さ20crIKの多孔質中空糸
膜1200本の両端をエボキシ樹脂で充填し量及び差圧
を測定することによって求めた。
(4) The transmittance was measured by filling both ends of 1200 porous hollow fiber membranes with a length of 20 cr IK with epoxy resin and measuring the amount and differential pressure.

(5)混合ガスの分析は、ガスクロマトグラフを用−て
測定した。
(5) The mixed gas was analyzed using a gas chromatograph.

(6)繊維の密度#′i,T工s  17601記載の
密度勾配管法によって測定した。
(6) Fiber density #'i, measured by the density gradient tube method described in T. Engineering S. 17601.

実施例1 アクリロニトリル98モル係、メタアクリル酸2モル傷
からなる比粘度(l25の共重合体をDMFに溶解し2
4傷の紡糸原液を調整した。
Example 1 A copolymer with a specific viscosity of 98 moles of acrylonitrile and 2 moles of methacrylic acid (125) was dissolved in DMF and
A spinning stock solution with 4 wounds was prepared.

芯鞘型ノズルを用b鞘部より紡糸原液を吐出し芯部より
10■水柱圧で空気を導入した。この芯部に空気を含ん
だ状態でノズルより一旦空気中に吐出した後、直ちに温
度20℃、DMF7 2 wt4、水2 8 wt,4
の凝固浴中に紡糸し凝固せしめた。ノズルと凝固浴液面
の間隔は8Mであった。この中空状凝固糸条を60℃の
温水中で洗浄と同時に原長の3倍の延伸を施した。更に
98℃の熱水中に導き洗浄と2倍の延伸を行った。この
とき繊維中の残存溶剤量Fill007俤であり、全延
伸倍率6倍である。引続いて160℃の温度の熱ロール
で乾燥し、内径200μm,均質な膜厚30μへ230
デニール60フィラメントのPAN系中空繊維を製造し
た。
Using a core-sheath type nozzle, the spinning dope was discharged from the sheath part, and air was introduced from the core part at a water column pressure of 10 μm. After once discharging this core containing air into the air from the nozzle, the temperature is 20°C, DMF7 2 wt4, water 28 wt, 4
It was spun and coagulated in a coagulation bath. The distance between the nozzle and the coagulation bath liquid level was 8M. This hollow coagulated filament was washed in hot water at 60°C and simultaneously stretched to three times its original length. Furthermore, the film was washed in hot water at 98°C and stretched twice. At this time, the amount of residual solvent in the fiber was Fill007, and the total stretching ratio was 6 times. Subsequently, it was dried with a hot roll at a temperature of 160°C to obtain a film with an inner diameter of 200 μm and a uniform film thickness of 30 μm.
A PAN-based hollow fiber with a denier of 60 filaments was produced.

この中空繊維を温度220℃/245℃/265Cの3
段に区分けされた空気雰囲気の酸化炉中を15m/mi
nの速度で耐炎化処理した。
This hollow fiber was
15m/mi inside the oxidation furnace with air atmosphere divided into stages
Flameproofing treatment was carried out at a rate of n.

繊雑は!1段の炉中で2憾の伸張を施した。第2段及び
第3段は同一速度で通過処理した。耐炎化処理後の繊雑
の密度Fi1. 4 0 t/r.一であった。
Delicate! Two stretches were carried out in a single stage furnace. The second and third stages were passed through at the same speed. Density of fibrils after flameproofing treatment Fi1. 4 0 t/r. It was one.

次いで窒素ガス中500℃から700℃の温度勾配を有
する炉中を収縮させなしように等速度で通過させ炭素化
処理した。更に窒素ガス5 0 vot4の混合ガス雰
囲気中で温度を変更して多孔質化処理した。混合ガス流
は繊維に対して向流とし2 k9 Hz O/’kl 
f i b@ rとなるように流量を調整した。得られ
た繊維の性状を第1表に示した。
Next, carbonization treatment was carried out by passing through a furnace having a temperature gradient from 500° C. to 700° C. in nitrogen gas at a constant speed to avoid shrinkage. Furthermore, a porous treatment was performed by changing the temperature in a mixed gas atmosphere of 50 vot4 nitrogen gas. The mixed gas flow is countercurrent to the fibers at 2 k9 Hz O/'kl.
The flow rate was adjusted so that f i b@r. The properties of the obtained fibers are shown in Table 1.

第  1 表 第1表に示した透過係数はヘリウムガスの値であり、分
離係数は窒素ガスに対するものである。該表より透過係
数が増大するとヘリウムに対する窒素の分離係数は低下
傾向を示すことがわかる。
Table 1 The permeability coefficients shown in Table 1 are for helium gas, and the separation coefficients are for nitrogen gas. It can be seen from the table that as the permeability coefficient increases, the separation coefficient of nitrogen with respect to helium tends to decrease.

実施例2 アクリロニトリル96モル懺、アクリル酸3モル憾、イ
タコン酸1モル優の組威からなる比粘度(L21の共重
合体をDMAOに溶解し、紡糸原液を調整した。
Example 2 A copolymer with a specific viscosity (L21) consisting of 96 moles of acrylonitrile, 3 moles of acrylic acid, and over 1 mole of itaconic acid was dissolved in DMAO to prepare a spinning dope.

外径1■の鞘芯型ノズルから紡糸原液を吐出した。芯部
より20重量4のDMAC!水溶液を導入した。吐出比
は1対1でD M A O 7 3 wt4水2 7 
vt係からなる凝固洛中に空気部5wmを経て半乾湿式
紡糸をし、凝固を完結させた。
The spinning stock solution was discharged from a sheath-core type nozzle with an outer diameter of 1 mm. 20 weight 4 DMAC from the core! An aqueous solution was introduced. The discharge ratio is 1:1: DM A O 7 3 wt4 water 2 7
Semi-dry and wet spinning was carried out through a 5wm air section in a coagulation machine consisting of a VT section to complete coagulation.

次bで65℃の温水中で溶剤を洗浄した。引続き98℃
の熱水中で4倍の延伸を行った。洗浄延伸後の溶剤量は
Q.003重J14であった。
Next, in step b, the solvent was washed away in warm water at 65°C. Continued to 98℃
The film was stretched 4 times in hot water. The amount of solvent after washing and stretching is Q. It was 003 heavy J14.

シリコン系油剤を付着させた後170℃の熱ロールで乾
燥し更に2倍の延伸を施して全延伸倍率8倍とした。
After the silicone oil was applied, it was dried with a hot roll at 170°C and further stretched twice to give a total stretching ratio of 8 times.

IC 得られた中空鷹維は内径75μm、平均膜厚合石.μm
、83デニールであった。但し、この中空繊維の内壁は
荒れた構造となっており中空膜の最外層部7μmが均質
層よりなる異相構造と慶っていることが走査型電顕写真
の結果から明らかとなった。このPAN系中空繊緯を2
35℃/242℃/252℃の3段に区分けされた空気
雰囲気の耐炎化炉中を走行速度を変更して縮合環構造の
異る(密度の異る)耐炎化された繊維を得た。
IC The obtained hollow fiber had an inner diameter of 75 μm and an average thickness of 1.5 μm. μm
, 83 denier. However, the results of scanning electron microscopy revealed that the inner wall of this hollow fiber had a rough structure, and that the outermost layer of the hollow membrane with a thickness of 7 μm had a heterogeneous structure consisting of a homogeneous layer. This PAN system hollow fiber is 2
Flame-resistant fibers having different condensed ring structures (different densities) were obtained by changing the running speed in a flame-resistant furnace in an air atmosphere divided into three stages of 35° C./242° C./252° C.

次いで温度600℃の窒素5 0 vat 4と水蒸気
5 0 voLφからなる混合ガスを向流で通過させ、
炭素化と多孔質処理を同時に行った。得られた炭素繊維
系多孔質中空糸膜の内径65μm、平均1シ 膜厚Hμmであり性状を第2表に示した。
Next, a mixed gas consisting of 50 vat 4 of nitrogen and 50 voLφ of water vapor at a temperature of 600°C was passed in countercurrent.
Carbonization and porous treatment were performed simultaneously. The obtained carbon fiber porous hollow fiber membrane had an inner diameter of 65 μm and an average thickness of H μm, and its properties are shown in Table 2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で得られた本発明の試料の25℃での
メタノール等温吸着曲線であり、第2図は細孔分布曲線
である。 aI図 第,2 図 細徒斗へ1 (A) 相t’ln  Fho
FIG. 1 is a methanol isothermal adsorption curve at 25° C. of the sample of the present invention obtained in Example 1, and FIG. 2 is a pore distribution curve. aI Figure No. 2 Figure 1 (A) Phase t'ln Fho

Claims (3)

【特許請求の範囲】[Claims] (1)アクリロニトリル90モル%以上のアクリル系重
合体からなり、且つ3倍以上の延伸を施したアクリル中
空繊維を200〜300℃の酸化性ガス中で耐炎化処理
後、 イ、300〜1000℃の不活性ガス中で炭素化処理し
、次いで600〜1200℃の 酸性ガスを含有する雰囲気中で処理する、 又は ロ、400〜1000℃の酸性ガスを含有する雰囲気中
で処理することを特徴とする 繊維の内径が50μm以上、内径と膜厚の比が0.1<
膜厚/内径<0.25 を満足し、且つ半径が50Åを超え100Å未満の貫通
した微細孔を有する炭素繊維系多孔質中空糸膜の製法。
(1) Acrylic hollow fibers made of an acrylic polymer containing 90 mol% or more of acrylonitrile and stretched 3 times or more are flame-resistant treated in an oxidizing gas at 200-300°C, then heated to 300-1000°C. carbonization treatment in an inert gas, and then treatment in an atmosphere containing an acidic gas at a temperature of 600 to 1200°C, or (b) treatment in an atmosphere containing an acidic gas at a temperature of 400 to 1000°C. The inner diameter of the fiber is 50 μm or more, and the ratio of inner diameter to film thickness is <0.1
A method for producing a carbon fiber-based porous hollow fiber membrane that satisfies the following: membrane thickness/inner diameter <0.25 and has penetrating micropores with a radius of more than 50 Å and less than 100 Å.
(2)アクリル中空繊維が、内壁が多孔質の補強層から
なり外壁の表面部が薄い均質層からなる異方性構造の膜
からなることを特徴とする請求項第1項記載の製法。
(2) The manufacturing method according to claim 1, wherein the acrylic hollow fibers are formed of a membrane having an anisotropic structure in which the inner wall is a porous reinforcing layer and the outer wall surface is a thin homogeneous layer.
(3)酸性ガスが水蒸気であることを特徴とする請求項
第1項記載の製法。
(3) The method according to claim 1, wherein the acidic gas is water vapor.
JP23618989A 1989-09-12 1989-09-12 Preparation of carbon fiber-based porous hollow fiber membrane Pending JPH0398625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23618989A JPH0398625A (en) 1989-09-12 1989-09-12 Preparation of carbon fiber-based porous hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23618989A JPH0398625A (en) 1989-09-12 1989-09-12 Preparation of carbon fiber-based porous hollow fiber membrane

Publications (1)

Publication Number Publication Date
JPH0398625A true JPH0398625A (en) 1991-04-24

Family

ID=16997094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23618989A Pending JPH0398625A (en) 1989-09-12 1989-09-12 Preparation of carbon fiber-based porous hollow fiber membrane

Country Status (1)

Country Link
JP (1) JPH0398625A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016021731A1 (en) * 2014-08-08 2017-07-13 東レ株式会社 Solvent-resistant separation membrane
WO2023004022A1 (en) * 2021-07-21 2023-01-26 Dow Global Technologies Llc Reverse selective/surface flow polyimide derived cms membrane for gas separation
WO2023004024A1 (en) * 2021-07-21 2023-01-26 Dow Global Technologies Llc Methods for manufacturing hollow fiber carbon membranes
WO2023004020A1 (en) * 2021-07-21 2023-01-26 Dow Global Technologies Llc Process of making reverse selective/surface flow cms membrane for gas separation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016021731A1 (en) * 2014-08-08 2017-07-13 東レ株式会社 Solvent-resistant separation membrane
WO2023004022A1 (en) * 2021-07-21 2023-01-26 Dow Global Technologies Llc Reverse selective/surface flow polyimide derived cms membrane for gas separation
WO2023004024A1 (en) * 2021-07-21 2023-01-26 Dow Global Technologies Llc Methods for manufacturing hollow fiber carbon membranes
WO2023004020A1 (en) * 2021-07-21 2023-01-26 Dow Global Technologies Llc Process of making reverse selective/surface flow cms membrane for gas separation

Similar Documents

Publication Publication Date Title
US7413804B2 (en) Braid-reinforced hollow fiber membrane
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
US3975478A (en) Method for producing highly permeable acrylic hollow fibers
GB1566581A (en) Hollow fibres and methods of manufacturing such fibres
JPH0122003B2 (en)
US4385094A (en) Ethylene-vinyl alcohol hollow fiber membrane and method for the production thereof
JPH0647066B2 (en) Porous separation membrane and method for producing the same
JPH0398625A (en) Preparation of carbon fiber-based porous hollow fiber membrane
KR100581206B1 (en) Polyvinylidene fluoride Porous Hollow Fiber Membrane and the Manufacturing Process thereof
JPH02160924A (en) Porous carbon fiber and production thereof
JPS6051363B2 (en) Semipermeable composite membrane
JPS5932562B2 (en) Hollow fibrous membrane and its manufacturing method
JPH06246140A (en) Production of heterogeneous hollow yarn membrane
JP2867043B2 (en) Carbon fiber-based porous hollow fiber membrane and method for producing the same
JPS59166208A (en) Manufacture of gas separating membrane
JP2572895B2 (en) Manufacturing method of porous hollow fiber membrane
CN114733366A (en) Preparation method of asymmetric hollow fiber membrane
JP2004305953A (en) Method of manufacturing hollow fiber membrane
JP2550543B2 (en) Polyacrylonitrile-based hollow fiber membrane and method for producing the same
JPH02221404A (en) Porous hollow fiber and production thereof
JPS6240441B2 (en)
JP7159563B2 (en) METHOD FOR MANUFACTURING CARBON MEMBRANE FOR GAS SEPARATION
JPH02160923A (en) Porous carbon fiber and production thereof
JPH04277023A (en) Production of heat-resistant porous hollow fiber membrane
JPH028047B2 (en)