JPH0428788B2 - - Google Patents

Info

Publication number
JPH0428788B2
JPH0428788B2 JP31319589A JP31319589A JPH0428788B2 JP H0428788 B2 JPH0428788 B2 JP H0428788B2 JP 31319589 A JP31319589 A JP 31319589A JP 31319589 A JP31319589 A JP 31319589A JP H0428788 B2 JPH0428788 B2 JP H0428788B2
Authority
JP
Japan
Prior art keywords
film
coating
magnetic
electroless plating
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP31319589A
Other languages
Japanese (ja)
Other versions
JPH02290978A (en
Inventor
Masahiro Saito
Akira Nakabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uemera Kogyo Co Ltd
Original Assignee
Uemera Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uemera Kogyo Co Ltd filed Critical Uemera Kogyo Co Ltd
Priority to JP31319589A priority Critical patent/JPH02290978A/en
Publication of JPH02290978A publication Critical patent/JPH02290978A/en
Publication of JPH0428788B2 publication Critical patent/JPH0428788B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は磁気デイスク、磁気ドラム等の磁気記
録体の非磁性被膜等として好適に用いられるニツ
ケル−銅−リン無電解めつき被膜からなる非磁性
被膜に関する。 〔従来の技術及び発明が解決しようとする課題〕 従来、磁気デイスク等の磁気記録体を製造する
場合、アルミニウム等の非磁性基体上に非磁性被
膜を形成し、更にその上に磁性被膜を形成するこ
とが行なわれており、非磁性被膜としては比較的
リン含量の高いニツケル−リン(Ni−P)無電
解めつき被膜が広く用いられている。 このNi−P無電解めつき被膜は、次亜リン酸
塩を還元剤とする無電解ニツケルめつき液から析
出されることにより得られるもので、析出した状
態、或いはこれを室温下に保持したままの状態に
おいては非磁性であるが、このNi−P無電解め
つき被膜を200〜300℃以上に加熱すると磁性を帯
びる問題がある。従つて、磁気記録体の製造にお
いて、無電解ニツケルめつき液から析出された非
磁性のNi−P被膜がその後室温下にずつと保持
されるか、或いは加熱されるとして200℃以下、
でき得れば100℃以下の温度に加熱されるなら大
きな支障はないが、磁気記録体を製造する場合、
磁性被膜を形成するなどのためにスパツタリング
法を採用することが多く、このため非磁性のNi
−P無電解めつき被膜は200℃以上の高温に曝さ
れ、磁性を帯びて磁気記録体の性能を損なう問題
が生じる。それ故、Ni−P無電解めつき被膜の
リン含有量を10%以上として磁性化をできるだけ
防止する対策も講じられているが、10%以上の高
リン含有量のNi−P無電解めつき被膜も、磁化
の程度が低リン含有量の被膜よりも小さいとして
も上記温度で同様に磁化されることに変わりはな
く、しかも10%以上の高リン含有量のNi−P無
電解めつき被膜を安定して得ることは困難であ
る。 また従来、磁気記録体の非磁性被膜として突起
物の生成を少なくする目的でNi−Cu−P無電解
めつき被膜を形成することは知られている(特開
昭56−51024号公報)が、この公報に記載された
Ni−Cu−P被膜の銅含有量は65%より高く、ま
たこのように銅含有量が高いのでめつきが実質的
に進行しないものである(実施例1)か、又は銅
含有量が1%以下のもの(実施例2)であり、後
述する実験の結果からも明らかなように、銅含有
量が65%より多いものは加熱した際に被膜が酸化
し易く、密着性にも問題があつて、200℃以上の
高温に曝す場合には実用的でなく、また銅含有量
が1%以下の場合には加熱により磁性を帯びるも
ので、従来Ni−Cu−P無電解めつき皮膜は、例
えば特開昭56−124118号公報で加熱により磁性が
発生する非磁性基板に分類されているように、加
熱により磁性が生じるとされていたもである。 〔課題を解決するための手段及び作用〕 本発明者らは、上記事情に鑑み、高温下に曝さ
れても磁化されることがなく、非磁性状態に安定
して保持される非磁性被膜につき鋭意研究を行な
つた結果、銅含有量が30〜55%(重量%、以下同
じ)、リン含有量が4〜10%のニツケル−銅−リ
ン(Ni−Cu−P)無電解めつき被膜が400℃で1
時間熱処理されても磁性を全く帯びることがな
く、めつき液から析出されたままの被膜と同じ非
磁性状態を保持し、またこのように熱処理しても
密着性が保持さることを知見したもので、かかる
銅含有量が30〜55%でリン含有量が4〜10%の
Ni−Cu−P無電解めつき被膜からなる非磁性被
膜が200℃以上、特に300℃以上に加熱されても全
く磁化されることがないということは本発明者ら
の新知見である。 以下、本発明につき更に詳しく説明する。 本発明の非磁性被膜は、Ni−Cu−P無電解め
つき被膜からなるものである。 ここで、本発明においてNi−Cu−P被膜は銅
含有量が30〜55%であることが必要であり、銅含
有量が30〜55%のNi−Cu−P被膜を形成するこ
とにより、加熱しても磁化されることのない非磁
性被膜が得られるものである。これに対し、銅含
有量が30%より低いもの、とりわけ10%より低い
ものは加熱により磁化され易く、本発明の目的が
達成されない。また、銅含有量が55%より多いも
の、とりわけ65%より多いものは加熱した際に被
膜が酸化し易く、密着性にも問題があり、均質な
被膜が得られないため、非磁性被膜には使用し得
ない。なお、リンの含有量は4〜10%であり、特
に6〜8%とすることが好ましく、これにより良
好な非磁性被膜が得られる。 このようなNi−Cu−P無電解めつき被膜を得
るためのめつき液としては、NiSO4・6H2O、
NiCl2・6H2O等のニツケルの水溶性塩と、
CuSO4・5H2O、CuCl2・2H2O等の銅の水溶性塩
と、NaHPO2・H2O等の次亜リン酸塩と、錯化
剤と、更に必要によりPH調整剤、安定剤、その他
の添加剤を含有しためつき液が使用され得る。こ
の場合、ニツケルの水溶性塩の濃度は0.02〜0.2
モル/、銅の水溶性塩の濃度は0.002〜0.08モ
ル/、銅イオンのニツケルイオンに対するモル
比はニツケルイオン1モルに対し銅イオン0.1〜
0.4モル、特に0.2〜0.35モル、更に次亜リン酸塩
の濃度は0.1〜0.5モル/とすることが好まし
く、これにより本発明のNi−Cu−P被膜が確実
に形成される。なお、錯化剤としては、O−配位
のもの(例えば、酢酸、乳酸、クエン酸等の各種
有機酸、その塩)、S−配位のもの(例えば、チ
オグリコール酸、システイン)、N−配位のもの
(例えば、アンモニア、グリシン、エチレンジア
ミン)などが適宜使用され、その濃度は通常全金
属塩濃度に対し等モル以上である。また、めつき
液のPHは8〜12とし、温度40〜90℃においてめつ
きすることが好ましい。 本発明の非磁性被膜は、上述したように銅含有
量が30〜55%、リン含有量が4〜10%のNi−Cu
−P被膜からなるもので、200℃以上に加熱して
も非磁性被膜が全く磁化せず、したがつてこの非
磁性被膜上に磁性被膜等の適宜な被膜を形成する
際、スパツタリング法を採用するなど、非磁性被
膜(前記Ni−Cu−P被膜)の形成以後に200℃以
上、更には300℃以上の雰囲気となる工程、製造
法を有効に採用することができる。また、200℃
以上の雰囲気下で使用する用途にも有効に用いら
れる。 〔発明の効果〕 以上説明したように、本発明の非磁性被膜は、
銅含有量が30〜55%、リン含有量が4〜10%の
Ni−Cu−P無電解めつき被膜からなるので、こ
の被膜が200℃以上に加熱されても全く磁化され
ず、良好な非磁性状態を保持するものである。 以下、実施例により本発明非磁性被膜の効果を
具体的に説明する。 実施例 1 硫酸ニツケル 0.05モル/ 硫酸銅 0.02 〃 次亜リン酸ナトリウム 0.3 〃 クエン酸ナトリウム 0.2 〃 ホウ砂 0.05 〃 安定剤 1ppm PH 10 浴温 70℃ 上記組成の無電解めつき液に常法により前処理
された銅板を浸漬し、10μmのNi−Cu−P無電解
めつき被膜を形成した。なお、この被膜組成は
Ni46%、Cu49%、P5%であつた。 次に、この被膜を種々の温度で1時間熱処理
し、磁化の程度を調べた。 また、比較のため、リン含有量8%、9%及び
13%のNi−P無電解めつき被膜を同様に熱処理
した場合の磁化の程度を調べた。 結果を第1図に示す。なお、第1図において、
Aは本発明のNi−Cu−P被膜、B、C、Dはそ
れぞれリン含量8%、9%、13%のNi−P被膜
を示す。 第1図の結果より、本発明のNi−Cu−P被膜
は400℃で1時間熱処理されても全く磁化されて
いないことが認められる。 実施例 2 硫酸ニツケル 0.05モル/ 硫酸銅 0.002〜0.01 〃 次亜リン酸ナトリウム 0.3 〃 クエン酸ナトリウム 0.2 〃 ホウ砂 0.05 〃 安定剤 1ppm PH 10 浴温 70℃ 上記組成の無電解めつき液に常法により前処理
された銅板を浸漬し、20μmの第1表に示す組成
のNi−Cu−P無電解めつき被膜を形成した。 次に、この被膜を種々の温度で1時間熱処理
し、磁化の程度を調べた。 結果を第2図に示す。
[Industrial Field of Application] The present invention relates to a nonmagnetic coating made of a nickel-copper-phosphorus electroless plating coating, which is suitably used as a nonmagnetic coating for magnetic recording bodies such as magnetic disks and magnetic drums. [Prior art and problems to be solved by the invention] Conventionally, when manufacturing magnetic recording bodies such as magnetic disks, a nonmagnetic film is formed on a nonmagnetic substrate such as aluminum, and a magnetic film is further formed on that. Nickel-phosphorus (Ni--P) electroless plating films with a relatively high phosphorus content are widely used as non-magnetic films. This Ni-P electroless plating film is obtained by depositing from an electroless nickel plating solution using hypophosphite as a reducing agent, and is deposited in the deposited state or kept at room temperature. Although it is non-magnetic in its original state, there is a problem in that when this Ni--P electroless plating film is heated to 200 to 300° C. or higher, it becomes magnetic. Therefore, in the production of magnetic recording bodies, the nonmagnetic Ni-P coating deposited from the electroless nickel plating solution is then kept at room temperature or heated at temperatures below 200°C.
If possible, there will be no major problem if the temperature is heated to below 100℃, but when manufacturing magnetic recording media,
Sputtering is often used to form magnetic films, and for this reason non-magnetic Ni
When the -P electroless plating film is exposed to high temperatures of 200° C. or higher, it becomes magnetic, causing a problem that impairs the performance of the magnetic recording medium. Therefore, measures have been taken to prevent magnetization as much as possible by increasing the phosphorus content of the Ni-P electroless plating film to 10% or more. Even if the degree of magnetization of the coating is smaller than that of a coating with a low phosphorus content, it will still be magnetized in the same way at the above temperature, and moreover, a Ni-P electroless plated coating with a high phosphorus content of 10% or more. is difficult to obtain stably. Furthermore, it has been known to form a Ni-Cu-P electroless plating film as a non-magnetic film on a magnetic recording medium for the purpose of reducing the formation of protrusions (Japanese Unexamined Patent Publication No. 56-51024). , described in this bulletin
The copper content of the Ni-Cu-P coating is higher than 65%, and plating does not substantially progress due to such a high copper content (Example 1), or the copper content is 1. % or less (Example 2), and as is clear from the results of the experiments described below, those with a copper content of more than 65% tend to oxidize when heated, and there are problems with adhesion. However, it is not practical when exposed to high temperatures of 200℃ or higher, and when the copper content is less than 1%, it becomes magnetic when heated, so conventional Ni-Cu-P electroless plating films are For example, it was classified as a non-magnetic substrate that generates magnetism when heated in Japanese Patent Application Laid-Open No. 56-124118, which said that magnetism is generated when heated. [Means and effects for solving the problem] In view of the above circumstances, the present inventors have developed a non-magnetic coating that is not magnetized even when exposed to high temperatures and is stably maintained in a non-magnetic state. As a result of intensive research, we have developed a nickel-copper-phosphorus (Ni-Cu-P) electroless plating film with a copper content of 30 to 55% (weight%, same hereinafter) and a phosphorus content of 4 to 10%. is 1 at 400℃
It has been discovered that even after heat treatment for a long time, it does not become magnetic at all, retains the same non-magnetic state as the film deposited from the plating solution, and maintains its adhesion even after heat treatment in this way. The copper content is 30-55% and the phosphorus content is 4-10%.
It is a new finding of the present inventors that a nonmagnetic film made of a Ni-Cu-P electroless plating film is not magnetized at all even when heated to 200°C or higher, particularly 300°C or higher. The present invention will be explained in more detail below. The nonmagnetic coating of the present invention is a Ni--Cu--P electroless plating coating. Here, in the present invention, the Ni-Cu-P film needs to have a copper content of 30 to 55%, and by forming a Ni-Cu-P film with a copper content of 30 to 55%, A non-magnetic coating that does not become magnetized even when heated is obtained. On the other hand, those with a copper content lower than 30%, particularly those lower than 10%, are easily magnetized by heating, and the object of the present invention cannot be achieved. In addition, if the copper content is more than 55%, especially if it is more than 65%, the coating will easily oxidize when heated, and there will be problems with adhesion, making it impossible to obtain a homogeneous coating. cannot be used. Note that the phosphorus content is 4 to 10%, preferably 6 to 8%, so that a good nonmagnetic coating can be obtained. The plating solution for obtaining such a Ni-Cu-P electroless plating film includes NiSO 4 6H 2 O,
Water-soluble salts of nickel such as NiCl 2 and 6H 2 O,
Copper water-soluble salts such as CuSO 4・5H 2 O, CuCl 2・2H 2 O, etc., hypophosphites such as NaHPO 2・H 2 O, complexing agents, and if necessary, PH adjusters, stabilizing A tamping solution containing additives such as additives and other additives may be used. In this case, the concentration of water-soluble salt of nickel is 0.02-0.2
mole/, concentration of water-soluble copper salt is 0.002 to 0.08 mole/, molar ratio of copper ion to nickel ion is 0.1 to 1 mole of copper ion to nickel ion
The concentration of hypophosphite is preferably 0.4 mol, particularly 0.2 to 0.35 mol, and more preferably 0.1 to 0.5 mol/mol, thereby ensuring the formation of the Ni--Cu--P coating of the present invention. The complexing agents include those with O-coordination (e.g., various organic acids such as acetic acid, lactic acid, citric acid, and their salts), those with S-coordination (e.g., thioglycolic acid, cysteine), and those with N-coordination (e.g., thioglycolic acid, cysteine). -coordination compounds (for example, ammonia, glycine, ethylenediamine) are used as appropriate, and their concentration is usually at least equimolar to the total metal salt concentration. Further, it is preferable that the pH of the plating liquid is 8 to 12, and plating is carried out at a temperature of 40 to 90°C. As mentioned above, the nonmagnetic coating of the present invention is made of Ni-Cu having a copper content of 30 to 55% and a phosphorus content of 4 to 10%.
-The non-magnetic film does not become magnetized at all even when heated to 200°C or higher. Therefore, when forming an appropriate film such as a magnetic film on this non-magnetic film, a sputtering method is used. It is possible to effectively employ processes and manufacturing methods in which the atmosphere is at 200° C. or higher, or even 300° C. or higher after the formation of the nonmagnetic film (the Ni-Cu-P film). Also, 200℃
It can also be effectively used in applications where it is used in the above atmospheres. [Effects of the Invention] As explained above, the nonmagnetic coating of the present invention has the following properties:
Copper content is 30-55% and phosphorus content is 4-10%.
Since it is composed of a Ni--Cu--P electroless plating film, even when this film is heated to 200°C or higher, it is not magnetized at all and maintains a good non-magnetic state. Hereinafter, the effects of the nonmagnetic coating of the present invention will be specifically explained with reference to Examples. Example 1 Nickel sulfate 0.05 mol / Copper sulfate 0.02 〃 Sodium hypophosphite 0.3 〃 Sodium citrate 0.2 〃 Borax 0.05 〃 Stabilizer 1 ppm PH 10 Bath temperature 70°C Added to electroless plating solution with the above composition by a conventional method The treated copper plate was immersed to form a 10 μm Ni-Cu-P electroless plating film. The composition of this film is
The content was 46% Ni, 49% Cu, and 5% P. Next, this film was heat treated at various temperatures for 1 hour, and the degree of magnetization was examined. For comparison, phosphorus content of 8%, 9% and
The degree of magnetization was investigated when a 13% Ni--P electroless plated film was similarly heat treated. The results are shown in Figure 1. In addition, in Figure 1,
A shows the Ni--Cu--P coating of the present invention, and B, C, and D show the Ni--P coatings with phosphorus contents of 8%, 9%, and 13%, respectively. From the results shown in FIG. 1, it can be seen that the Ni--Cu--P film of the present invention was not magnetized at all even after being heat treated at 400 DEG C. for 1 hour. Example 2 Nickel sulfate 0.05 mol / Copper sulfate 0.002 to 0.01 〃 Sodium hypophosphite 0.3 〃 Sodium citrate 0.2 〃 Borax 0.05 〃 Stabilizer 1 ppm PH 10 Bath temperature 70°C A conventional electroless plating solution with the above composition was added. The pretreated copper plate was immersed to form a 20 μm Ni-Cu-P electroless plating film having the composition shown in Table 1. Next, this film was heat treated at various temperatures for 1 hour, and the degree of magnetization was examined. The results are shown in Figure 2.

【表】 第1表、第2図の結果から明らかなように、
Ni−Cu−P無電解めつき被膜の銅含有量が30%
以上であると加熱により殆んど磁化されないこと
が認められる。 実施例 3 硫酸ニツケル 0.05モル/ 硫酸銅 0.005〜0.05 〃 次亜リン酸ナトリウム 0.3 〃 クエン酸ナトリウム 0.2 〃 ホウ砂 0.05 〃 安定剤 1ppm PH 10 浴温 70℃ 上記組成の無電解めつき液に常法により前処理
し、次いで亜鉛置換後、青化銅ストライクめつき
を施したアルミニウム板(直径5.25インチ=13.3
cm)を浸漬し、20μmの第2表に示す銅含有量の
Ni−Cu−P無電解めつき被膜を得た(なお、リ
ン含有量4〜8%)。 次に、この被膜を300℃で3時間熱処理し、ク
ラツクの有無を目視により観察し、密着性を評価
した。結果を第2表に示す。 なお、クラツクは長さが1mm以下のものでも確
認できたものはクラツクありとした。
[Table] As is clear from the results in Table 1 and Figure 2,
Copper content of Ni-Cu-P electroless plating film is 30%
It is recognized that when the temperature is above, there is hardly any magnetization due to heating. Example 3 Nickel sulfate 0.05 mol / Copper sulfate 0.005 to 0.05 〃 Sodium hypophosphite 0.3 〃 Sodium citrate 0.2 〃 Borax 0.05 〃 Stabilizer 1 ppm PH 10 Bath temperature 70℃ A conventional electroless plating solution with the above composition was added. Aluminum plate (diameter 5.25 inches = 13.3
cm) and 20 μm of copper content shown in Table 2.
A Ni--Cu--P electroless plating film was obtained (phosphorus content: 4 to 8%). Next, this film was heat treated at 300° C. for 3 hours, and the presence or absence of cracks was visually observed to evaluate the adhesion. The results are shown in Table 2. In addition, cracks that were confirmed even if the length was 1 mm or less were considered to be cracks.

【表】 第2表の結果より、銅含有量が55%を越えると
クラツクが生じ、密着性上問題が生じるが、30〜
55%の銅含有量のNi−Cu−P無電解めつき被膜
は加熱によつてクラツクが生じることがなく、良
好な密着性が保持されることがわかる。 なお、銅含有量が55%を越える場合は被膜が酸
化する傾向を示し、特に銅含有量65%を越える場
合は熱処理による被膜の酸化がひどく、均質な被
膜が得られにくいことがわかつた。 従つて、以上の結果から明らかなように、銅含
有量が30%より少ないと加熱により磁化され易
く、一方銅含有量が55%より多いと加熱により被
膜が酸化され易いと共に、クラツクが生じ、密着
性に問題が生じるものであるが、銅含有量30〜55
%、リン含有量4〜10%のNi−Cu−P無電解め
つき被膜は、加熱により磁性を帯びることがな
く、しかも密着性に問題も生じることがなく、そ
れ故、本発明の非磁性被膜としてかかるNi−Cu
−P無電解めつき被膜を形成した後、高温雰囲気
に曝す必要がある用途に有効に使用される。
[Table] From the results in Table 2, cracks occur when the copper content exceeds 55%, causing problems in adhesion;
It can be seen that the Ni-Cu-P electroless plating film with a copper content of 55% does not crack when heated and maintains good adhesion. It has been found that when the copper content exceeds 55%, the coating tends to oxidize, and in particular, when the copper content exceeds 65%, the oxidation of the coating is severe due to heat treatment, making it difficult to obtain a homogeneous coating. Therefore, as is clear from the above results, if the copper content is less than 30%, it is likely to be magnetized by heating, while if the copper content is more than 55%, the coating will be easily oxidized by heating, and cracks will occur. Copper content of 30 to 55 may cause problems with adhesion.
%, the Ni-Cu-P electroless plating film with a phosphorus content of 4 to 10% does not become magnetic when heated, and does not cause any problems in adhesion. Ni-Cu applied as a film
-P It is effectively used in applications that require exposure to a high temperature atmosphere after forming an electroless plating film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のNi−Cu−P被膜及び種々リ
ン含有量のNi−P被膜を熱処理した場合におけ
る磁化の程度を示すグラフ、第2図は種々の銅含
有量のNi−Cu−P被膜を熱処理した場合におけ
る磁化の程度を示すグラフである。
Figure 1 is a graph showing the degree of magnetization when the Ni-Cu-P coating of the present invention and Ni-P coatings with various phosphorus contents are heat-treated. It is a graph showing the degree of magnetization when a film is heat-treated.

Claims (1)

【特許請求の範囲】[Claims] 1 銅含有量が30〜55重量%、リン含有量が4〜
10重量%のニツケル−銅−リン無電解めつき被膜
からなり、200℃以上の加熱によつても非磁性状
態を保持することを特徴とする非磁性被膜。
1 Copper content is 30-55% by weight, phosphorus content is 4-4%
A nonmagnetic coating consisting of a 10% by weight nickel-copper-phosphorus electroless plating coating, which maintains its nonmagnetic state even when heated to 200°C or higher.
JP31319589A 1989-12-01 1989-12-01 Nonmagnetic coating film Granted JPH02290978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31319589A JPH02290978A (en) 1989-12-01 1989-12-01 Nonmagnetic coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31319589A JPH02290978A (en) 1989-12-01 1989-12-01 Nonmagnetic coating film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59116945A Division JPS60261022A (en) 1984-06-07 1984-06-07 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH02290978A JPH02290978A (en) 1990-11-30
JPH0428788B2 true JPH0428788B2 (en) 1992-05-15

Family

ID=18038249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31319589A Granted JPH02290978A (en) 1989-12-01 1989-12-01 Nonmagnetic coating film

Country Status (1)

Country Link
JP (1) JPH02290978A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148554A1 (en) 2013-03-19 2014-09-25 株式会社フジシールインターナショナル Shrink label and method for producing same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6341420B1 (en) 2000-08-02 2002-01-29 Static Control Components, Inc. Method of manufacturing a developer roller
JP4573445B2 (en) * 2001-02-16 2010-11-04 吉野電化工業株式会社 Electroless copper plating solution composition and electroless copper plating method
JP2005264214A (en) * 2004-03-17 2005-09-29 Tokyo Institute Of Technology Magnetic hollow-shaped material and method for producing the same
JP6391331B2 (en) * 2014-07-07 2018-09-19 古河電気工業株式会社 Metal member for magnetic recording medium and magnetic recording medium
CN113106431B (en) * 2021-04-27 2023-03-28 深圳市优讯佳电子科技有限公司 Storage medium for heat assisted magnetic recording and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148554A1 (en) 2013-03-19 2014-09-25 株式会社フジシールインターナショナル Shrink label and method for producing same

Also Published As

Publication number Publication date
JPH02290978A (en) 1990-11-30

Similar Documents

Publication Publication Date Title
US6197364B1 (en) Production of electroless Co(P) with designed coercivity
JPS581065A (en) Gold substitution plating method and composition
JPS62246145A (en) Non-electrolytic deposition magnetic recording medium method
JPH0248981B2 (en)
US3268353A (en) Electroless deposition and method of producing such electroless deposition
US3282723A (en) Electroless deposition and method of producing such electroless deposition
US5437887A (en) Method of preparing aluminum memory disks
JPH0428788B2 (en)
US3423214A (en) Magnetic cobalt and cobalt alloy plating bath and process
US6162343A (en) Method of preparing hard disc including treatment with amine-containing zincate solution
US3702263A (en) Process for electrolessly plating magnetic thin films
US3360397A (en) Process of chemically depositing a magnetic cobalt film from a bath containing malonate and citrate ions
JPH01123079A (en) Amorphous ni-p alloy
JPH05266457A (en) Magnetic recording body
US6337007B1 (en) Method of making a Co-Fe-Ni soft magnetic thin film
JP3201763B2 (en) Soft magnetic thin film
JP2757672B2 (en) Electroless Ni-P-Mo plating method
JP3826323B2 (en) Manufacturing method of plated magnetic thin film
JP3233963B2 (en) Magnetic thin film and method of manufacturing the same
JPS5837616B2 (en) Manufacturing method for magnetic recording media
JP3600681B2 (en) Magnetic thin film, magnetic multilayer film, and method of manufacturing magnetic thin film
JP3514800B2 (en) Soft magnetic thin film and method of manufacturing the same
JPH0696949A (en) Manufacture of magnetic thin film
JPH0310086A (en) Electroless nickel-phosphorus plating bath
JP2003347120A (en) Magnetic film and its formation method