JPH0696949A - Manufacture of magnetic thin film - Google Patents

Manufacture of magnetic thin film

Info

Publication number
JPH0696949A
JPH0696949A JP17870192A JP17870192A JPH0696949A JP H0696949 A JPH0696949 A JP H0696949A JP 17870192 A JP17870192 A JP 17870192A JP 17870192 A JP17870192 A JP 17870192A JP H0696949 A JPH0696949 A JP H0696949A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
film
magnetic field
magnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17870192A
Other languages
Japanese (ja)
Other versions
JP3298930B2 (en
Inventor
Tetsuya Aisaka
逢坂哲彌
Osamu Shinoura
治 篠浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP17870192A priority Critical patent/JP3298930B2/en
Publication of JPH0696949A publication Critical patent/JPH0696949A/en
Application granted granted Critical
Publication of JP3298930B2 publication Critical patent/JP3298930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a magnetic thin film having a low coercive force, high saturation magnetic flux density, and high permeability by a wet plating method having high mass-productivity. CONSTITUTION:In this manufacturing method, a magnetic thin film is manufactured by heat-treating a Co-Fe alloy film formed by a plating method under a condition where the temperature rising rate is below 10 deg.C/min and maximum temperature is below 350 deg.C. Therefore, the magnetic thin film manufactured by this method can easily obtain high permeability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、湿式めっき法により成
膜される磁性薄膜の製造方法に関する。特に薄膜磁気ヘ
ッド,薄膜トランス等の磁極材料として使用される薄膜
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnetic thin film formed by a wet plating method. In particular, it relates to a method of manufacturing a thin film used as a magnetic pole material for a thin film magnetic head, a thin film transformer, and the like.

【0002】[0002]

【従来の技術】薄膜磁気ヘッドや薄膜トランスの磁性薄
膜には、低保磁力、高飽和磁束密度、低磁歪等に加えて
高透磁率が要求されている。
2. Description of the Related Art In addition to low coercive force, high saturation magnetic flux density and low magnetostriction, high magnetic permeability is required for magnetic thin films of thin film magnetic heads and thin film transformers.

【0003】これらの磁性薄膜は、スパッタ法等の気相
成膜法や電気めっき法等の液相成膜法により形成される
のが一般的であるが、液相めっき法には、大面積の成膜
が容易で、しかも均一性の高い膜がえられ、また工数が
少ないという利点がある。
These magnetic thin films are generally formed by a vapor phase film forming method such as a sputtering method or a liquid phase film forming method such as an electroplating method, but the liquid phase plating method has a large area. Is advantageous in that a film having a high uniformity can be obtained and the number of steps is small.

【0004】特に近年の記録密度の上昇は記録媒体の保
磁力の上昇による部分が大きい。保磁力の大きな記録媒
体に十分に書き込む為には記録ヘッドからより強い磁界
を発生する必要がある。このために従来から広く使用さ
れていたNi−Fe合金(パーマロイ)以上の高飽和磁
束密度材料が求められている。この磁気特性的な要求を
満たす磁性めっき膜としてはCo−Fe合金が挙げられ
る(特願平2−326813)。
Particularly, the recent increase in recording density is largely due to the increase in coercive force of the recording medium. In order to sufficiently write on a recording medium having a large coercive force, it is necessary to generate a stronger magnetic field from the recording head. For this reason, there has been a demand for a high saturation magnetic flux density material that is more than the Ni-Fe alloy (permalloy) that has been widely used in the past. A Co—Fe alloy is mentioned as a magnetic plating film satisfying the requirement for magnetic characteristics (Japanese Patent Application No. 2-326813).

【0005】しかし、従来から広く使用されている比較
的低飽和磁束密度材料であるNi−Fe合金と比較する
と高透磁率を得るのは困難であった。
However, it has been difficult to obtain a high magnetic permeability as compared with the Ni--Fe alloy which is a relatively low saturation magnetic flux density material which has been widely used in the past.

【0006】成膜後の熱処理は応力緩和効果等から広く
用いられている。たとえばスパッタ法によるCoFeB
アモルファス膜では300℃の回転磁場中熱処理にて高
い透磁率が得られる事が報告されている(昭和56年度
電子通信学会総合全国大会予稿集 1−160)。
Heat treatment after film formation is widely used because of stress relaxation effect and the like. For example, CoFeB by sputtering method
It has been reported that a high magnetic permeability can be obtained in an amorphous film by heat treatment in a rotating magnetic field at 300 ° C. (Proceedings of the National Conference of the Institute of Electronics and Communication Engineers, 1981, 1-160).

【0007】まためっき法においても回転磁場、直交磁
場中熱処理が有効なことは報告されている(特願平3−
122515等)。
Further, it has been reported that heat treatment in a rotating magnetic field or an orthogonal magnetic field is effective also in the plating method (Japanese Patent Application No. 3-
122515).

【0008】しかし熱処理温度、降温速度にのみ注目し
最適条件を決定していた。これらの場合は昇温温度は特
に注意が払われていなかった。昇温速度は急激な昇温は
クラック等の発生があるため控えられる傾向だが作業性
を考え、比較的高速な、15℃/分程度が使用されてい
た。
However, the optimum conditions have been determined by paying attention only to the heat treatment temperature and the temperature lowering rate. In these cases, no particular attention was paid to the elevated temperature. As for the temperature rising rate, a rapid temperature rising tends to be suppressed because cracks and the like may occur, but considering workability, a relatively high speed of about 15 ° C./minute was used.

【0009】[0009]

【発明が解決しようとする課題】本発明はこのような事
情からなされたものであり、めっき法により成膜された
低保磁力、高飽和磁束密度な薄膜を高透磁率化する製造
方法に関する。
The present invention has been made under these circumstances, and relates to a manufacturing method for increasing the permeability of a thin film having a low coercive force and a high saturation magnetic flux density formed by a plating method.

【0010】[0010]

【課題を解決するための手段】本発明者は、上記課題を
解決するために鋭意検討、研究した結果、従来から知ら
れている成膜後の熱処理の際の条件検討を詳細に行い特
に高透磁率が得られる事を見いだすに至った。
As a result of earnest studies and researches for solving the above-mentioned problems, the present inventor has conducted a detailed study of the conditions for the heat treatment after film formation, which has been conventionally known, and in particular, the We have found that magnetic permeability can be obtained.

【0011】このような目的は、下記(1)〜(2)の
本発明により達成される。
Such an object is achieved by the present invention described in (1) and (2) below.

【0012】(1) CoおよびFeを主成分としため
っき膜を10℃/分未満の昇温速度にて、350℃以下
の不活性雰囲気下加熱処理を行うことを特徴とする磁性
薄膜の製造方法。
(1) Manufacture of a magnetic thin film characterized in that a plating film containing Co and Fe as main components is heat-treated at a temperature rising rate of less than 10 ° C./min in an inert atmosphere at 350 ° C. or less. Method.

【0013】(2) 上記熱処理が直流磁界中または回
転磁場中で行われることを特徴とする上記(1)に記載
の製造方法。
(2) The manufacturing method according to (1) above, wherein the heat treatment is performed in a DC magnetic field or a rotating magnetic field.

【0014】[0014]

【作用】本発明に用いられる磁性薄膜は湿式めっき法、
すなわち電気めっき法、無電解めっき法及び置換めっき
法等により形成され、Co、Feを主成分とするもので
ある。
[Function] The magnetic thin film used in the present invention is a wet plating method,
That is, it is formed by an electroplating method, an electroless plating method, a displacement plating method, or the like, and contains Co and Fe as main components.

【0015】このような組成により、本発明の磁性薄膜
は、1.2T以上、特に1.5T以上の飽和磁束密度BSが
得られ、例えば薄膜磁気ヘッドや薄膜トランス用の磁性
薄膜として極めて有用である。
With such a composition, the magnetic thin film of the present invention can obtain a saturation magnetic flux density BS of 1.2 T or more, particularly 1.5 T or more, and is extremely useful as a magnetic thin film for a thin film magnetic head or a thin film transformer, for example. is there.

【0016】しかし透磁率μは従来のNiFe合金に比
べて低いものが多かった。本発明の製造方法により透磁
率2000以上(5MHz)が容易に得られる。
However, the magnetic permeability μ was often lower than that of the conventional NiFe alloy. A magnetic permeability of 2000 or more (5 MHz) can be easily obtained by the manufacturing method of the present invention.

【0017】[0017]

【具体的構成】以下、本発明の具体的構成について詳細
に説明する。
Specific Structure The specific structure of the present invention will be described in detail below.

【0018】昇温速度は、10℃/分未満、好ましくは
7.5℃/分以下とする。昇温速度が前記範囲以上であ
ると、十分な高透磁率が得られない。
The rate of temperature rise is less than 10 ° C./min, preferably 7.5 ° C./min or less. If the temperature rising rate is above the above range, a sufficiently high magnetic permeability cannot be obtained.

【0019】昇温速度が透磁率の重要要因であることは
今まで全く報告されていない。これはめっき膜独特の現
象だとすれば成膜時に吸蔵された水素ガスの放出と関連
が深いと考えられる。しかし未だ解明には至っていな
い。
It has not been reported at all that the temperature rising rate is an important factor of magnetic permeability. If this is a phenomenon peculiar to a plating film, it is considered that it is closely related to the release of hydrogen gas stored during film formation. However, it has not been clarified yet.

【0020】熱処理最高温度は、350℃未満、好まし
くは340℃以下とする。熱処理温度が上記範囲以上で
あると粒子成長が激しくなり軟磁気特性が低下する。
The maximum heat treatment temperature is lower than 350 ° C., preferably 340 ° C. or lower. If the heat treatment temperature is higher than the above range, the grain growth becomes violent and the soft magnetic properties deteriorate.

【0021】最高温度での保持時間は10分〜1時間程
度で良い。本発明の熱処理ではサンプルが受けるトータ
ルの熱量は特に問題ではない。
The holding time at the maximum temperature may be about 10 minutes to 1 hour. In the heat treatment of the present invention, the total amount of heat received by the sample does not matter.

【0022】降温速度も特に大きな要因ではなく自然冷
却で構わない。
The temperature lowering rate is not a particularly large factor, and natural cooling may be used.

【0023】この処理は通常知られているように磁性膜
の酸化を防止するために不活性雰囲気化または真空雰囲
気下で処理することが好ましい。不活性雰囲気としては
窒素、アルゴン、ヘリウム等が一般的である。
As is generally known, this treatment is preferably performed in an inert atmosphere or a vacuum atmosphere in order to prevent the oxidation of the magnetic film. Nitrogen, argon, helium, etc. are generally used as the inert atmosphere.

【0024】また膜中の鉄/コバルト比により磁歪が変
化するがほぼゼロ付近となるように浴組成を調整するこ
とが好ましい。一般に熱処理により磁歪値は変化するた
め熱処理後の磁歪値を目標にすることとなる。
Further, it is preferable to adjust the bath composition so that the magnetostriction changes depending on the iron / cobalt ratio in the film, but is close to zero. In general, the magnetostriction value changes by heat treatment, so the magnetostriction value after heat treatment is targeted.

【0025】無電解めっき法による成膜では還元剤より
の共析でBまたはPが膜に0.1〜10重量%含有され
る。特にアミンボラン系を還元剤とした場合に軟磁性化
が容易であり、粒子微細化に効果が大きいためと考えら
れる。電気めっき法においてもB、P化合物を浴に加え
る事でP、Bの共析は可能である。
In the film formation by the electroless plating method, B or P is contained in the film in an amount of 0.1 to 10 wt% by co-deposition with a reducing agent. Particularly, it is considered that when an amine borane-based compound is used as the reducing agent, soft magnetization is easy and the effect of reducing the particle size is great. Also in the electroplating method, the co-deposition of P and B is possible by adding the B and P compounds to the bath.

【0026】なおさらに本発明の磁性合金にはC、S、
Cr、Cu、Sn、Ru、Au、Pd、Ag、Mn、I
n、Mo、Pb、Re、W、Zn、Zr、Rh及びPt
等から選択される1種以上の元素を3重量%以下含有す
ることで高周波特性の向上、耐食性向上等も期待され
る。またこれらの元素を不純物として微量含有すること
も特に支障は認められないので安価な試薬の使用による
コスト低減も可能である。
Furthermore, in the magnetic alloy of the present invention, C, S,
Cr, Cu, Sn, Ru, Au, Pd, Ag, Mn, I
n, Mo, Pb, Re, W, Zn, Zr, Rh and Pt
By containing 3% by weight or less of one or more elements selected from the above, it is expected that the high frequency characteristics will be improved and the corrosion resistance will be improved. Further, even if a small amount of these elements is contained as an impurity, no particular problem is observed, so that it is possible to reduce the cost by using an inexpensive reagent.

【0027】但し、3重量%以上の含有の場合には磁気
特性に悪影響を及ぼしたりBsの低下を招く場合が多いの
で注意が必要である。
However, it should be noted that the content of 3% by weight or more often adversely affects the magnetic properties and causes a decrease in Bs.

【0028】また磁気異方性を積極的に制御するために
磁場中処理が有効である。軟磁性薄膜の処理としては回
転磁場中や成膜時と直交磁界をかける直交磁場中熱処理
が知られており共に効果がある。
In addition, a magnetic field treatment is effective for positively controlling the magnetic anisotropy. As a treatment of the soft magnetic thin film, a heat treatment in a rotating magnetic field or in a perpendicular magnetic field for applying a perpendicular magnetic field at the time of film formation is known, and both are effective.

【0029】本発明の磁性薄膜は、優れた透磁率を有す
る。具体的には、5MHzにて2000以上でこれはパー
マロイと同等である。
The magnetic thin film of the present invention has excellent magnetic permeability. Specifically, it is 2000 or more at 5 MHz, which is equivalent to permalloy.

【0030】本発明で特に好ましく用いるめっき膜は無
電解めっき法または電気めっき法により成膜される。
The plating film particularly preferably used in the present invention is formed by an electroless plating method or an electroplating method.

【0031】めっき浴には、少なくともコバルトイオン
と鉄イオンとを含有するものである。本発明で用いるコ
バルトイオン、鉄イオン供給源としては硫酸塩、塩化
塩、スルファミン酸塩、酢酸塩、硝酸塩等の水溶性の塩
を用いるのが好ましい。あるいは金属をめっき浴中に浸
積させ自然溶解したイオンや陽極として電解により溶解
したイオンも有効に利用可能である。
The plating bath contains at least cobalt ions and iron ions. As the cobalt ion and iron ion source used in the present invention, it is preferable to use a water-soluble salt such as a sulfate, a chloride, a sulfamate, an acetate and a nitrate. Alternatively, ions that are naturally dissolved by immersing a metal in a plating bath or ions that are electrolytically dissolved as an anode can be effectively used.

【0032】コバルトイオンの濃度は0.05〜5モル
/l、特に0.1〜2モル/lであることが好ましい。コ
バルトイオンの濃度が前記範囲未満であると析出速度の
低下が著しく、前記範囲を越えるとめっき浴の粘度が上
昇し一般には作業性や微細なレジストパターン内への成
膜が困難となる。
The concentration of cobalt ion is preferably 0.05 to 5 mol / l, and more preferably 0.1 to 2 mol / l. When the concentration of cobalt ions is less than the above range, the deposition rate is remarkably reduced, and when it exceeds the above range, the viscosity of the plating bath increases, and workability and film formation in a fine resist pattern are generally difficult.

【0033】また、めっき浴中における鉄イオン濃度
は、0.001〜1モル/lの範囲でより好ましくは
0.01〜1モル/lである。コバルトイオンとの濃度
比が成膜される膜の組成を決定する大きな要因であるの
で、所望の膜組成が得られるように決定すれば良い。
The iron ion concentration in the plating bath is in the range of 0.001 to 1 mol / l, more preferably 0.01 to 1 mol / l. Since the concentration ratio with cobalt ions is a major factor in determining the composition of a film to be formed, it may be determined so that a desired film composition can be obtained.

【0034】鉄イオンとしては2価鉄イオンが好まし
い。しかし2価鉄イオンは、酸化して3価鉄イオンにな
りやすい。3価鉄イオンは小量ならば問題ではなく、レ
ベリング性等に効果がある場合もある。また容易に2価
鉄イオンに還元することが可能であるし生成を防ぐこと
も容易である。
As the iron ions, divalent iron ions are preferable. However, divalent iron ions are easily oxidized to trivalent iron ions. If the amount of trivalent iron ion is small, it does not matter, and it may be effective in leveling property. Further, it can be easily reduced to divalent iron ions, and it is easy to prevent the generation.

【0035】還元方法としてはアスコルビン酸、次亜り
ん酸、ジメチルアミンボラン、チオ尿素あるいはそれら
の塩、誘導体のような還元剤の添加やCo、Feの金属
をめっき浴に浸積し自然溶解する際の副反応を利用する
ことが一般的に知られている。
As a reducing method, a reducing agent such as ascorbic acid, hypophosphorous acid, dimethylamine borane, thiourea or a salt or derivative thereof, or a metal such as Co or Fe is immersed in a plating bath to spontaneously dissolve it. It is generally known to utilize side reactions at the time.

【0036】また電気めっき法の場合には浴のpHは
1.0〜4.0で特に2.0〜3.0が好ましい。上記
範囲以下では成膜速度が遅く、前記範囲以上では三価鉄
の沈澱が生じ易い。 めっき浴中には、これらの他、ほ
う酸等のpH緩衝剤、硫酸アンモニウムや塩化アンモニ
ウム等の導電塩、ラウリル硫酸ナトリウム等の界面活性
剤等、通常の電気めっき浴に添加される成分が含有され
ることが好ましい。
In the case of electroplating, the pH of the bath is 1.0 to 4.0, preferably 2.0 to 3.0. Below the above range, the film formation rate is slow, and above the above range, precipitation of ferric iron is likely to occur. In addition to these, the plating bath contains components such as a pH buffering agent such as boric acid, a conductive salt such as ammonium sulfate and ammonium chloride, a surfactant such as sodium lauryl sulfate, and the like, which are added to an ordinary electroplating bath. It is preferable.

【0037】無電解めっき法の場合には還元剤が加えら
れる。還元剤としては次亜りん酸、その塩、ジメチルア
ミンボラン(DMAB)、トリメチルアミンボラン、ヒ
ドラジン等が広く知られている。特にDMABが好まし
い。DMAB浴の場合には浴のpHは9程度が好まし
い。
In the case of electroless plating, a reducing agent is added. As the reducing agent, hypophosphorous acid, a salt thereof, dimethylamine borane (DMAB), trimethylamine borane, hydrazine and the like are widely known. DMAB is particularly preferable. In the case of the DMAB bath, the pH of the bath is preferably about 9.

【0038】また特に軟磁気特性を得るためにはめっき
浴中にアンモニウムイオン特に塩化アンモニウムを含有
していることが好ましい。しかしながらその原因は不明
である。
Further, in order to obtain particularly soft magnetic characteristics, it is preferable that the plating bath contains ammonium ions, particularly ammonium chloride. However, the cause is unknown.

【0039】目的の方向に一軸異方性を付与するために
直流磁場中、直交磁場中、回転磁場中成膜をおこなうこ
とが好ましい。直交磁場中、回転磁場中成膜の場合には
90度ごとに強い磁場を印加するか長時間保持する等で
異方性を付与する。
In order to impart uniaxial anisotropy in a desired direction, it is preferable to carry out film formation in a DC magnetic field, an orthogonal magnetic field, or a rotating magnetic field. In the case of film formation in an orthogonal magnetic field or a rotating magnetic field, anisotropy is imparted by applying a strong magnetic field every 90 degrees or maintaining it for a long time.

【0040】また優れた磁気特性を得るのにめっき浴は
連続フィルタリングにより浴中の微粒子や水酸化物を取
り除くことが必要である。ろ過の程度としてはめっき浴
の容量をVリットルとすると、ろ過流量としてV×0.
1リットル/分以上が望ましい。フィルターメッシュは
用途によるが特に微細なレジストパターン内へ成膜の場
合には0.2μm以下が好ましい。
Further, in order to obtain excellent magnetic characteristics, it is necessary for the plating bath to remove fine particles and hydroxide in the bath by continuous filtering. As for the degree of filtration, when the volume of the plating bath is V liters, the filtration flow rate is V × 0.
1 liter / min or more is desirable. Although the filter mesh depends on the application, it is preferably 0.2 μm or less when forming a film in a fine resist pattern.

【0041】陽極は微粒子除去の観点からは不溶解性の
TiPt、フェライト電極が好ましい。しかし、陽極に
おいて酸化反応が起こるのでたとえばイオン交換膜によ
り陰極部と分離することが望ましい。
From the viewpoint of removing fine particles, the anode is preferably insoluble TiPt or a ferrite electrode. However, since an oxidation reaction occurs at the anode, it is desirable to separate it from the cathode by, for example, an ion exchange membrane.

【0042】本発明のめっき浴の溶媒としては通常の水
のほかに非水系溶媒、たとえばメチルアルコール、エチ
ルアルコール、プロピレンカーバイドや溶融塩等も使用
可能である。
As the solvent for the plating bath of the present invention, non-aqueous solvents such as methyl alcohol, ethyl alcohol, propylene carbide and molten salts can be used in addition to ordinary water.

【0043】[0043]

【実施例】以下、本発明の具体的実施例を示し、本発明
をさらに詳細に説明する。
EXAMPLES The present invention will be described in more detail below by showing specific examples of the present invention.

【0044】実施例1 コーニング社製製品番号7059のガラス上にスパッタ
法によりチタンを50A、さらに銅を500A成膜した基
板を使用した。めっき前処理として1N−塩酸(常温)
に30秒浸積し水洗した後、以下のめっき条件にて磁性
膜を下記めっき浴を用いて、下記表1に示す無電解めっ
きサンプルを作製した。
Example 1 A substrate having a film thickness of 50A of titanium and a film of copper of 500A formed on a glass of product No. 7059 manufactured by Corning Co. by a sputtering method was used. 1N-hydrochloric acid (normal temperature) as a pretreatment for plating
After dipping for 30 seconds in water and washing with water, an electroless plating sample shown in Table 1 below was prepared using the following plating bath for the magnetic film under the following plating conditions.

【0045】無電解めっき浴組成(1リットル中) 硫酸コバルト 0.1モル 硫酸鉄(II) 0.0025モル 硫酸アンモニウム 0.30モル ジメチルアミンボラン 0.025モル 酒石酸 0.60モル めっき浴温度は70℃、めっき浴のpHは9.0、でめ
っき時間は約10分間とし、600 Oeの直流磁界を印
加した。
Electroless plating bath composition (in 1 liter) Cobalt sulfate 0.1 mol Iron (II) sulfate 0.0025 mol Ammonium sulfate 0.30 mol Dimethylamine borane 0.025 mol Tartaric acid 0.60 mol Plating bath temperature is 70 C., the pH of the plating bath was 9.0, the plating time was about 10 minutes, and a DC magnetic field of 600 Oe was applied.

【0046】サンプルの厚さは、1μmとした。サンプ
ルの組成は蛍光X線分析装置、ICPを用い分析したと
ころCo=91at%、Fe=5.1at%、B=3.9at
%であった。飽和磁束密度Bsは1520emu/cc、保磁
力Hc=0.5Oeであった。
The thickness of the sample was 1 μm. The composition of the sample was analyzed by a fluorescent X-ray analyzer and ICP, Co = 91 at%, Fe = 5.1 at%, B = 3.9 at
%Met. The saturation magnetic flux density Bs was 1520 emu / cc, and the coercive force Hc was 0.5 Oe.

【0047】各サンプルに対し、表1に示す条件にて熱
処理後に透磁率測定を行った。結果を表1に示す。熱処
理は窒素雰囲気中で成膜時と直交する面内方向に磁場を
与える直交磁場中である。最高温度での保持時間は20
分間、降温は自然冷却とした。
The magnetic permeability of each sample was measured after heat treatment under the conditions shown in Table 1. The results are shown in Table 1. The heat treatment is performed in a nitrogen atmosphere in an orthogonal magnetic field that gives a magnetic field in an in-plane direction orthogonal to the film formation. Hold time at maximum temperature is 20
The temperature was naturally cooled for 1 minute.

【0048】[0048]

【表1】 [Table 1]

【0049】(飽和磁束密度Bs) VSMにより測定し
た。
(Saturation magnetic flux density Bs) Measured by VSM.

【0050】(透磁率) 8の字コイル型透磁率計を用
い5MHz、3mOe磁界で測定した。
(Permeability) The magnetic permeability was measured using an 8-shaped coil type permeability meter at 5 MHz and 3 mOe magnetic field.

【0051】(保磁力Hc) 60Hz−BHトレーサーに
より測定した。
(Coercive force Hc) Measured with a 60 Hz-BH tracer.

【0052】実施例2 コーニング社製製品番号7059のガラス上にスパッタ
法によりチタンを50A、さらにパーマロイを500A成
膜した基板を使用した。めっき前処理として実施例1と
同じ条件の処理の後、以下の電気めっき条件にて磁性膜
を成膜した。
Example 2 A substrate having titanium 50A and permalloy 500A formed on a glass having a product number 7059 manufactured by Corning Co., Ltd. by a sputtering method was used. After the pretreatment for plating under the same conditions as in Example 1, a magnetic film was formed under the following electroplating conditions.

【0053】電気めっき浴組成(1リットル中) スルファミンコバルト 0.2モル スルファミン鉄(II) 0.01モル 塩化アンモニウム 10g ほう酸 40g 1、3、6−ナフタレントリスルホン酸トリナトリウム
60g プロパギルアルコール 0.05ml めっき浴温度は40℃、めっき浴のpHは2.8、電流
密度は1A/dm2、めっき時間は5分間とし、600Oeの
直流磁界を印加しながら電気めっきを行った。
Electroplating bath composition (in 1 liter) Sulfamine cobalt 0.2 mol Sulfamine iron (II) 0.01 mol Ammonium chloride 10 g Boric acid 40 g 1,3,6-Naphthalenetrisulfonic acid trisodium 60 g Propagyl alcohol The electroplating was carried out while applying a DC magnetic field of 600 Oe with the temperature of the plating bath of 05 ml being 40 ° C., the pH of the plating bath being 2.8, the current density being 1 A / dm 2 , and the plating time being 5 minutes.

【0054】サンプルの厚さは、1μmとした。サンプ
ルの組成は蛍光X線分析装置、ICPを用い分析したと
ころCo=96wt%、Fe=4wt%であった。飽和磁束
密度Bsは1.6T、保磁力Hc=0.5Oeであった。
The thickness of the sample was 1 μm. The composition of the sample was Co = 96 wt% and Fe = 4 wt% when analyzed using a fluorescent X-ray analyzer and ICP. The saturation magnetic flux density Bs was 1.6 T and the coercive force Hc was 0.5 Oe.

【0055】各サンプルに対し、表2に示す条件にて熱
処理後に透磁率測定を行った。結果を表2に示す。熱処
理は真空中で60rpnの回転磁場中である。最高温度保
持時間は30分間、降温は自然冷却とした。
The magnetic permeability of each sample was measured after heat treatment under the conditions shown in Table 2. The results are shown in Table 2. The heat treatment is performed in a rotating magnetic field of 60 rpn in vacuum. The maximum temperature retention time was 30 minutes, and the temperature decrease was natural cooling.

【0056】[0056]

【表2】 [Table 2]

【0057】以上の実施例の結果から、本発明の効果が
明らかである。すなわち、本発明によれば、高透磁率磁
性薄膜が容易に得られる。
From the results of the above examples, the effect of the present invention is clear. That is, according to the present invention, a high-permeability magnetic thin film can be easily obtained.

【0058】[0058]

【発明の効果】本発明によれば、高透磁率磁性薄膜が容
易に得られる。しかもめっき法のために高い生産性が得
られる。
According to the present invention, a high permeability magnetic thin film can be easily obtained. Moreover, high productivity can be obtained due to the plating method.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 CoおよびFeを主成分としためっき膜
を10℃/分未満の昇温速度にて、350℃以下の真空
または不活性雰囲気下加熱処理を行うことを特徴とする
磁性薄膜の製造方法。
1. A magnetic thin film characterized in that a plating film containing Co and Fe as main components is heat-treated at a temperature rising rate of less than 10 ° C./min in a vacuum at 350 ° C. or lower or in an inert atmosphere. Production method.
【請求項2】 上記熱処理が直流磁界中または回転磁場
中で行われることを特徴とする請求項1に記載の製造方
法。
2. The manufacturing method according to claim 1, wherein the heat treatment is performed in a DC magnetic field or a rotating magnetic field.
JP17870192A 1992-07-06 1992-07-06 Manufacturing method of magnetic thin film Expired - Lifetime JP3298930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17870192A JP3298930B2 (en) 1992-07-06 1992-07-06 Manufacturing method of magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17870192A JP3298930B2 (en) 1992-07-06 1992-07-06 Manufacturing method of magnetic thin film

Publications (2)

Publication Number Publication Date
JPH0696949A true JPH0696949A (en) 1994-04-08
JP3298930B2 JP3298930B2 (en) 2002-07-08

Family

ID=16053048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17870192A Expired - Lifetime JP3298930B2 (en) 1992-07-06 1992-07-06 Manufacturing method of magnetic thin film

Country Status (1)

Country Link
JP (1) JP3298930B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253418A (en) * 2005-03-10 2006-09-21 Fujitsu Ltd Magnetic thin film and manufacturing method thereof, and magnetic disk device
US7135103B2 (en) 2003-10-20 2006-11-14 Waseda University Preparation of soft magnetic thin film
US7288333B2 (en) 2002-09-12 2007-10-30 Alps Electric Co., Ltd. Magnetic film and thin film magnetic head using this magnetic film
US11725158B2 (en) 2019-09-18 2023-08-15 Gkn Driveline International Gmbh Grease composition for constant velocity joints
US11732209B2 (en) 2019-10-30 2023-08-22 Gkn Driveline International Gmbh Grease composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7288333B2 (en) 2002-09-12 2007-10-30 Alps Electric Co., Ltd. Magnetic film and thin film magnetic head using this magnetic film
US7135103B2 (en) 2003-10-20 2006-11-14 Waseda University Preparation of soft magnetic thin film
JP2006253418A (en) * 2005-03-10 2006-09-21 Fujitsu Ltd Magnetic thin film and manufacturing method thereof, and magnetic disk device
US11725158B2 (en) 2019-09-18 2023-08-15 Gkn Driveline International Gmbh Grease composition for constant velocity joints
US11732209B2 (en) 2019-10-30 2023-08-22 Gkn Driveline International Gmbh Grease composition

Also Published As

Publication number Publication date
JP3298930B2 (en) 2002-07-08

Similar Documents

Publication Publication Date Title
US6197364B1 (en) Production of electroless Co(P) with designed coercivity
JP3229718B2 (en) Soft magnetic alloys, soft magnetic thin films and multilayer films
JP2003034891A (en) Method for manufacturing cobalt iron alloy and plated magnetic thin-film of cobalt iron alloy, and method for manufacturing quaternary alloy and plated magnetic thin-film of cobalt iron molybdenum alloy
US10002919B2 (en) High resistivity iron-based, thermally stable magnetic material for on-chip integrated inductors
US7641783B2 (en) Plating solution, process for producing a structure with the plating solution, and apparatus employing the plating solution
JP3201892B2 (en) Soft magnetic thin film and magnetic inductive MR head using the same
Takata et al. Electrodeposition of magnetic CoPd thin films: Influence of plating condition
JP3298930B2 (en) Manufacturing method of magnetic thin film
JP3102505B2 (en) Method for manufacturing soft magnetic multilayer plating film, soft magnetic multilayer plating film, and magnetic head
US6337007B1 (en) Method of making a Co-Fe-Ni soft magnetic thin film
JP3201763B2 (en) Soft magnetic thin film
JP3233963B2 (en) Magnetic thin film and method of manufacturing the same
JP3826323B2 (en) Manufacturing method of plated magnetic thin film
JP4811543B2 (en) Fabrication method of fine pattern
JP3514800B2 (en) Soft magnetic thin film and method of manufacturing the same
JPH04229607A (en) Magnetically soft thin film and its manufacture
JPH06251978A (en) Soft magnetic thin film and manufacture thereof
JP3431238B2 (en) Soft magnetic plating thin film and manufacturing method thereof
US20030136683A1 (en) Method for electroplating a body-centered cubic nickel-iron alloy thin film with a high saturation flux density
JPH0372611A (en) Electroless plated soft magnetic thin film
JPH08236349A (en) Soft magnetic thin film and thin film magnetic device formed thereof
JP4645784B2 (en) Soft magnetic thin film, manufacturing method thereof, and thin film magnetic head using the thin film
JPH0499303A (en) Soft magnetic thin film and its manufacture
JP4041948B2 (en) Soft magnetic thin film, manufacturing method thereof, and thin film magnetic head using the thin film
JP2007158091A (en) Method for producing soft magnetic thin film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11