JPH04286163A - Manufacture of semiconductor substrate - Google Patents

Manufacture of semiconductor substrate

Info

Publication number
JPH04286163A
JPH04286163A JP7473291A JP7473291A JPH04286163A JP H04286163 A JPH04286163 A JP H04286163A JP 7473291 A JP7473291 A JP 7473291A JP 7473291 A JP7473291 A JP 7473291A JP H04286163 A JPH04286163 A JP H04286163A
Authority
JP
Japan
Prior art keywords
layer
substrate
resistivity
semiconductor substrate
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7473291A
Other languages
Japanese (ja)
Inventor
Masayasu Katayama
正健 片山
Yutaka Ota
豊 太田
Yoshi Oki
好 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP7473291A priority Critical patent/JPH04286163A/en
Publication of JPH04286163A publication Critical patent/JPH04286163A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a semiconductor substrate easily with excellent productivity by stabilizing resistivity while preventing the generation of a nodule and a crown by precisely controlling the impurity concentration of each layer. CONSTITUTION:An n<+> layer 3 having resistivity of 0.05-0.5OMEGAcm as a buffer layer is formed onto one main surface of a single crystal silicon substrate 2 having resistivity of 30OMEGAcm or more through a diffusion method or a vapor growth method. Since the phosphorus concentration of the n<+> layer 3 is made considerably higher than that of the single crystal silicon substrate 2 at that time, the phosphorus concentration of the n<+> layer can be controlled precisely. A P<+> silicon layer 4 having resistivity of 0.1OMEGAcm or less lower than that of the n<+> layer 3 is formed onto n<+> 3 through the vapor growth method. The substrate acquired is polished until the surface of a P<+> silicon layer 4 is smoothed, and the single crystal silicon substrate 2 is machined through grinding and polishing until the thickness of the substrate 2 reaches 50-250mum, thus obtaining a semiconductor substrate 1 for an IGBT.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体基板の製造方法
に関し、より詳しくは、インバータ、小型電力変換装置
等に使用されるIGBT(Insulated  Ga
te  Bipolar  Transistor)用
に適した半導体基板の製造方法に関する。
[Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor substrate, and more particularly, to a method for manufacturing a semiconductor substrate, and more particularly, to a method for manufacturing a semiconductor substrate, and more particularly, the present invention relates to a method for manufacturing a semiconductor substrate.
The present invention relates to a method for manufacturing a semiconductor substrate suitable for a Bipolar Transistor.

【0002】0002

【従来の技術】IGBT(Insulated  Ga
te  Bipolar  Transistor)は
、パワーMOSFETの高速スイッチング特性及びバイ
ポーラトランジスタの高電力特性を備え、パワー半導体
素子として、例えば、インバータ及び小型電力変換装置
等に使用されている。
[Prior art] IGBT (Insulated Ga
The Bipolar Transistor has the high-speed switching characteristics of a power MOSFET and the high power characteristics of a bipolar transistor, and is used as a power semiconductor element in, for example, inverters and small power conversion devices.

【0003】IGBTの基本構造を図5に示す。その動
作原理は次の通りである。
FIG. 5 shows the basic structure of an IGBT. Its operating principle is as follows.

【0004】ゲートに正の電圧を印加するとゲート電極
5の下のpベース層7の表面にnチャネルが形成されn
− 層8に電子が流入する。その結果、p+ ドレイン
層10からn− 層8に正孔の注入が起こり、オン抵抗
は低下する。
When a positive voltage is applied to the gate, an n channel is formed on the surface of the p base layer 7 under the gate electrode 5.
- electrons flow into layer 8; As a result, holes are injected from the p+ drain layer 10 into the n- layer 8, and the on-resistance decreases.

【0005】このように、IGBTは低オン特性のすぐ
れたMOS入力形自己ターンオフ素子であるが、IGB
T実用化のポイントはオン抵抗を下げるために導入した
正孔を速やかに消滅させ高速動作をさせることにある。
As described above, the IGBT is a MOS input type self-turn-off device with excellent low on-state characteristics.
The key to putting T into practical use is to quickly eliminate the holes introduced to lower the on-resistance, thereby enabling high-speed operation.

【0006】この高速動作を実現させる手法としてn+
 バッファ層9の不純物濃度の精密コントロール技術に
よる正孔注入量の最適化が重要視されるようになってき
た。
[0006] As a method for realizing this high-speed operation, n+
Optimization of the amount of holes injected through precise control technology of the impurity concentration of the buffer layer 9 has become important.

【0007】IGBT用半導体基板は、従来、図6(a
)〜(c)に示すようにp+ シリコン基板11(例え
ばボロン濃度3.78×1018原子/cm3 )の裏
面からのボロンの気化を防止するために、該基板の裏面
をCVD酸化膜12で保護した後、n+ バッファ層1
3(例えばリン濃度7.84×1016原子/cm3 
)をエピタキシャル成長させ、次いでその上に低濃度の
n− 層14(例えばリン濃度4.5×1013原子/
cm3 )をエピタキシャル成長させて作製されている
Conventionally, a semiconductor substrate for IGBT is shown in FIG.
) to (c), in order to prevent boron from vaporizing from the back side of a p+ silicon substrate 11 (for example, boron concentration 3.78 x 1018 atoms/cm3), the back side of the substrate is protected with a CVD oxide film 12. After that, n+ buffer layer 1
3 (for example, phosphorus concentration 7.84 x 1016 atoms/cm3
) is epitaxially grown, and then a low concentration n- layer 14 (for example, a phosphorus concentration of 4.5 x 1013 atoms/
cm3) is produced by epitaxial growth.

【0008】[0008]

【発明が解決しようとする課題】ところが前述の方法で
は、■p+ シリコン基板に、より低濃度で反対導電型
のn+ バッファ層やn− 層をエピタキシャル成長法
により形成させているので、エピタキシャル成長開始時
にp+ シリコン基板の表面からドーパントであるボロ
ンが気化し、この気化したボロンが気相からn+ バッ
ファ層やn− 層に混入する、所謂オートドープが発生
するため、n+ バッファ層やn− 層の不純物濃度を
精密にコントロールすることができず、その結果、n+
 バッファ層やn− 層の抵抗率が変動し、また時には
n− 層が反対導電型のp型に反転することもあり得る
ので、良好な電気特性を有する半導体装置の製造が困難
となる。この他IGBT用半導体基板としては、n+ 
シリコン基板上にp+ バッファー層をエピタキシャル
成長させるp− /p+ /n+ 型も考えられるが、
この場合にも上記の場合すなわち、n− /n+ /p
+ 型の場合と同様に、n+ シリコン基板からのオー
トドーピング現象により、p+ ,p− 層の不純物濃
度を精密にコントロールできないという問題を生ずる。
However, in the above-mentioned method, ■ an n+ buffer layer or an n- layer of the opposite conductivity type with a lower concentration is formed on a p+ silicon substrate by epitaxial growth. Boron, which is a dopant, vaporizes from the surface of the silicon substrate, and this vaporized boron mixes into the n+ buffer layer and n- layer from the vapor phase, resulting in so-called autodoping, which reduces the impurity concentration of the n+ buffer layer and n- layer. cannot be precisely controlled, and as a result, n+
Since the resistivity of the buffer layer and the n- layer fluctuates, and sometimes the n- layer may be inverted to the opposite conductivity type, the p-type, it becomes difficult to manufacture a semiconductor device with good electrical characteristics. In addition, as a semiconductor substrate for IGBT, n+
A p-/p+/n+ type, in which a p+ buffer layer is epitaxially grown on a silicon substrate, is also considered.
In this case also the above case, that is, n- /n+ /p
As in the + type case, the autodoping phenomenon from the n+ silicon substrate causes the problem that the impurity concentrations of the p+ and p- layers cannot be precisely controlled.

【0009】また、■p+ シリコン基板11上にn+
 層やn− 層をエピタキシャル成長させる時、基板周
縁及び側端面のシリコン酸化膜17上にはノジュールと
称する多結晶の突起状異常成長が起こり、基板取り扱い
時にしばしばノジュールが破損分離し、エピタキシャル
成長層を傷付ける。
[0009] Also, n+ on the p+ silicon substrate 11
When a layer or an n- layer is grown epitaxially, abnormal growth of protruding polycrystals called nodules occurs on the silicon oxide film 17 at the periphery and side edges of the substrate, and when the substrate is handled, the nodules are often broken and separated, damaging the epitaxially grown layer. .

【0010】更に、■高品質のエピタキシャル成長層を
必要とするため成長速度が遅くなる等の欠点があった。
Furthermore, (1) it requires a high-quality epitaxial growth layer, resulting in a slow growth rate.

【0011】本発明は上記の点を解決しようとするもの
で、その目的は、ノジュールの発生がなく、かつ各層の
不純物濃度を精密コントロールすることにより抵抗率を
安定化し、さらに成長速度が速くかつ容易に製造できる
半導体基板の製造方法を提供することにある。
The present invention aims to solve the above-mentioned problems, and its purpose is to eliminate the generation of nodules, stabilize the resistivity by precisely controlling the impurity concentration of each layer, and further increase the growth rate. An object of the present invention is to provide a method for manufacturing a semiconductor substrate that can be easily manufactured.

【0012】0012

【課題を解決するための手段】本発明の半導体基板の製
造方法は、抵抗率が30Ωcm以上の単結晶シリコン基
板の一主表面上に拡散法または気相成長法によって、該
単結晶シリコン基板と同じ導電型を有し、抵抗率が0.
05〜0.5Ωcmである単結晶の第1シリコン層を形
成する工程と、次いで該第1シリコン層と逆の導電型を
有し、抵抗率が第1シリコン層より低く、かつその値が
0.1Ωcm以下の第2シリコン層を形成する工程と、
該単結晶シリコン基板を他方の主表面から所定の厚さま
で研削及び/または研磨加工する工程とを有することを
特徴とする。さらに、本発明は、上記の半導体基板の製
造方法の範疇に含まれ、n− /n+ /p+ の層構
成を有する半導体基板の製造方法を提供するものであり
、その製造方法は、リン濃度1014cm−3以下のn
型単結晶シリコン基板の一主表面上に拡散法または気相
成長法によって、リン濃度1016〜1018cm−3
のn型単結晶の第1シリコン層を形成する工程と、次い
で該第1シリコン層上に気相成長法にてホウ素濃度が1
018cm−3以上のp型の単結晶の第2シリコン層を
形成する工程と、該単結晶シリコン基板を他方の主表面
から所定の厚さまで研削、研磨加工する工程とを有する
ことを特徴としている。
[Means for Solving the Problems] The method for manufacturing a semiconductor substrate of the present invention involves forming a single crystal silicon substrate on one main surface of a single crystal silicon substrate having a resistivity of 30 Ωcm or more by a diffusion method or a vapor phase growth method. They have the same conductivity type and a resistivity of 0.
forming a single crystal first silicon layer having a conductivity type of 0.05 to 0.5 Ωcm, and then forming a single crystal first silicon layer having a conductivity type opposite to that of the first silicon layer, having a resistivity lower than that of the first silicon layer, and having a value of 0; .1 Ωcm or less of a second silicon layer;
The method is characterized by comprising a step of grinding and/or polishing the single crystal silicon substrate from the other main surface to a predetermined thickness. Furthermore, the present invention is included in the scope of the above-mentioned method for manufacturing a semiconductor substrate, and provides a method for manufacturing a semiconductor substrate having a layer structure of n-/n+/p+. -n less than or equal to 3
A phosphorus concentration of 1016 to 1018 cm-3 is deposited on one main surface of a type single-crystal silicon substrate by a diffusion method or a vapor phase growth method.
forming a first silicon layer of n-type single crystal, and then forming a boron concentration of 1 on the first silicon layer by vapor phase epitaxy.
The present invention is characterized by comprising a step of forming a p-type single crystal second silicon layer of 0.018 cm -3 or more, and a step of grinding and polishing the single crystal silicon substrate from the other main surface to a predetermined thickness. .

【0013】次に本発明を、図1に示すようなn− シ
リコン基板上にバッファ層としてn+ 層を形成し、最
後にp+ 層を積層した構造のIGBT用半導体基板1
を製造する場合を例にとり、詳細に説明する。なお、p
− /p+ /n+ 型の場合も以下の説明と略同様に
して製造することでできることはいうまでもない。
Next, the present invention is applied to a semiconductor substrate 1 for IGBT having a structure in which an n+ layer is formed as a buffer layer on an n- silicon substrate, and a p+ layer is finally laminated on the n- silicon substrate as shown in FIG.
This will be explained in detail by taking the case of manufacturing as an example. In addition, p
It goes without saying that the −/p+/n+ type can also be manufactured by substantially the same method as described below.

【0014】本発明の半導体基板の製造工程を図2(a
)〜(d)に示す。まず、厚さ400〜750μm、直
径100〜150mm、リン濃度1014cm−3以下
(抵抗率50Ωcm以上)の公知の方法にて鏡面にされ
たn− 単結晶シリコン基板2(図2(a))の一主表
面上に拡散法または気相成長法にてバッファ層である厚
さ3〜20μmで、リン濃度1016〜1018cm−
3(抵抗率0.025〜0.6Ωcm)のn+ 層3を
形成させる(図2(b))。このとき、気相成長法にお
いては、単結晶シリコン層となるようにn+ 層3をエ
ピタキシャル成長させる。
The manufacturing process of the semiconductor substrate of the present invention is shown in FIG. 2(a).
) to (d). First, an n- single-crystal silicon substrate 2 (FIG. 2(a)) with a thickness of 400 to 750 μm, a diameter of 100 to 150 mm, and a phosphorus concentration of 10 cm or less (resistivity of 50 Ω cm or more) is mirror-finished by a known method. A buffer layer with a thickness of 3 to 20 μm is formed on one main surface by diffusion method or vapor phase growth method, with a phosphorus concentration of 1016 to 1018 cm-
3 (resistivity: 0.025 to 0.6 Ωcm) (FIG. 2(b)). At this time, in the vapor phase growth method, the n+ layer 3 is epitaxially grown to become a single crystal silicon layer.

【0015】n+ 層3のリン濃度はn− 単結晶シリ
コン基板2のリン濃度よりも相当高いので、n+ 層3
を気相成長法で形成する際、従来法で問題となっている
オートドープの影響が全くなく、n+ 層3のリン濃度
を精密にコントロールすることができる。
Since the phosphorus concentration of the n+ layer 3 is considerably higher than that of the n- single crystal silicon substrate 2, the n+ layer 3
When forming the n+ layer 3 by vapor phase growth, there is no effect of autodoping, which is a problem in conventional methods, and the phosphorus concentration in the n+ layer 3 can be precisely controlled.

【0016】次に、n+ 層3上に気相成長法にて厚さ
100〜400μm、ホウ素濃度1018cm−3以上
(抵抗率0.025Ωcm以下)のp+ シリコン層4
を形成する(図2(c))。p+ シリコン層4は、高
品質を要求されないため、単結晶となる範囲でできるだ
け高速成長させることができる。またn+ 層3のリン
濃度はp+ シリコン層4のホウ素濃度よりも低いため
、p+シリコン層4の堆積開始時、n+ 層3の表面か
ら気化したリンによるオードトープの影響は無視できる
Next, a p+ silicon layer 4 with a thickness of 100 to 400 μm and a boron concentration of 1018 cm-3 or more (resistivity of 0.025 Ωcm or less) is formed on the n+ layer 3 by vapor phase growth.
(Fig. 2(c)). Since the p+ silicon layer 4 is not required to have high quality, it can be grown as fast as possible as long as it becomes a single crystal. Furthermore, since the phosphorus concentration in the n+ layer 3 is lower than the boron concentration in the p+ silicon layer 4, the influence of odetopes caused by phosphorus vaporized from the surface of the n+ layer 3 can be ignored when the p+ silicon layer 4 starts to be deposited.

【0017】また、本発明においては、n− 単結晶シ
リコン基板2の裏面および側面に酸化膜を設けなくても
裏面からのオートドープの心配がないため、従来の方法
に比べて工程数が短く、またポリシリコンの異常成長に
より生じるノジュールの発生がない。さらにn+ 層3
を拡散法にて形成すれば、従来よりもクラウンの発生を
抑えることができる。
Furthermore, in the present invention, there is no need to provide an oxide film on the back and side surfaces of the n- single crystal silicon substrate 2, and there is no fear of autodoping from the back surface, so the number of steps is shorter than in the conventional method. Also, no nodules are generated due to abnormal growth of polysilicon. Further n+ layer 3
If it is formed by a diffusion method, it is possible to suppress the occurrence of a crown compared to the conventional method.

【0018】最後に図2(c)で得られた基板をp+ 
シリコン層4を表面が平滑になるまで研磨した後、n−
 単結晶シリコン基板2を厚さが50〜250μmにな
るまで通常の研削、研磨方法により加工することにより
IGBT用半導体基板1を得ることができる。
Finally, the substrate obtained in FIG. 2(c) is p+
After polishing the silicon layer 4 until the surface becomes smooth, n-
The semiconductor substrate 1 for IGBT can be obtained by processing the single crystal silicon substrate 2 by a normal grinding and polishing method until the thickness becomes 50 to 250 μm.

【0019】[0019]

【実施例】次に本発明を実施例及び比較例を挙げて説明
する。 実施例 基板ウェーハとして、FZ法で作成された面方位(10
0)、リン濃度4.0×1013cm−3,抵抗率13
0Ωcm、直径125mm,初期厚さ625μmのn型
のシリコン基板を用い、縦型エピリアクターのサセプタ
上に並べた。水素雰囲気中で前記シリコン基板を115
0℃まで加熱し、その後トリクロロシラン5リットル/
min、H2 80リットル/minに加えて、水素希
釈のホスフィンガス0.2リットル/minを供給し、
2.0±0.1μm/minの成長速度で5分間堆積さ
せて層厚10±1μmのn+ バッファ層を形成した。 ホスフィンガスの添加量は、堆積されるシリコン層のリ
ン濃度が8.7×1016cm−3、抵抗率が0.10
±0.01Ωcmになるように調整した。
[Examples] Next, the present invention will be explained with reference to Examples and Comparative Examples. As an example substrate wafer, the surface orientation (10
0), phosphorus concentration 4.0 x 1013 cm-3, resistivity 13
N-type silicon substrates with a diameter of 0 Ωcm, a diameter of 125 mm, and an initial thickness of 625 μm were used and arranged on a susceptor of a vertical epireactor. The silicon substrate was heated at 115 in a hydrogen atmosphere.
Heat to 0°C, then add 5 liters of trichlorosilane/
In addition to H2 80 liters/min, supplying hydrogen-diluted phosphine gas 0.2 liters/min,
Deposition was performed for 5 minutes at a growth rate of 2.0±0.1 μm/min to form an n+ buffer layer with a layer thickness of 10±1 μm. The amount of phosphine gas added is such that the phosphorus concentration of the deposited silicon layer is 8.7 x 1016 cm-3 and the resistivity is 0.10.
It was adjusted to be ±0.01Ωcm.

【0020】n+ バッファ層を形成した後、基板の温
度を1150℃に保ったまま、水素雰囲気中で10分間
保持した後、トリクロロシラン10リットル/min,
H2 80リットル/minに加えて水素希釈のジボラ
ンガス0.5リットル/minを供給し、4.0±0.
2μm/minの成長速度で52分間堆積させて層厚2
10±10μmのp+ 層を形成した。ジボランガスの
添加量は、堆積されるシリコン層のホウ素濃度が2.2
×1019cm−3、抵抗率が0.005±0.001
Ωcmになるように調整した。
After forming the n+ buffer layer, the temperature of the substrate was kept at 1150° C. and held in a hydrogen atmosphere for 10 minutes, and then trichlorosilane was added at 10 liters/min.
In addition to 80 liters/min of H2, 0.5 liters/min of diborane gas diluted with hydrogen was supplied, and the temperature was 4.0±0.
Deposited for 52 minutes at a growth rate of 2 μm/min to obtain a layer thickness of 2
A p+ layer of 10±10 μm was formed. The amount of diborane gas added is such that the boron concentration of the deposited silicon layer is 2.2.
×1019cm-3, resistivity 0.005±0.001
Adjusted to Ωcm.

【0021】縦型エピリアクターから取り出した後、p
+ 層の表面を10μm研磨し、平滑にした後、n型の
シリコン基板を厚さ190μmまで研削、研磨すること
により全体の厚さが410μmのIGBT用半導体基板
を得た。得られた半導体基板の各層の厚さと濃度の関係
をSR法で測定した。その結果を図3に示す。
After being removed from the vertical epireactor, p
After the surface of the + layer was polished by 10 μm to make it smooth, the n-type silicon substrate was ground and polished to a thickness of 190 μm to obtain a semiconductor substrate for IGBT having a total thickness of 410 μm. The relationship between the thickness and concentration of each layer of the obtained semiconductor substrate was measured by the SR method. The results are shown in FIG.

【0022】図3よりオートドープの発生がなく、リン
やホウ素の不純物濃度が一定で、各層の抵抗率が安定し
ていることがわかる。
It can be seen from FIG. 3 that no autodoping occurs, the impurity concentrations of phosphorus and boron are constant, and the resistivity of each layer is stable.

【0023】比較例 基板ウェーハとして、CZ法で作成された面方位(10
0)、ホウ素濃度2.0×1019cm−3、抵抗率0
.005Ωcm、直径125mm、初期厚さ550μm
のp型のシリコン基板の裏面にCVDシリコン酸化膜1
μmを堆積させた基板を用い、縦型エピリアクターのサ
セプタ上に並べた。水素雰囲気中で前記シリコン基板を
1130℃まで加熱し、その後トリクロロシラン3リッ
トル/min、H2 80リットル/minに加えて、
水素希釈のホスフィンガス0.2リットル/minを供
給し、1.0±0.01μm/minの成長速度で10
分間堆積させて層厚10±1μmのn+ バッファ層を
形成した。ホスフィンガスの添加量は、堆積されるシリ
コン層のリン濃度が8.7×1016cm−3、抵抗率
が0.10±0.01Ωcmになるように調整した。
As a comparative example substrate wafer, a surface orientation (10
0), boron concentration 2.0 x 1019 cm-3, resistivity 0
.. 005Ωcm, diameter 125mm, initial thickness 550μm
CVD silicon oxide film 1 on the back side of the p-type silicon substrate.
A substrate on which micrometers were deposited was used and arranged on a susceptor of a vertical epireactor. The silicon substrate was heated to 1130° C. in a hydrogen atmosphere, and then trichlorosilane was added at 3 liters/min and H2 at 80 liters/min.
Supply 0.2 liters/min of phosphine gas diluted with hydrogen, and grow at a growth rate of 1.0 ± 0.01 μm/min for 10
An n+ buffer layer with a layer thickness of 10±1 μm was formed by depositing for 1 minute. The amount of phosphine gas added was adjusted so that the phosphorus concentration of the deposited silicon layer was 8.7×10 16 cm −3 and the resistivity was 0.10±0.01 Ωcm.

【0024】第1のn+ バッファ層を形成した後、基
板の温度を1130℃に保ったまま水素雰囲気中で10
分間保持した後、トリクロロシラン3リットル/min
、H2 80リットル/minに加えて水素希釈のホス
フィンガス0.01リットル/minを供給し、1.0
±0.01μm/minの成長速度で110分間堆積さ
せて層厚110±10μmの第2のn型シリコン層を形
成した。ホスフィンガスの添加量は、堆積されるシリコ
ン層のリン濃度が5.2×1013cm−3、抵抗率が
100±10Ωcmになるように調整した。得られたI
GBT用半導体基板の各層の厚さと正味の濃度の関係を
SR法で測定した。その結果を図4に示す。
After forming the first n+ buffer layer, the substrate was heated for 10 minutes in a hydrogen atmosphere while keeping the temperature of the substrate at 1130°C.
After holding for a minute, trichlorosilane 3 liters/min
, 80 liters/min of H2 and 0.01 liter/min of phosphine gas diluted with hydrogen were supplied,
The second n-type silicon layer was deposited for 110 minutes at a growth rate of ±0.01 μm/min to form a second n-type silicon layer with a layer thickness of 110±10 μm. The amount of phosphine gas added was adjusted so that the deposited silicon layer had a phosphorus concentration of 5.2×10 13 cm −3 and a resistivity of 100±10 Ωcm. Obtained I
The relationship between the thickness of each layer of the GBT semiconductor substrate and the net concentration was measured using the SR method. The results are shown in FIG.

【0025】図4より、エピタキシャル成長開始時にお
けるp型シリコン基板表面からのボロンのオードトープ
の影響が観測され、n+ 層およびn− 層中の正味の
リン濃度が安定せずその結果、両層の抵抗率が変動した
From FIG. 4, it is observed that the influence of boron odetopes from the surface of the p-type silicon substrate at the start of epitaxial growth is observed, and the net phosphorus concentration in the n+ and n- layers is not stabilized, resulting in a decrease in the resistance of both layers. The rate fluctuated.

【発明の効果】以上の説明で明らかなように,本発明の
半導体基板の製造方法によれば、各層の不純物濃度を精
密にコントロールすることができるので抵抗率を安定さ
せることができ、かつノジュールやクラウンの発生を防
止でき、容易にかつ生産性良好に、殊にIGBTの用途
に適した半導体基板を製造することが可能となる。
[Effects of the Invention] As is clear from the above explanation, according to the method of manufacturing a semiconductor substrate of the present invention, it is possible to precisely control the impurity concentration of each layer, so that the resistivity can be stabilized, and the nodule It is possible to prevent the occurrence of crowns and crowns, and to manufacture a semiconductor substrate particularly suitable for IGBT applications easily and with good productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の半導体基板の断面図である。FIG. 1 is a cross-sectional view of a semiconductor substrate of the present invention.

【図2】本発明の半導体基板の製造工程を示す断面図で
ある。
FIG. 2 is a cross-sectional view showing the manufacturing process of the semiconductor substrate of the present invention.

【図3】実施例で得られたIGBT用半導体基板の不純
物濃度プロファイルを示すグラフである。
FIG. 3 is a graph showing an impurity concentration profile of an IGBT semiconductor substrate obtained in an example.

【図4】比較例で得られたIGBT用半導体基板の不純
物濃度プロファイルを示すグラフである。
FIG. 4 is a graph showing an impurity concentration profile of an IGBT semiconductor substrate obtained in a comparative example.

【図5】IGBTの基本構造の断面図である。FIG. 5 is a cross-sectional view of the basic structure of an IGBT.

【図6】従来のIGBT用半導体基板の製造工程を示す
断面図である。
FIG. 6 is a cross-sectional view showing the manufacturing process of a conventional semiconductor substrate for IGBT.

【符号の説明】[Explanation of symbols]

1  IGBT用半導体基板 2  n− シリコン基板 3  n+ バッファ層(第1シリコン層)4  p+
 シリコン層(第2シリコン層)5  ゲート電極 6  ソース電極 7  pベース層 8  n− シリコン層 9  n+ バッファ層 10  p+ ドレイン層 11  p+ シリコン基板 12  CVDシリコン酸化膜 13  n+ バッファ層 14  n− シリコン層
1 Semiconductor substrate for IGBT 2 n- Silicon substrate 3 n+ Buffer layer (first silicon layer) 4 p+
Silicon layer (second silicon layer) 5 Gate electrode 6 Source electrode 7 P base layer 8 n- Silicon layer 9 n+ Buffer layer 10 p+ Drain layer 11 p+ Silicon substrate 12 CVD silicon oxide film 13 n+ Buffer layer 14 n- Silicon layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  抵抗率が30Ωcm以上の単結晶シリ
コン基板の一主表面上に拡散法または気相成長法によっ
て、該単結晶シリコン基板と同じ導電型を有し、抵抗率
が0.05〜0.5Ωcmである単結晶の第1シリコン
層を形成する工程と、次いで該第1シリコン層と逆の導
電型を有し、抵抗率が第1シリコン層より低く、かつそ
の値が0.1Ωcm以下の第2シリコン層を形成する工
程と、該単結晶シリコン基板を他方の主表面から所定の
厚さまで研削及び/または研磨加工する工程とを有する
ことを特徴とする半導体基板の製造方法。
Claim: 1. A material having the same conductivity type as the single crystal silicon substrate and having a resistivity of 0.05 to 0.05 is deposited on one main surface of a single crystal silicon substrate having a resistivity of 30 Ωcm or more by a diffusion method or a vapor phase growth method. forming a single-crystal first silicon layer having a resistivity of 0.5 Ωcm, and then having a conductivity type opposite to that of the first silicon layer, having a resistivity lower than that of the first silicon layer, and having a resistivity of 0.1 Ωcm; A method for manufacturing a semiconductor substrate, comprising the following steps of forming a second silicon layer, and grinding and/or polishing the single crystal silicon substrate from the other main surface to a predetermined thickness.
【請求項2】  リン濃度1014cm−3以下のn型
単結晶シリコン基板の一主表面上に拡散法または気相成
長法によって、リン濃度1016〜1018cm−3の
n型単結晶の第1シリコン層を形成する工程と、次いで
該第1シリコン層上に気相成長法にてホウ素濃度が10
18cm−3以上のp型の単結晶の第2シリコン層を形
成する工程と、該単結晶シリコン基板を他方の主表面か
ら所定の厚さまで研削及び/または研磨加工する工程と
を有することを特徴とする半導体基板の製造方法。
2. An n-type single-crystal first silicon layer with a phosphorus concentration of 1016 to 1018 cm-3 is formed on one main surface of an n-type single-crystal silicon substrate with a phosphorus concentration of 1016 to 1018 cm-3 by a diffusion method or a vapor phase growth method. and then a step of forming a boron concentration of 10 on the first silicon layer by vapor phase epitaxy.
It is characterized by comprising a step of forming a p-type single crystal second silicon layer with a thickness of 18 cm or more, and a step of grinding and/or polishing the single crystal silicon substrate from the other main surface to a predetermined thickness. A method for manufacturing a semiconductor substrate.
JP7473291A 1991-03-14 1991-03-14 Manufacture of semiconductor substrate Pending JPH04286163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7473291A JPH04286163A (en) 1991-03-14 1991-03-14 Manufacture of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7473291A JPH04286163A (en) 1991-03-14 1991-03-14 Manufacture of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH04286163A true JPH04286163A (en) 1992-10-12

Family

ID=13555700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7473291A Pending JPH04286163A (en) 1991-03-14 1991-03-14 Manufacture of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH04286163A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0702401A3 (en) * 1994-08-31 1996-07-10 Shinetsu Handotai Kk Method for producing a semiconductor substrate suitable for IGBTs
DE19829614A1 (en) * 1998-07-02 2000-01-13 Semikron Elektronik Gmbh Method for producing a power semiconductor component
WO2002061845A1 (en) * 2001-02-01 2002-08-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
JP2004165619A (en) * 2002-09-26 2004-06-10 Mitsubishi Electric Corp Semiconductor substrate and manufacturing method thereof, and semiconductor device and manufacturing method thereof
CN102054690A (en) * 2010-11-22 2011-05-11 复旦大学 Manufacturing method of semiconductor substrate of high-power device
JP2013030539A (en) * 2011-07-27 2013-02-07 Hitachi Ltd Power semiconductor device, method of manufacturing power semiconductor device, and power conversion device
US20190347894A1 (en) * 2015-11-19 2019-11-14 Angel Playing Cards Co., Ltd. Table game management system and game token

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143474A (en) * 1984-08-08 1986-03-03 Toshiba Corp Semiconductor device
JPS63205954A (en) * 1987-02-23 1988-08-25 Meidensha Electric Mfg Co Ltd Semiconductor device
JPS63260176A (en) * 1987-04-17 1988-10-27 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPH021985A (en) * 1988-06-10 1990-01-08 Mitsubishi Electric Corp Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143474A (en) * 1984-08-08 1986-03-03 Toshiba Corp Semiconductor device
JPS63205954A (en) * 1987-02-23 1988-08-25 Meidensha Electric Mfg Co Ltd Semiconductor device
JPS63260176A (en) * 1987-04-17 1988-10-27 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPH021985A (en) * 1988-06-10 1990-01-08 Mitsubishi Electric Corp Manufacture of semiconductor device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696034A (en) * 1994-08-31 1997-12-09 Shin-Etsu Handotai Co., Ltd. Method for producing semiconductor substrate
EP0702401A3 (en) * 1994-08-31 1996-07-10 Shinetsu Handotai Kk Method for producing a semiconductor substrate suitable for IGBTs
DE19829614B4 (en) * 1998-07-02 2004-09-23 Semikron Elektronik Gmbh Method for producing a power semiconductor component
DE19829614A1 (en) * 1998-07-02 2000-01-13 Semikron Elektronik Gmbh Method for producing a power semiconductor component
US6815767B2 (en) 2001-02-01 2004-11-09 Mitsubishi Denki Kabushiki Kaisha Insulated gate transistor
JPWO2002061845A1 (en) * 2001-02-01 2004-06-03 三菱電機株式会社 Semiconductor device and manufacturing method thereof
EP1271654A1 (en) * 2001-02-01 2003-01-02 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
WO2002061845A1 (en) * 2001-02-01 2002-08-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US7250345B2 (en) 2001-02-01 2007-07-31 Mitsubishi Denki Kabushiki Kaisha Insulated gate transistor
EP1271654A4 (en) * 2001-02-01 2008-11-05 Mitsubishi Electric Corp Semiconductor device and method of manufacturing the same
US7560771B2 (en) 2001-02-01 2009-07-14 Mitsubishi Denki Kabushiki Kaisha Insulated gate transistor
JP5025071B2 (en) * 2001-02-01 2012-09-12 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP2004165619A (en) * 2002-09-26 2004-06-10 Mitsubishi Electric Corp Semiconductor substrate and manufacturing method thereof, and semiconductor device and manufacturing method thereof
CN102054690A (en) * 2010-11-22 2011-05-11 复旦大学 Manufacturing method of semiconductor substrate of high-power device
JP2013030539A (en) * 2011-07-27 2013-02-07 Hitachi Ltd Power semiconductor device, method of manufacturing power semiconductor device, and power conversion device
US20190347894A1 (en) * 2015-11-19 2019-11-14 Angel Playing Cards Co., Ltd. Table game management system and game token
US11783665B2 (en) 2015-11-19 2023-10-10 Angel Group Co., Ltd. Table game management system and game token

Similar Documents

Publication Publication Date Title
JP3650727B2 (en) Silicon carbide manufacturing method
US8803160B2 (en) Lightly doped silicon carbide wafer and use thereof in high power devices
CN102157359B (en) Method for manufacturing 6-inch POWERMOS transistor epitaxial layer
JP2009088223A (en) Silicon carbide semiconductor substrate and silicon carbide semiconductor device using the same
WO2001018872A1 (en) SiC WAFER, SiC SEMICONDUCTOR DEVICE, AND PRODUCTION METHOD OF SiC WAFER
JP4224253B2 (en) Semiconductor device and manufacturing method thereof
JP2000319099A (en) SiC WAFER, SiC SEMICONDUCTOR DEVICE AND PRODUCTION OF SiC WAFER
JPH04230037A (en) Vapor application method of n-type silicon layer, npn transistor
JP3197803B2 (en) Semiconductor manufacturing method with few dislocation defects
TW200525053A (en) Process for producing highly doped semiconductor wafers, and dislocation-free, highly doped semiconductor wafers
US9590047B2 (en) SiC bipolar junction transistor with reduced carrier lifetime in collector and a defect termination layer
JPH0383332A (en) Manufacture of silicon carbide semiconductor device
WO2018185850A1 (en) Manufacturing method for silicon carbide epitaxial wafer and manufacturing method for silicon carbide semiconductor device
JPH04286163A (en) Manufacture of semiconductor substrate
JP2911694B2 (en) Semiconductor substrate and method of manufacturing the same
US8728877B2 (en) Method for manufacturing silicon carbide semiconductor device with a single crystal substrate
JP2004343133A (en) Manufacturing method of silicon carbide, silicon carbide, and semiconductor device
JPH04245419A (en) Manufacture of semiconductor substrate
KR20090017074A (en) Method for deposition epitaxial silicon layer
JP4329211B2 (en) Silicon carbide semiconductor device using silicon carbide single crystal and method for manufacturing the same
JPH0249422A (en) Manufacture of silicon carbide semiconductor device
JPH0435019A (en) Thin film transistor
JP3465765B2 (en) Method for manufacturing semiconductor substrate for IGBT
JPH04373179A (en) Voltage regulator diode
JPH02291123A (en) Silicon carbide semiconductor device