JPS6297980A - Composite hollow fiber membrane - Google Patents

Composite hollow fiber membrane

Info

Publication number
JPS6297980A
JPS6297980A JP23694585A JP23694585A JPS6297980A JP S6297980 A JPS6297980 A JP S6297980A JP 23694585 A JP23694585 A JP 23694585A JP 23694585 A JP23694585 A JP 23694585A JP S6297980 A JPS6297980 A JP S6297980A
Authority
JP
Japan
Prior art keywords
layer
hollow fiber
membrane
porous
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23694585A
Other languages
Japanese (ja)
Inventor
武村 徹
元 伊藤
純 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP23694585A priority Critical patent/JPS6297980A/en
Publication of JPS6297980A publication Critical patent/JPS6297980A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔浬築上の利用分野〕 本発明に、逆浸透、透析、液々分離、ガス分離等に用い
らnる高性能な中空繊維状膜を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application in Construction] The present invention provides a high-performance hollow fibrous membrane for use in reverse osmosis, dialysis, liquid-liquid separation, gas separation, and the like.

〔従来の技術〕[Conventional technology]

物質金、分離精製する技術は、昔から、数多くの方法が
、開発さn、改良が重ねられて米た0膜分離技術も、そ
の一つであるが、その改良の経過をみると、iflた膜
材料の開発、効率を高めるための薄層化技術の開発、装
置としての効″4を高める友めの中空糸膜の開発等が、
大きな技術開発の流れである。
Since ancient times, many methods have been developed and improved to separate and purify the substance gold. Membrane separation technology is one of them. Development of new membrane materials, development of thin layer technology to increase efficiency, development of companion hollow fiber membranes that increase the effectiveness of the device, etc.
This is a major flow of technological development.

薄層化技術の一つの方向として、多孔質の基材の上に、
コート法や蒸着法によって、薄膜を形成する方法も、盛
んに行われているが、多孔質基材上にコートするために
、基材の細孔に薄膜材料か侵入して、実質的な薄膜が得
らnない。
As one direction of thinning technology, on a porous substrate,
Methods of forming thin films using coating methods or vapor deposition methods are also widely used, but in order to coat onto porous substrates, the thin film material penetrates into the pores of the substrate, creating a substantial thin film. I can't get it.

′!!次、此の現象を避ける為に、多孔質基材上、予め
、溶解性物質で細孔を埋めておいて、表面に薄層を形成
しt後に、多孔質基材内の溶解性物質を溶出する方法も
あるか、均一な薄層が得られ難く、また、傷つきやすい
′! ! Next, in order to avoid this phenomenon, the pores on the porous base material are filled in advance with a soluble substance, a thin layer is formed on the surface, and after t, the soluble substance in the porous base material is removed. There is also a method of elution, but it is difficult to obtain a uniform thin layer, and it is easily damaged.

ピンホールの発生、膜厚の不均一、耐久性がない、等の
問題から、なかなか実用化が難しい状況にある。
It is difficult to put it into practical use due to problems such as the occurrence of pinholes, uneven film thickness, and lack of durability.

分離膜全1薄層形成する他の方法として、高分子溶液か
らの成形による非対称膜化法がある。
Another method for forming a single thin layer of a separation membrane is an asymmetric membrane forming method by molding from a polymer solution.

例えば、海水淡水化膜としての逆浸透膜や、限外濾過膜
が製品化さnている。デュポン社のバーマセツプ、旭化
成社のポリアクリロニトリル限外濾過膜等である。
For example, reverse osmosis membranes as seawater desalination membranes and ultrafiltration membranes have been commercialized. These include DuPont's Vermasep and Asahi Kasei's polyacrylonitrile ultrafiltration membrane.

何社も、高分子浴液から、膜の形成過程において、表面
部分全緻密に固化させ、内部全凝固条件の選択もしくは
、溶出法によって、多孔化する技術によって形成さnる
もので中空糸は、単一の材料で構成されている・ 従って、このような方法によつ1得ら扛た膜の構造は、
緻密な表面の薄層の部分から内部の粗な部分に同かつて
連続的に変化しており、あ1ジ必要性のない中間構造の
部分金有している。
Hollow fibers are formed from a polymer bath solution by solidifying the entire surface part densely during the membrane formation process, and then making it porous by selecting the internal solidification conditions or by elution method. , is composed of a single material. Therefore, the structure of the membrane obtained by this method is as follows:
There is a continuous change from a dense layer on the surface to a rough layer on the inside, and there is a partial gold layer with an intermediate structure that does not require a ridge.

こ′nは濾過効率上、あまり好ましいものではない。This is not very desirable in terms of filtration efficiency.

先に、特開昭60−139815号において、我々は、
性能全向上させ几コンジュゲート中空繊維を提案した。
Previously, in JP-A-60-139815, we
We proposed a conjugated hollow fiber with improved performance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしこ′nに、機能分担を目的とはしているが、薄層
化による効率同上について今一つ光分なものとは言えな
い。
However, although the purpose of this is to share functions, the efficiency achieved by thinning the layers cannot be said to be very high.

更に、連続し次微細孔径を有する複合中空糸であるため
、逆浸透膜やガス分離膜として用いるには、その1まで
は、性能が不光分である。
Furthermore, since it is a composite hollow fiber having a continuous submicroscopic pore size, its performance up to the first stage is insufficient for use as a reverse osmosis membrane or a gas separation membrane.

我々は、薄い分離膜層を有する中空繊維状膜を工業的に
安定に製造する技術を完成し、これによる新しい中空繊
維状膜を提供すること全目的として鋭意検討した結果、
本発明に到達した。
We have completed a technology to industrially and stably manufacture a hollow fibrous membrane with a thin separation membrane layer, and as a result of intensive study, we have aimed to provide a new hollow fibrous membrane using this technology.
We have arrived at the present invention.

〔問題点を解決する九めの手段J 即ち本発明の要旨は非多孔質薄膜層と多孔質支持体層か
らなり、多孔質層と薄膜層とが互いに接着する事なく、
密着している事を特徴とする、複合中空繊維状膜にある
[Ninth Means to Solve the Problem J That is, the gist of the present invention is that the present invention consists of a non-porous thin film layer and a porous support layer, and the porous layer and the thin film layer do not adhere to each other.
It is a composite hollow fibrous membrane that is characterized by close contact.

本発明による中空糸膜は、目の粗い透過性の多孔質構造
の膜表面に、薄層の非多孔質分離膜全形成した構成とな
っている。
The hollow fiber membrane according to the present invention has a structure in which a thin non-porous separation membrane is entirely formed on the surface of the membrane having a coarse permeable porous structure.

本発明における中空糸膜の特徴は、多孔質中空繊維上に
コーティングする方法によるものに比べて、(1) :
非多孔質表面上にコートするため、均一コートが容易で
ある。(2):コーティング時に孔を詰める事がない。
The characteristics of the hollow fiber membrane in the present invention, compared to the method of coating on porous hollow fibers, are (1):
Since it is coated on a non-porous surface, uniform coating is easy. (2): No pores are filled during coating.

従って孔を予め詰めておく必要がない。(3):延伸に
よる多孔化であるから、機能薄膜も延伸され、強化され
る。(4):機能薄膜が中空繊維長さ方向に延伸される
と中空繊維周方向には収縮力が働く。一方、基材の中空
繊維は延伸により多孔質化するため中空繊維径の縮少は
多孔質化しない場合に較べて小さい几め、薄膜は上記収
縮力により中空繊維に密着して薄膜が安定になる。
Therefore, there is no need to fill the holes in advance. (3): Since porosity is created by stretching, the functional thin film is also stretched and strengthened. (4): When the functional thin film is stretched in the longitudinal direction of the hollow fibers, a contraction force acts in the circumferential direction of the hollow fibers. On the other hand, since the hollow fibers of the base material become porous by stretching, the reduction in the diameter of the hollow fibers is smaller than in the case where the hollow fibers do not become porous, and the thin film adheres to the hollow fibers due to the above shrinkage force, making the thin film stable. Become.

本発明において用いらnる中空繊維の素材は延伸により
多孔質化するものであり、このような素材としてはポリ
エチレン、ポリプロピレン、ポリ4−メチル−1−ペン
テン、ポリ3メチル=1−ブテン等のオレフィン系重合
体、ポリカーボネート系、ポリエステル系、フッ素系樹
脂を挙げることかできる。
The hollow fiber material used in the present invention is made porous by stretching, and examples of such materials include polyethylene, polypropylene, poly4-methyl-1-pentene, poly3-methyl-1-butene, etc. Examples include olefin polymers, polycarbonates, polyesters, and fluororesins.

一方、薄膜層を形成する重合体としては、シリコン系重
合体、ウレタン系重合体、セルロース系重合体、オレフ
ィン系重合体、スルホン系重合体、PVA糸重曾体、エ
ステル系、ニーチル系重合体、アミド系重合体、イミド
糸重合体、その他数多くの重合体が用いらnる。
On the other hand, examples of polymers forming the thin film layer include silicone polymers, urethane polymers, cellulose polymers, olefin polymers, sulfone polymers, PVA thread polymers, ester polymers, and nityl polymers. , amide polymers, imide thread polymers, and many other polymers are used.

こnらの中には、成型が不可能に近い物も多いか、本発
明は、中空繊維状膜として出来上かつ友時に、上記の重
合体が分離膜として形作られていれば良いのであり、中
空繊維の延伸時に膜の破壊が起こらずに延伸変形性のあ
るものであnば艮い◎ 従って、延伸が不可能な重合体でも、@剤。
Among these, there are many that are almost impossible to mold, and the present invention only requires that the above-mentioned polymer be formed into a separation membrane that can be formed as a hollow fibrous membrane. ◎ Therefore, even if the polymer cannot be stretched, it can be used as an @ agent if the hollow fiber does not break during stretching and has stretching deformability.

可塑剤、膨潤剤等を含んだ状態で、延伸変形性があnば
艮い。
If it contains plasticizers, swelling agents, etc., it has poor stretching deformability.

このことは、本発明の大きな特徴の一つである。This is one of the major features of the present invention.

但し、出来上がつ九複曾中空繊維状膜の分離機能分担部
分が、使用条件に耐えらnないほどに、弱いものである
場合には、延伸後に架橋処理等の強化手段を採ることも
、任意に行いうる。
However, if the separation function portion of the completed hollow fibrous membrane is so weak that it cannot withstand the usage conditions, strengthening measures such as crosslinking treatment may be taken after stretching. , can be done arbitrarily.

中空繊維状膜の形状については、一般的に用いらnる範
囲の形状として、内径の範囲として、α1mから5m程
度が好ましい。但し、機能膜の膜厚については薄いほど
良いが、加工性、特にピンホールの発生金力えると、α
01から2μm程度が好ましい。
Regarding the shape of the hollow fibrous membrane, it is preferable that the inner diameter range is approximately α1 m to 5 m as a generally used shape. However, as for the thickness of the functional film, the thinner it is, the better, but when it comes to processability, especially the cost of pinholes, α
The thickness is preferably about 0.01 to 2 μm.

本発明の中空繊維状膜は、次のようにして製造さnる。The hollow fibrous membrane of the present invention is manufactured as follows.

円筒型の紡糸ノズルから、一般的な方法で中空繊維を溶
融紡糸するに当り、用いるポリマーとしては、延伸によ
って多孔質化するものを選択する。
When melt-spinning hollow fibers from a cylindrical spinning nozzle using a conventional method, a polymer that becomes porous through stretching is selected as the polymer used.

延伸多孔化さnる高分子を使用する理由は、延伸多孔化
が溶剤や可塑剤を使用する事がなく、得らnる多孔質膜
が化学的に高純度である、安価に製造し得ること以外に
、多孔質膜の外表面にも薄層全役けることが出来ること
である。このことは、製造上の実際面においては、コー
テイング後必要に応じて溶剤や可塑剤金除去しようとす
る場合には非常に有利である。
The reason for using a stretched porous polymer is that the stretched porous membrane does not require the use of solvents or plasticizers, and the resulting porous membrane has high chemical purity and can be manufactured at low cost. In addition, a thin layer can also be applied to the outer surface of the porous membrane. In manufacturing practice, this is very advantageous when it is desired to remove the solvent and plasticizer gold after coating, if necessary.

造孔剤を含有するポリマーからなる中空繊維上に薄膜層
形W、成分をコートして本発明の複合中空糸膜を得よう
とすると、造孔剤を除去する工程の関係上、薄層は該中
空糸の内表面に設けざる全えず、此の場合当然予想さn
るようにコート層からの浴剤、可塑剤の除去が迅速には
行え々いのである。
When attempting to obtain the composite hollow fiber membrane of the present invention by coating the thin film layer type W and components on hollow fibers made of a polymer containing a pore-forming agent, the thin layer is There is no choice but to provide it on the inner surface of the hollow fiber, which is naturally not expected in this case.
Therefore, it is difficult to remove the bath agent and plasticizer from the coating layer quickly.

未延伸中空繊維の表面へのコートは、一般に行われてい
る方法が用いらnる。溶it−塗布、もしくは溶液に浸
漬する方法、蒸着法等があるが、溶液を用いるのが簡単
である。
A commonly used method is used to coat the surface of the undrawn hollow fibers. There are methods such as melt coating, immersion in a solution, and vapor deposition, but using a solution is simple.

続いて延伸が行われる。未延伸中空糸を構放するポリマ
ー、或いは、該未延伸中空糸の表面にコートしたポリマ
ーのうちより低い方の融点よりも低い温度で、少量の延
伸(「冷延伸」と称する)を行って白化させ、続いて前
記冷延伸温度より高くポリマーの融点よりも低い温度で
加熱延伸(「熱延伸」と称する)によって、孔径の拡大
と、孔形状の安定化を計る。
Stretching is then performed. A small amount of stretching (referred to as "cold stretching") is carried out at a temperature lower than the melting point of the lower of the polymer forming the unstretched hollow fibers or the polymer coated on the surface of the unstretched hollow fibers. Whitening is carried out, followed by heating stretching (referred to as "hot stretching") at a temperature higher than the cold stretching temperature and lower than the melting point of the polymer to enlarge the pore diameter and stabilize the pore shape.

本発明は、薄い分離層全中空糸表面に形成させる新規な
方法であり、この意味からして、基材表面が平滑な状態
で分離層をコートし、次いで、基材を多孔化する。
The present invention is a novel method for forming a thin separation layer on the entire surface of the hollow fibers, and in this sense, the separation layer is coated on the surface of the base material in a smooth state, and then the base material is made porous.

なお本発明の複合中空糸膜を製造するにあたっては、非
多孔質の中空繊維表面に薄膜形成成分全コートするが、
中空繊維としては薄膜形仮成分か細孔中に侵入しない程
度の微細孔がおいていてもよい。
In producing the composite hollow fiber membrane of the present invention, the surface of the non-porous hollow fibers is coated with all the thin film forming components.
The hollow fibers may have a thin film-like temporary component or may have fine pores that do not penetrate into the pores.

従って、表層が溶剤等金倉んで非常に変形しやすく、冷
延伸によって、フィードロール上等での側圧等によって
破壊さnる恐nのある場合には、張力の大きい冷延伸を
してから薄膜形成灰分をコートしてもよい。
Therefore, if the surface layer is very easily deformed in a solvent, etc., and there is a risk that it will be destroyed by cold stretching due to lateral pressure on feed rolls, etc., cold stretching with high tension is performed before forming a thin film. It may be coated with ash.

本発明による複合中空糸の特徴は、製造法からも明らか
なように、多孔質中空fI1.維状膜と、放膜を被覆す
るN膜とか互いに接着せず密着した構造を有し、物理的
性質がλ幅に強化さ扛ていることにある。
As is clear from the manufacturing method, the composite hollow fiber according to the present invention is characterized by porous hollow fI1. The fibrous membrane and the N membrane covering the radial membrane have a structure in which they are in close contact with each other without adhering to each other, and their physical properties are strengthened to a width of λ.

〔実施例〕〔Example〕

本発明全実施例を用いて、更に詳しく説明するO 実施例1 円形のスリット状吐出口を有する中空糸製造用ノズルを
用いて、そ度α968 f/cmJ、メルトインデック
ス5.5のポリエチレンを、吐出温度160℃、吐出線
速度5 cm/ min 、巻取速度250m/min
で紡糸した。
O Example 1 A nozzle for producing hollow fibers having a circular slit-like discharge port was used to produce polyethylene with a solenoid of α968 f/cmJ and a melt index of 5.5. Discharge temperature 160°C, discharge linear velocity 5 cm/min, winding speed 250 m/min
It was spun with

得らnた未延伸糸は、内径200μmであり、30μm
の厚さ含有する未延伸中空繊維を得た。
The obtained undrawn yarn had an inner diameter of 200 μm and a diameter of 30 μm.
An undrawn hollow fiber having a thickness of .

該中空未延伸糸を115℃に加熱され九ローラー上を定
長下に接触せしめてローラー接触時間100秒でアニー
ル処理し友。
The hollow undrawn yarn was heated to 115° C. and annealed by bringing it into contact with nine rollers at a fixed length for a roller contact time of 100 seconds.

次に、密度α95 ?/cmJ、融点141℃のトラン
ス1.4ポリブタジ工ン3部をクロロホルム100部に
溶解して得ら′n友溶液中に該中空糸未延伸糸を10秒
間浸漬し友後、常温常圧の下でクロロホルム會揮散せし
めた。
Next, density α95? /cmJ, melting point 141°C, 3 parts of trans 1.4 polybutadiene was dissolved in 100 parts of chloroform. The mixture was evaporated with chloroform at the bottom.

更に該表面コートさn′fc未延伸糸を28℃に保定t
l九ローラー間で80%冷延伸し、引続き105℃に加
熱さnた加熱函中で総延伸量が400%になる1で、ロ
ーラー間熱延伸全行い28チ緩和させ次状態で熱セット
を行ない複合中空膜を得友〇 得らn几複合中空糸膜は、内径190μmで外層と内層
がそれぞれ1.20μmの厚さ全盲する、同心円状に配
され九二層から成っており、電子顕微鏡で観察した結果
、内層には幅(L3−(15μm、長さα8−1.1μ
mのスリット状の孔が形成されていたが、外層表面には
孔は認められず均質でありピンホールも認めらnなかつ
皮。
Further, the surface-coated undrawn yarn was maintained at 28°C.
80% cold stretching between 19 rollers, followed by heating to 105°C in a heating box for a total stretching amount of 400%, 28 degrees of thermal stretching between rollers, relaxation, and heat setting in the next state. The composite hollow fiber membrane is made up of 92 layers arranged in concentric circles, with an inner diameter of 190 μm and an outer layer and an inner layer each having a thickness of 1.20 μm. As a result of observation, the inner layer has a width (L3-(15μm, length α8-1.1μm).
Although slit-like pores were formed on the surface of the outer layer, the surface of the outer layer was homogeneous with no pores and no pinholes were observed.

又、酸素透過速度は、1.9 X 10″′sc!n”
 7cm” se c・crnHg%窒累透過速度は、
6.4X10″″’cm”7cm”Bec−cmHg 
 であり、酸素全選択的に透過させ、かつ透過速度か優
nるものであった。
Also, the oxygen permeation rate is 1.9 x 10'''sc!n''
7cm” se c・crnHg% nitrogen permeation rate is
6.4X10″″’cm”7cm”Bec-cmHg
It allowed oxygen to permeate completely selectively and had an excellent permeation rate.

又、複合中空糸膜を切断して調べたところ、ポリエチレ
ン中空繊維とポリブタジェン薄膜とは密着しているが接
着はしていなかつ友。
Furthermore, when the composite hollow fiber membrane was cut and examined, it was found that the polyethylene hollow fibers and the polybutadiene thin membrane were in close contact with each other, but were not bonded.

実施例2 円形のスリット状吐出口を有する中空糸製造用ノズルを
用いて、密度r:L913f/cr11M、メルトイン
デックス26のポリプロピレンを、吐出温度190℃、
吐出線速度5 cm/ min 、  巻取速度400
 m/minで紡糸しt0 得られた未延伸糸は、内径280μmであり、32μm
の厚さを有する未延伸中空fI1.雄を得た。
Example 2 Polypropylene with a density r: L913f/cr11M and a melt index of 26 was discharged at a temperature of 190° C. using a hollow fiber manufacturing nozzle having a circular slit-shaped discharge port.
Discharge linear speed 5 cm/min, winding speed 400
The undrawn yarn obtained by spinning at t0 m/min has an inner diameter of 280 μm and a diameter of 32 μm.
An unstretched hollow fI1. I got a male.

該中空未延伸糸を140℃に加熱さnたローラー上全足
長下に接触せしめてローラー接触時間100秒でアニー
ル処理し九。
The hollow undrawn yarn was brought into contact with the entire length of the roller heated to 140° C. and annealed for 100 seconds in contact with the roller.

次に、メルトインデックス6のポリカーボネート5部を
メチレンクロライド100部に浴解し得らnfl:、溶
液をオイリングローラ−を用いて、該未延伸中空糸に塗
布し、その後メチレンクロライドを常温常圧の下で揮散
せしめた。
Next, 5 parts of polycarbonate having a melt index of 6 was bath-dissolved in 100 parts of methylene chloride, and the solution was applied to the undrawn hollow fibers using an oiling roller. It evaporated below.

更に該表面コートさnた未延伸糸を60℃に保たnたロ
ーラー間で20%冷延伸し、引続き135℃に加熱さ扛
た加熱街中で総延伸量が200係になるまでローラー間
熱延伸全行い、更に140℃に加熱さn友加熱函中で2
8チ緩和させた状態で熱セツtl−行って複合中空糸膜
を得た。
Further, the surface-coated undrawn yarn was cold-stretched by 20% between rollers kept at 60°C, and then heated to 135°C and then heated between rollers until the total amount of stretching reached 200 mm. Complete stretching and further heating to 140°C in a heating box for 2
A composite hollow fiber membrane was obtained by heat setting in a relaxed state.

得らf′L几複合中空糸膜は、内径252μmで、27
、3μmの厚さを有する、同心円状に配さ扛た、お互い
に密着はしているが接着はしていない二層から成ってお
り、電子顕微鏡で観察し友結果、内層には幅0.07−
α09μm、長さα2−α5μmのスリット状の孔が形
成さnていた。
The obtained f′L composite hollow fiber membrane had an inner diameter of 252 μm and a diameter of 27 μm.
It consists of two concentrically arranged layers with a thickness of 3 μm, which are in close contact with each other but are not bonded to each other. When observed under an electron microscope, the inner layer has a width of 0.5 μm. 07-
A slit-like hole with α09 μm and length α2-α5 μm was formed.

又、二酸化炭素透過速度はa OX 10−c!n”7
cm”sec−cmHg%酸素透過速度は1.4 X 
10−cm”7m”seC−ctnHgであり、二酸化
炭素を選択的に透過させ、かつ透過速度が優nるもので
あった。
Also, the carbon dioxide permeation rate is a OX 10-c! n”7
cm”sec-cmHg% oxygen permeation rate is 1.4
10-cm"7m"seC-ctnHg, selectively permeated carbon dioxide, and had an excellent permeation rate.

実施例3 円形のスリット状吐出口を有する中空糸製造用ノズルを
用いて、実施例1で使用しtポリプロピレンを、吐出温
度205℃、吐出線速度40/min、巻取速度500
 m/ minで紡糸し友◇得らnた未延伸糸に、内径
290μmであり、36μmの厚さを有する未延伸中空
繊維を得友。
Example 3 Using a hollow fiber manufacturing nozzle having a circular slit-shaped discharge port, the polypropylene used in Example 1 was heated at a discharge temperature of 205° C., a discharge linear velocity of 40/min, and a winding speed of 500.
The undrawn hollow fibers having an inner diameter of 290 μm and a thickness of 36 μm were obtained by spinning at m/min.

該中空未延伸糸を140℃に加熱され几ローラー上を足
長下に接触せしめてローラー接触時間180秒でアニー
ル処理した。
The hollow undrawn yarn was heated to 140° C. and annealed by bringing it into contact with the length of the roller on a roller for 180 seconds.

続いて、該熱処理さn文末延伸糸を60℃に保几n友ロ
ーラー間で17%冷延伸した。
Subsequently, the heat-treated n-end drawn yarn was cold-stretched at 60° C. by 17% between rollers.

矢に、酢化度55%のセルロースジアセテート2部、グ
11セリントリアセテート01部をアセトン100部に
浴解し得られた溶液をオイリングローラ−音用いて、該
未延伸中空糸に塗布し、その後、アセトンを常温常圧の
下で揮散せしめ九〇 更に、該表面コートさnた冷延伸糸を130℃に加熱さ
れた加熱街中で総延伸量が180%になるまでローラー
間熱延伸を行い、更に140℃に加熱さnた加熱街中で
10%緩和させた状態で熱セットを行い、複合中空糸膜
を得几。
A solution obtained by dissolving 2 parts of cellulose diacetate with an acetylation degree of 55% and 01 part of G11 serine triacetate in 100 parts of acetone is applied to the undrawn hollow fiber using an oiling roller sound, Thereafter, acetone was volatilized at room temperature and pressure, and the surface-coated cold drawn yarn was then hot drawn between rollers in a heating chamber heated to 130°C until the total amount of drawing reached 180%. Then, a composite hollow fiber membrane was obtained by heating it to 140°C and heat setting it in a 10% relaxed state in a heated room.

得られた複合中空糸膜は、内径240μmで29μmの
厚さを有する同心円上に配さnfc二層から成っており
、電子顕微鏡で観察した結果、内層には幅α07−α0
9 pm、長さα1−(14μmのスリット状の孔が形
成されていた。酸素透過速度は、1. OX 10”−
’ on3/cm” see −mEIg)窒素透過速
度は、α36 X 10−m” 7cm2sec −c
mHgで′hv、酸素を選択的に透過させ、かつ透過速
度は極めて高いものであつ友。
The obtained composite hollow fiber membrane consists of two NFC layers arranged concentrically with an inner diameter of 240 μm and a thickness of 29 μm, and as a result of observation with an electron microscope, the inner layer has a width of α07−α0.
A slit-like hole with a length α1-(14 μm) was formed.The oxygen permeation rate was 1.OX 10”-
'on3/cm" see -mEIg) The nitrogen permeation rate is α36 x 10-m" 7cm2sec -c
It selectively permeates oxygen at mHg and hv, and the permeation rate is extremely high.

実施例4 円形のスリット状吐出口を有する中空糸製造用ノズルを
用いて、密度α965、メルトインデックス12のポリ
エチレン金、吐出温度160℃、吐出口線速度10 c
m/ min、巻取速度350m/minで紡糸し友。
Example 4 Using a nozzle for manufacturing hollow fibers having a circular slit-shaped discharge port, polyethylene gold having a density α of 965 and a melt index of 12, a discharge temperature of 160° C., and a discharge port linear velocity of 10 c
m/min, and the winding speed was 350 m/min.

得らt″Lt未延伸糸は、内径290μmであり、63
μmの厚さ全盲する未延伸中空繊維を得九。
The obtained t″Lt undrawn yarn had an inner diameter of 290 μm and a diameter of 63 μm.
Unstretched hollow fibers with a total thickness of μm were obtained.

該中空未延伸先金115℃に加熱さt′L72:ローラ
ー上を足長下に接触せしめてローラー接触時間100秒
でアニール処理し友。
The hollow unstretched tip was heated to 115° C. t'L72: The tip was annealed for 100 seconds by bringing it into contact with the roller at a length below the roller.

次に、ポリメチルシロキサン2部をジオキサン100部
に溶解して得らf’L九浴液浴液中未延伸中空糸全10
秒間浸漬後、常温常圧の下でジオキサンを揮散せしめた
@ 更に、該表面コートされ文末延伸糸を50℃に保たnf
cローラー間で50チ冷延伸し、引続き100℃に加熱
ざfL72.加熱函中で総延伸量が300チになるまで
ローラー間熱延伸を行い、更に115℃に加熱された加
熱函中で10チ緩和させ良状態で熱セラトラ行い複合中
空糸膜を得た。
Next, 2 parts of polymethylsiloxane was dissolved in 100 parts of dioxane to obtain a total of 10 undrawn hollow fibers in the bath solution.
After dipping for seconds, dioxane was volatilized at room temperature and pressure.
Cold-stretched 50 inches between C rollers and then heated to 100°C fL72. Hot stretching between rollers was carried out in a heated box until the total stretching amount reached 300 inches, and the mixture was further relaxed by 10 inches in a heated box heated to 115° C., and heat celatra was carried out in a good state to obtain a composite hollow fiber membrane.

得らn友複合中空糸膜は、内径270μmで48μmの
厚さを有する同心円上に配さf’L7e二層から底って
おり、電子顕微鏡で観察した結果、内側の層は多孔質化
しており、幅α1−α3μm1長さα5−(19μmの
スリット状孔が形成さnていた。シリコーンゴムからな
る表面層は均質で孔やピンホールは認めら社なかつ友。
The obtained composite hollow fiber membrane had an inner diameter of 270 μm and a thickness of 48 μm, and was arranged in concentric circles with two layers at the bottom, and as a result of observation with an electron microscope, the inner layer was found to be porous. A slit-like hole with a width α1-α3 μm and a length α5-(19 μm) was formed.The surface layer made of silicone rubber was homogeneous and no holes or pinholes were observed.

又、酸素透過速度は2.6 X 10−’ car”7
cm” ・see・cmHgs Sl素透過速度171
.5 X 10−’m’/z” ・sec・cmHgと
極めて優れたものであつ次。
Also, the oxygen permeation rate is 2.6 x 10-' car”7
cm”・see・cmHgs Sl elementary permeation rate 171
.. 5 x 10-'m'/z"・sec・cmHg, which is extremely excellent.

又、複合中空糸膜を切断して調べ九ところポリエチレン
中空繊維とシリコーンゴムからなる表面層は密着してい
几が、接着はしていなかつ几O 実施例5 円形のスリット状吐出口を有する中空糸製造用ノズル金
柑いて、密度α96517cm”、メルトインデックス
i2のポリエチレンを、吐出温度163℃、吐出線速度
10 cm/ min 、巻取速度500 m/min
  で紡糸し九〇 得ら3文未延伸糸は、内径250μmであり、65μm
の厚さ全盲する未延伸中空繊維を得几。
In addition, when the composite hollow fiber membrane was cut and examined, it was found that the surface layer consisting of polyethylene hollow fibers and silicone rubber was in close contact with each other, but was not bonded.Example 5 Hollow fiber having a circular slit-shaped discharge port Polyethylene with a density of α96517 cm and a melt index of i2 is discharged through a manufacturing nozzle at a discharge temperature of 163°C, a discharge linear velocity of 10 cm/min, and a winding speed of 500 m/min.
The undrawn yarn obtained by spinning with 90 mm had an inner diameter of 250 μm, and
Obtain unstretched hollow fibers with a total thickness of .

該中空未延伸先金115℃の加熱炉の中で一時間足長処
理を行った。
The hollow unstretched tip was subjected to lengthening treatment for one hour in a heating furnace at 115°C.

次に、密度1.24 f/an4のポリスルホン3部’
i N、 N−ジメチルホルムアミド100部に溶解し
て得らnt浴液中に該未延伸糸を10秒間浸漬後、常温
減圧下でN、 N−ジメチルホルムアミド會揮散させた
Next, 3 parts of polysulfone with a density of 1.24 f/an4'
The undrawn yarn was immersed for 10 seconds in a nt bath solution obtained by dissolving it in 100 parts of N,N-dimethylformamide, and then the N,N-dimethylformamide was evaporated at room temperature and under reduced pressure.

更に、該表面コートさnた未延伸糸を30℃の雰囲気で
50チ冷勉押し、続いて105℃に加熱さn友加熱函中
で、総延伸量が400チになる1でローラー間熱延伸を
行つ九。
Furthermore, the surface-coated undrawn yarn was cold-pressed for 50 inches in an atmosphere of 30°C, then heated to 105°C in a heating box, and heated between rollers for a total drawing amount of 400 inches. 9. Perform stretching.

史に、115℃に加熱さnた加熱函中で、20チ緩和さ
せ良状態で熱セット全行って複合中空糸膜を得た。
A composite hollow fiber membrane was obtained by relaxing the membrane by 20 degrees in a heating box heated to 115° C. and then heat setting it in a good condition.

得らγした複合中空糸膜は、内径200μmで52μm
の厚さを有する同心円状に配さnだ、お互いに接着して
いない二層から成っており、電子顕微鏡で観察した結果
内層に多孔質化さnている事が確認さnた。
The obtained composite hollow fiber membrane has an inner diameter of 200 μm and 52 μm.
It is made up of two layers arranged in concentric circles with a thickness of 200 mm and is not bonded to each other, and as a result of observation with an electron microscope, it was confirmed that the inner layer is porous.

ポリスルホンから成る表面層は均質で多孔質化はさnて
いなかった。又、該U全アルコールで湿潤処理した後、
水透過率を測定しt所、a O217m”−hr−at
mであり、食[m除軍は99チであった。
The surface layer of polysulfone was homogeneous and free from porosity. Moreover, after the wet treatment with the U total alcohol,
Water permeability was measured at t, a O217m"-hr-at
M, and the eclipse [m expulsion was 99 chi.

実施例8 円形のスリット状吐出口を有する中空糸製造用ノズルを
用いて、密度1.7617cm” 、融点176℃のポ
リフッ化ビニリデンを円形の中空糸製造用ノズルを用い
て、250℃で溶融押しだしし、ドラフト比40で巻取
り、未延伸糸を得た〇 次に、密度1.217cm”のポリカーボネート2部を
ジクロルメタン100部に溶解して得らnた溶液中に、
該未延伸糸を5秒間浸漬した後、取りだし、常温下でジ
クロルメタン100部せさめ几。
Example 8 Polyvinylidene fluoride with a density of 1.7617 cm'' and a melting point of 176°C was melted and extruded at 250°C using a circular hollow fiber manufacturing nozzle having a circular slit-shaped discharge port. Then, it was wound at a draft ratio of 40 to obtain an undrawn yarn.Next, in the solution obtained by dissolving 2 parts of polycarbonate with a density of 1.217 cm'' in 100 parts of dichloromethane,
After immersing the undrawn yarn for 5 seconds, it was taken out and soaked in 100 parts of dichloromethane at room temperature.

かかる、未延伸糸を電子顕微鏡で観察した結果、内径が
240μm、膜厚が25μmの内層と2μmの外層とか
ら成る二層構造を有していた。
As a result of observing the undrawn yarn using an electron microscope, it was found that it had a two-layer structure consisting of an inner layer with an inner diameter of 240 μm and a thickness of 25 μm and an outer layer with a thickness of 2 μm.

骸処理後の未延伸糸上20℃で30%、次いで130℃
で100%延伸し、最後に130℃で20%緩和熱セツ
トした。得らnた未延伸糸は内径が220μmで膜厚が
20μmの内層と1μmの外層から成る二層構造を有し
、電子顕微鏡で観察し次結果、内層は001μmから0
1μmの大きさの微細孔を有し、他方、外層にはかかる
微細孔は認めらnなかった。
30% on undrawn yarn after carcass treatment at 20°C, then 130°C
The film was stretched 100% and finally set at 130°C for 20% relaxation. The obtained undrawn yarn had an inner diameter of 220 μm and a two-layer structure consisting of an inner layer with a thickness of 20 μm and an outer layer with a thickness of 1 μm.It was observed with an electron microscope and the results showed that the inner layer was
It had micropores with a size of 1 μm, while no such micropores were observed in the outer layer.

此処に得らnL中空糸七用いて、60℃でガス透過試験
全行った結果、C02に対しては、1.7×10″′4
cm”7cm” ・see ・txHg、  02に対
しては、S6×101倒1/ω2・sec・譚Bgであ
った。
Using the nL hollow fibers obtained here, all gas permeation tests were carried out at 60°C.
cm"7cm"・see・txHg、For 02, it was S6×101 down 1/ω2・sec・tanBg.

実施例7 実施例1において、ポリエチレン未延伸中空糸に、トラ
ンス−1,4−ポリブタジェンの溶液をコーティングす
る代りに、セグメント化ポリウレタン(サーモエレクト
ロン社製デコフレックス)2部全テトラヒドロフラン1
00部に溶解して得らnた浴液をコーティングする以外
は実施例1と同様に処理した。
Example 7 In Example 1, instead of coating the polyethylene undrawn hollow fibers with a solution of trans-1,4-polybutadiene, 2 parts of segmented polyurethane (Decoflex manufactured by Thermo Electron) and 1 part of total tetrahydrofuran were used.
The process was carried out in the same manner as in Example 1, except that the solution was coated with a bath solution obtained by dissolving 0.00 parts.

コーティング処理後、溶剤全揮散する藺に実施例1と同
−粂件下で冷延伸し、次に延伸さnた状態で足長状態と
し、溶剤を揮散した。
After the coating treatment, the straw was cold-stretched under the same conditions as in Example 1 to completely volatilize the solvent, and then the stretched state was made into a leg-length state to volatilize the solvent.

次に、実施例1と同様にして熱延伸した。得らnた複合
中空糸は、内径190μmで外層と内層が各々1.20
μmの厚さ?有する同心円状に配さnた二層から成って
おり、電子顕微鏡で観察し友ところ、内層には暢0.3
−α51tm、長さく17−1.1μmのスリット状の
孔か形成されてい九が、外層表面には孔は認めらitず
均質であった口
Next, hot stretching was carried out in the same manner as in Example 1. The obtained composite hollow fiber had an inner diameter of 190 μm and an outer layer and an inner layer each having a diameter of 1.20 μm.
Thickness in μm? It consists of two layers arranged in concentric circles, and when observed with an electron microscope, the inner layer has a thickness of 0.3
-α51tm, slit-like holes with a length of 17-1.1μm were formed, but no holes were observed on the outer layer surface, which was homogeneous.

Claims (1)

【特許請求の範囲】 1)非多孔質薄膜層と多孔質支持体層からなり、多孔質
層と薄膜層とが互いに接着する事なく、密着している事
を特徴とする、複合中空繊維状膜。 (2)薄膜層は厚さが2μm以下の均一層で、延伸され
てたものである事を特徴とする特許請求の範囲第1項の
複合中空繊維状膜。
[Claims] 1) Composite hollow fibrous material consisting of a non-porous thin film layer and a porous support layer, characterized in that the porous layer and the thin film layer are in close contact with each other without adhering to each other. film. (2) The composite hollow fibrous membrane according to claim 1, wherein the thin film layer is a uniform layer having a thickness of 2 μm or less and is stretched.
JP23694585A 1985-10-23 1985-10-23 Composite hollow fiber membrane Pending JPS6297980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23694585A JPS6297980A (en) 1985-10-23 1985-10-23 Composite hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23694585A JPS6297980A (en) 1985-10-23 1985-10-23 Composite hollow fiber membrane

Publications (1)

Publication Number Publication Date
JPS6297980A true JPS6297980A (en) 1987-05-07

Family

ID=17008078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23694585A Pending JPS6297980A (en) 1985-10-23 1985-10-23 Composite hollow fiber membrane

Country Status (1)

Country Link
JP (1) JPS6297980A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242984A (en) * 1988-03-24 1989-09-27 Mitsubishi Electric Corp Beam profile monitor
CN1114471C (en) * 1998-12-24 2003-07-16 中国科学院长春应用化学研究所 Process for modifying reverse osmosis composite membrane by inner interface adsorption of surfactant
JP2008105016A (en) * 2006-09-26 2008-05-08 Toray Ind Inc Hollow fiber membrane made of polyvinylidene fluoride resin, and its manufacturing method
WO2016175308A1 (en) * 2015-04-28 2016-11-03 東レ株式会社 Composite hollow fiber membrane and method for producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242984A (en) * 1988-03-24 1989-09-27 Mitsubishi Electric Corp Beam profile monitor
CN1114471C (en) * 1998-12-24 2003-07-16 中国科学院长春应用化学研究所 Process for modifying reverse osmosis composite membrane by inner interface adsorption of surfactant
JP2008105016A (en) * 2006-09-26 2008-05-08 Toray Ind Inc Hollow fiber membrane made of polyvinylidene fluoride resin, and its manufacturing method
WO2016175308A1 (en) * 2015-04-28 2016-11-03 東レ株式会社 Composite hollow fiber membrane and method for producing same
JPWO2016175308A1 (en) * 2015-04-28 2018-02-15 東レ株式会社 Composite hollow fiber membrane and method for producing the same
US10478782B2 (en) 2015-04-28 2019-11-19 Toray Industries, Inc. Composite hollow fiber membrane and method for producing same

Similar Documents

Publication Publication Date Title
US4802942A (en) Method of making multilayer composite hollow fibers
US7413804B2 (en) Braid-reinforced hollow fiber membrane
JPH0248023A (en) Compound film and production and use for compound film
US20080197071A1 (en) Nano Composite Hollow Fiber Membrane and Method of Manufacturing the Same
CA2145451C (en) Process for producing composite membranes
JPS60139815A (en) Conjugate hollow yarn and production thereof
JPH0647066B2 (en) Porous separation membrane and method for producing the same
JPS6297980A (en) Composite hollow fiber membrane
JPS60246812A (en) Hollow polysulfone based resin fiber
KR100581206B1 (en) Polyvinylidene fluoride Porous Hollow Fiber Membrane and the Manufacturing Process thereof
EP0147570B1 (en) Process for the manufacture of asymmetric, porous membranes and product thereof
JPS63296939A (en) Polyvinylidene fluoride resin porous film and its manufacture
JPS62117811A (en) Production of conjugated hollow fiber membrane
JP2592725B2 (en) Manufacturing method of hollow fiber membrane
JP2572895B2 (en) Manufacturing method of porous hollow fiber membrane
JPS59229320A (en) Preparation of heterogeneous film by melting, stretching
JPH04267934A (en) Method for producing hollow capillary membrane, membrane for supporting gas separating membrane and unsymmetrical perfect gas separating membrane
KR19990060929A (en) Hollow fiber polymer membrane for oxygen enrichment and its manufacturing method
JPS60261510A (en) Manufacture of laminated hollow yarn
JP2512909B2 (en) Method for producing hollow fiber porous membrane
JP4050606B2 (en) Method for producing three-layer composite hollow fiber membrane
JP2622629B2 (en) Manufacturing method of hollow fiber membrane
JPS60257808A (en) Preparation of hollow yarn composite membrane
JPH02152528A (en) Production of porous hollow fiber
JPS5891733A (en) Preparation of asymmetric porous membrane