JPH04268331A - Production of self-doping conductive polymer - Google Patents

Production of self-doping conductive polymer

Info

Publication number
JPH04268331A
JPH04268331A JP5030391A JP5030391A JPH04268331A JP H04268331 A JPH04268331 A JP H04268331A JP 5030391 A JP5030391 A JP 5030391A JP 5030391 A JP5030391 A JP 5030391A JP H04268331 A JPH04268331 A JP H04268331A
Authority
JP
Japan
Prior art keywords
self
doping
conductive polymer
product
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5030391A
Other languages
Japanese (ja)
Inventor
Kentaro Ueishi
健太郎 上石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP5030391A priority Critical patent/JPH04268331A/en
Publication of JPH04268331A publication Critical patent/JPH04268331A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title polymer having self-doping properties and improved stability, etc., by oxidatively polymerizing (a salt of) 2-or 3-carboxyaniline and treating the product with a basic substance to produce a product comprising specified repeating units. CONSTITUTION:(A salt of) 2-or 3-carboxyaniline (A) (e.g. anthranilic acid) is oxidatively polymerized in an aqueous medium in the presence of 2-10 equivalents, per equivalent of component A, of an oxidizing agent (e.g. ammonium persulfate), and the product is treated with a basic substance (e.g. sodium hydroxide) to obtain the title polymer comprising repeating units of the formula [wherein M is a proton, an alkali (alkaline earth) metal cation or an ammonium cation; and m is 1-2].

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、自己ドーピング機能を
有する導電性重合体の製造方法に関し、さらに詳しくは
、プラスチック電極の電極材料、EMI材料、有機強磁
性体材料、各種センサー等に有用な自己ドーピング機能
を有する導電性重合体の製造方法に関する。
[Field of Industrial Application] The present invention relates to a method for producing a conductive polymer having a self-doping function, and more specifically, it is useful for electrode materials for plastic electrodes, EMI materials, organic ferromagnetic materials, various sensors, etc. The present invention relates to a method for producing a conductive polymer having a self-doping function.

【0002】0002

【従来の技術】従来知られている導電性高分子物質は、
一般に不溶不融のものであって、加工性に乏しいもので
あったが、近年、重合性複素環化合物、例えば長鎖のア
ルキル基、ケトン基、エーテル基等の置換基を有するチ
オフェン、ピロール或いはアニリン等より形成された有
機溶剤に可溶な重合体が報告されている。しかしながら
、これらの導電性重合体は、アクセプター又はドナーに
よるドーピング操作により、重合体を導電性にするもの
であるため、ドーピングおよび脱ドーピング操作が迅速
に行えず、ドーピング効率が低いという問題があり、ま
た、多段の反応工程を必要とするため、煩雑かつ収率が
低いという問題を有している。また、ポリアニリンの場
合は、空気中で安定であり、フィルム形成が可能である
が、導電性が100 〜101 S/cm程度であって
、ドーピング操作が必要である。これを改善する目的で
、自己ドーピング機能を有する重合体も提案されており
、例えば、特開平2−189333号および同2−24
7219号公報、J.Am.Chem.Soc.,10
9,  1858(1987)等には、チオフェン誘導
体より形成されたものが記載されている。
[Prior Art] Conventionally known conductive polymer substances are
Generally, they are insoluble and infusible and have poor processability, but in recent years, polymerizable heterocyclic compounds such as thiophene, pyrrole, and Organic solvent-soluble polymers formed from aniline and the like have been reported. However, since these conductive polymers are made conductive by a doping operation using an acceptor or a donor, there is a problem that doping and dedoping operations cannot be performed quickly and doping efficiency is low. Moreover, since it requires multiple reaction steps, it has the problem of being complicated and having a low yield. Further, in the case of polyaniline, it is stable in air and can be formed into a film, but the conductivity is about 100 to 101 S/cm and a doping operation is required. In order to improve this, polymers with self-doping functions have been proposed, for example, JP-A-2-189333 and JP-A-2-24.
Publication No. 7219, J. Am. Chem. Soc. ,10
9, 1858 (1987) etc., those formed from thiophene derivatives are described.

【0003】0003

【発明が解決しようとする課題】自己ドーピング機能を
有する導電体は、ドーピングを行う必要がないなどの利
点があるため、その開発が望まれているが、従来提案さ
れているものは、製造工程が繁雑で、収率が低かったり
、加工性が劣ったり、長期安定性、電導性等の物性の点
で未だ満足のいくものではなく、新規な材料の開発が望
まれている。本発明は、この様な実情に鑑みてなされた
ものである。したがって、本発明の目的は、従来の自己
ドーピング機能を有する重合体の製造方法の欠点を克服
し、従来の製造方法よりも簡単で、高収率かつ安価に、
高分子量の自己ドーピング機能を有する新規な導電性重
合体を製造する方法を提供することにある。本発明の他
の目的は、優れた長期安定性を有し、π共役系を有する
電子伝導性とイオン伝導性をもち、極性の有機溶媒に可
溶であり、高導電性フィルムの成形が可能な性自己ドー
ピング機能を有する導電性重合体を製造する方法を提供
することにある。
[Problems to be Solved by the Invention] Conductors with self-doping functions have advantages such as not requiring doping, and are desired to be developed. The process is complicated, the yield is low, the processability is poor, and the physical properties such as long-term stability and conductivity are still unsatisfactory, so the development of new materials is desired. The present invention has been made in view of these circumstances. Therefore, the purpose of the present invention is to overcome the drawbacks of the conventional method for producing polymers with self-doping function, and to do so in a simpler, higher yield and cheaper manner than the conventional production method.
The object of the present invention is to provide a method for producing a novel conductive polymer having a high molecular weight and self-doping function. Other objects of the present invention are that it has excellent long-term stability, has electronic conductivity and ionic conductivity with a π-conjugated system, is soluble in polar organic solvents, and can be formed into a highly conductive film. An object of the present invention is to provide a method for producing a conductive polymer having a unique self-doping function.

【0004】0004

【課題を解決するための手段】本発明の構成上の特徴は
、下記式(I)で示される繰返し単位よりなる自己ドー
ピング機能を有する導電体の製造方法であって、2−ま
たは3−カルボキシアニリンまたはその塩を酸化重合さ
せ、次いで塩基性物質で処理することを特徴とする。 (式中、Mは、プロトン、アルカリ金属カチオン、アル
カリ土類金属カチオンまたはアンモニウムカチオンを表
わし、mは1又は2である。)
[Means for Solving the Problems] A structural feature of the present invention is a method for producing a conductor having a self-doping function consisting of a repeating unit represented by the following formula (I), which comprises a 2- or 3-carboxyl It is characterized by oxidative polymerization of aniline or its salt, and then treatment with a basic substance. (In the formula, M represents a proton, an alkali metal cation, an alkaline earth metal cation, or an ammonium cation, and m is 1 or 2.)

【0005】以下、本発明について詳細に説明する。本
発明における原料は、2−または3−カルボキシアニリ
ンまたはその塩が使用され、具体的には、アントラニル
酸、3−アミノ安息香酸、アントラニル酸ナトリウム、
3−アミノ安息香酸ナトリウム等があげられる。酸化重
合は、2−または3−カルボキシアニリンまたはその塩
を、水性媒質中において酸化剤の存在下に反応させるこ
とによって実施される。酸化剤としては、例えば過硫酸
アンモニウム、塩化第2鉄等があげられ、その使用量は
、原料に対して2〜10倍当量の範囲が好ましい。酸化
剤の使用量が2倍当量未満の場合には、重合がオリゴマ
ー段階で停止し、高分子量の重合体が得られなくなる。
The present invention will be explained in detail below. The raw material used in the present invention is 2- or 3-carboxyaniline or a salt thereof, and specifically, anthranilic acid, 3-aminobenzoic acid, sodium anthranilate,
Examples include sodium 3-aminobenzoate. Oxidative polymerization is carried out by reacting 2- or 3-carboxyaniline or a salt thereof in an aqueous medium in the presence of an oxidizing agent. Examples of the oxidizing agent include ammonium persulfate and ferric chloride, and the amount used is preferably 2 to 10 equivalents relative to the raw material. If the amount of the oxidizing agent used is less than two equivalents, the polymerization will stop at the oligomer stage, making it impossible to obtain a high molecular weight polymer.

【0006】酸化重合によって得られた重合体は、上記
式(I)におけるMが酸化剤の遷移金属イオンに変換さ
れたものとなっているので、過剰の塩基性物質を作用さ
せることによって置換させる。例えば、アルカリ金属お
よびアルカリ土類金属の水酸化物、炭酸ナトリウムおよ
び炭酸水素ナトリウム等のアルカリ金属の炭酸塩類、ア
ンモニアおよびトリエチルアミン、ピリジンなどの有機
アミン類等を添加することによって、遷移金属イオンを
対応するアルカリ金属カチオン、アルカリ土類金属カチ
オン、アンモニウムカチオンに変換され、遷移金属は水
酸化物となって沈澱する。次に、沈澱物を濾過によって
除去し、濾液をカチオン型イオン交換樹脂(例えば、ア
ンバーライトIR−120等)に通し、イオン交換を施
す。それにより、式(I)におけるMがプロトンに変換
されたものが得られる。さらに、液中に微量含まれてい
る遷移金属イオンも捕獲されて除去される。処理後のポ
リマー水溶液を乾固することにより、式(I)における
Mがプロトンである自己ドーピング機能を有する高分子
量の導電体が製造できる。また、プロトン型イオン交換
樹脂処理後の水溶液を、目的とするアルカリ金属(例え
ば、Li、Na、K)イオン、アルカリ土類金属(例え
ば、Mg、Ca)イオン、またはアンモニウムイオンに
交換したイオン交換樹脂に通した後、ポリマーの貧溶媒
(例えば、メタノール、エタノールおよびアセトン等の
有機溶媒)を用いて再沈澱処理し、析出した沈澱物を濾
取することによって、式(I)におけるMがアルカリ金
属カチオン、アルカリ土類金属カチオンまたはアンモニ
ウムカチオンに変換された自己ドーピング機能を有する
高分子量の導電体が製造される。
[0006] In the polymer obtained by oxidative polymerization, M in the above formula (I) has been converted to a transition metal ion as an oxidizing agent, so it can be replaced by the action of an excess basic substance. . For example, transition metal ions can be treated by adding alkali metal and alkaline earth metal hydroxides, alkali metal carbonates such as sodium carbonate and sodium bicarbonate, ammonia and organic amines such as triethylamine and pyridine. The transition metals are converted into alkali metal cations, alkaline earth metal cations, and ammonium cations, and the transition metals precipitate as hydroxides. Next, the precipitate is removed by filtration, and the filtrate is passed through a cationic ion exchange resin (eg, Amberlite IR-120) to perform ion exchange. Thereby, a compound in which M in formula (I) is converted to a proton is obtained. Furthermore, transition metal ions contained in trace amounts in the liquid are also captured and removed. By drying the treated polymer aqueous solution, a high molecular weight conductor having a self-doping function in which M in formula (I) is a proton can be produced. In addition, ion exchange in which the aqueous solution treated with a proton type ion exchange resin is exchanged with the target alkali metal (e.g., Li, Na, K) ion, alkaline earth metal (e.g., Mg, Ca) ion, or ammonium ion After passing through the resin, reprecipitation is performed using a poor solvent for the polymer (for example, an organic solvent such as methanol, ethanol, and acetone), and the precipitate is collected by filtration to convert M in formula (I) into an alkali. High molecular weight electrical conductors with self-doping functionality converted into metal cations, alkaline earth metal cations or ammonium cations are produced.

【0007】本発明によって製造される導電性重合体は
、加圧成形によって所望の成形品を製造することが可能
である。また、適当な極性用材に溶解し、キャスト成形
体を得ることも可能である。
[0007] The conductive polymer produced according to the present invention can be molded into desired molded articles by pressure molding. It is also possible to obtain a cast molded product by dissolving it in a suitable polar material.

【0008】[0008]

【実施例】以下、本発明を実施例によって詳記するが、
本発明はこれらによって限定されるものではない。 実施例1 水100mlに12N塩酸5mlを入れ、アントラニル
酸3.43gを溶解させた。酸化剤溶液として過硫酸ア
ンモニウム22.7g(モノマーに対して4当量)を水
100mlに溶解し、これを窒素気流下、上記アントラ
ニル酸溶液に添加した。室温で4日間攪拌し、得られた
酸化重合体を濾別し、室温で減圧乾燥して、黒色粉末2
.66gを得た(ηinch=0.2 in NMP)
。得られた粉末を乳鉢で十分粉砕した後、直径10mm
のディスク状に加圧成形した。4端子法により、その電
導度を測定したところ、1.78×10−3S/cmで
あった。
[Examples] The present invention will be described in detail by examples below.
The present invention is not limited to these. Example 1 5 ml of 12N hydrochloric acid was added to 100 ml of water, and 3.43 g of anthranilic acid was dissolved therein. As an oxidizing agent solution, 22.7 g of ammonium persulfate (4 equivalents relative to the monomer) was dissolved in 100 ml of water, and this was added to the above anthranilic acid solution under a nitrogen stream. After stirring at room temperature for 4 days, the obtained oxidized polymer was filtered and dried under reduced pressure at room temperature to obtain black powder 2.
.. Obtained 66g (ηinch=0.2 in NMP)
. After thoroughly crushing the obtained powder in a mortar, it was made into a powder with a diameter of 10 mm.
Pressure molded into a disk shape. When its electrical conductivity was measured by the four-terminal method, it was found to be 1.78 x 10-3 S/cm.

【0009】実施例2 実施例1で用いたアントラニル酸の代わりに、m−アミ
ノ安息香酸を用いた以外は、実施例1と同様にして重合
を行い、酸化重合体1.42gを得た(ηinch=0
.3 in NMP)。加圧成形で得られたディスクの
電導度は、5.31×10−3S/cmであった。
Example 2 Polymerization was carried out in the same manner as in Example 1, except that m-aminobenzoic acid was used instead of the anthranilic acid used in Example 1, and 1.42 g of an oxidized polymer was obtained ( ηinch=0
.. 3 in NMP). The electrical conductivity of the disk obtained by pressure molding was 5.31×10 −3 S/cm.

【0010】実施例3 水100mlに、アントラニル酸ナトリウム4gを溶解
させ、過硫酸アンモニウム22.7g(モノマーに対し
て4当量)を水100mlに溶解し、これを上記のアン
トラニル酸塩水溶液に添加した。室温で1日間反応させ
、得られた酸化重合体を濾別し、室温で減圧乾燥して、
黒色粉末2.54gを得た。この粉末を100mlの蒸
留水に懸濁した後、0.1N−NaOH水溶液400m
lを激しく攪拌しながら加えた。混合液の色は濃褐色に
変化した。これをプロトンイオン交換樹脂に通し、濃縮
乾固し、得られた残留物を少量の水に溶解し、30ミリ
モルのNaOHメタノール溶液により再沈殿させ、沈殿
を濾別し、乾燥した。それにより1.21gのナトリウ
ム型の自己ドーピング機能を有する重合体が得られた(
ηinch=0.1 in NMP)。加圧成形で得ら
れたディスクの電導度は、3.82×10−3S/cm
であった。
Example 3 4 g of sodium anthranilate was dissolved in 100 ml of water, and 22.7 g of ammonium persulfate (4 equivalents relative to the monomer) was dissolved in 100 ml of water, and these were added to the above aqueous anthranilate solution. The reaction was carried out at room temperature for 1 day, and the obtained oxidized polymer was filtered and dried under reduced pressure at room temperature.
2.54 g of black powder was obtained. After suspending this powder in 100 ml of distilled water, 400 ml of 0.1N-NaOH aqueous solution was added.
1 was added with vigorous stirring. The color of the mixture changed to dark brown. This was passed through a proton ion exchange resin and concentrated to dryness. The resulting residue was dissolved in a small amount of water, reprecipitated with a 30 mmol NaOH methanol solution, and the precipitate was filtered and dried. As a result, 1.21 g of a polymer with self-doping function in the sodium form was obtained (
ηinch=0.1 in NMP). The electrical conductivity of the disk obtained by pressure molding is 3.82 x 10-3 S/cm
Met.

【0011】[0011]

【発明の効果】本発明によれば、自己ドーピング機能を
有するポリアニリンを簡単な方法で高収率で得ることが
できる。また、得られた自己ドーピング機能を有するポ
リアニリンは、水溶性高分子の特徴を有し、π電子系を
介する電子伝導性とイオン伝導性を有する導電性ポリマ
ーであって、キャスト法により、暗青色の高導電性ポリ
マーフィルムとなる。更に、プラスチック電極の電極材
料、EMI材料、有機強磁性材料、各種センサー等に適
用することができる。
According to the present invention, polyaniline having a self-doping function can be obtained in high yield by a simple method. In addition, the obtained polyaniline with self-doping function has the characteristics of a water-soluble polymer, and is a conductive polymer with electronic conductivity and ionic conductivity via the π electron system. It becomes a highly conductive polymer film. Furthermore, it can be applied to electrode materials for plastic electrodes, EMI materials, organic ferromagnetic materials, various sensors, etc.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  2−または3−カルボキシアニリンま
たはその塩を酸化重合し、次いで、塩基性物質で処理す
ることを特徴とする下記式(I)で示される繰返し単位
よりなる自己ドーピング機能を有する導電性重合体の製
造方法。 (式中、Mは、プロトン、アルカリ金属カチオン、アル
カリ土類金属カチオンまたはアンモニウムカチオンを表
わし、mは1又は2である。)
Claim 1: A product having a self-doping function consisting of a repeating unit represented by the following formula (I), characterized in that 2- or 3-carboxyaniline or a salt thereof is oxidatively polymerized and then treated with a basic substance. Method for producing conductive polymer. (In the formula, M represents a proton, an alkali metal cation, an alkaline earth metal cation, or an ammonium cation, and m is 1 or 2.)
JP5030391A 1991-02-25 1991-02-25 Production of self-doping conductive polymer Pending JPH04268331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5030391A JPH04268331A (en) 1991-02-25 1991-02-25 Production of self-doping conductive polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5030391A JPH04268331A (en) 1991-02-25 1991-02-25 Production of self-doping conductive polymer

Publications (1)

Publication Number Publication Date
JPH04268331A true JPH04268331A (en) 1992-09-24

Family

ID=12855131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5030391A Pending JPH04268331A (en) 1991-02-25 1991-02-25 Production of self-doping conductive polymer

Country Status (1)

Country Link
JP (1) JPH04268331A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589108A (en) * 1993-12-29 1996-12-31 Nitto Chemical Industry Co., Ltd. Soluble alkoxy-group substituted aminobenzenesulfonic acid aniline conducting polymers
EP0834885A3 (en) * 1996-10-02 1998-11-18 Nitto Chemical Industry Co., Ltd. Method for producing soluble conductive polymers having acidic groups
US6024895A (en) * 1995-08-11 2000-02-15 Mitsubishi Rayon Co., Ltd. Cross-linkable, electrically conductive composition, electric conductor and process for forming the same
US7645400B2 (en) 2002-11-01 2010-01-12 Mitsubishi Rayon Co., Ltd. Composition containing carbon nanotubes having a coating
WO2011118611A1 (en) * 2010-03-24 2011-09-29 三菱レイヨン株式会社 Conductive polymer, quality control method for conductive polymer and method for purifying conductive polymer
JP2013136759A (en) * 2013-01-30 2013-07-11 Mitsubishi Rayon Co Ltd Conductive composition for capacitor electrode
US20150303475A1 (en) * 2012-12-20 2015-10-22 Nitto Denko Corporation Power storage device, electrode used therein, and porous sheet
US9627144B2 (en) 2011-08-17 2017-04-18 Mitsubishi Rayon Co., Ltd. Solid electrolytic capacitor and method for manufacturing same
WO2018147318A1 (en) 2017-02-10 2018-08-16 三菱ケミカル株式会社 Conductive composition, method for producing conductive composition, and method for producing conductor
US10096395B2 (en) 2012-07-24 2018-10-09 Mitsubishi Chemical Corporation Conductor, conductive composition and laminate
WO2019146715A1 (en) 2018-01-26 2019-08-01 三菱ケミカル株式会社 Electroconductive composition and production method therefor, and water-soluble polymer and production method therefor
WO2019177096A1 (en) 2018-03-15 2019-09-19 三菱ケミカル株式会社 Conductive film, method for producing same, conductor, resist pattern formation method, and laminate
WO2019198749A1 (en) 2018-04-10 2019-10-17 三菱ケミカル株式会社 Electrically conductive composition, electrically conductive film, and laminate
WO2020100791A1 (en) 2018-11-15 2020-05-22 三菱ケミカル株式会社 Conductive composition and method for manufacturing same, and conductor and method for manufacturing same
WO2021153678A1 (en) 2020-01-29 2021-08-05 三菱ケミカル株式会社 Conductive composite, resist coating material, resist, and resist pattern formation method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589108A (en) * 1993-12-29 1996-12-31 Nitto Chemical Industry Co., Ltd. Soluble alkoxy-group substituted aminobenzenesulfonic acid aniline conducting polymers
US5700399A (en) * 1993-12-29 1997-12-23 Nitto Chemical Industry Co., Ltd. Soluble alkoxy-group substituted aminobenzenesulfonic acid aniline conducting polymers
US5932144A (en) * 1993-12-29 1999-08-03 Mitsubishi Rayon Co., Ltd. Soluble aniline conducting polymers
US6024895A (en) * 1995-08-11 2000-02-15 Mitsubishi Rayon Co., Ltd. Cross-linkable, electrically conductive composition, electric conductor and process for forming the same
EP0834885A3 (en) * 1996-10-02 1998-11-18 Nitto Chemical Industry Co., Ltd. Method for producing soluble conductive polymers having acidic groups
US5980784A (en) * 1996-10-02 1999-11-09 Mitsubishi Rayon Co., Ltd. Method for producing soluble conductive polymer having acidic group
US7645400B2 (en) 2002-11-01 2010-01-12 Mitsubishi Rayon Co., Ltd. Composition containing carbon nanotubes having a coating
JP5790500B2 (en) * 2010-03-24 2015-10-07 三菱レイヨン株式会社 Conductive polymer, conductive polymer quality control method, and conductive polymer purification method
WO2011118611A1 (en) * 2010-03-24 2011-09-29 三菱レイヨン株式会社 Conductive polymer, quality control method for conductive polymer and method for purifying conductive polymer
CN102869702B (en) * 2010-03-24 2016-05-25 三菱丽阳株式会社 The method for quality control of electroconductive polymer, electroconductive polymer and the method for purification of electroconductive polymer
CN102869702A (en) * 2010-03-24 2013-01-09 三菱丽阳株式会社 Conductive polymer, quality control method for conductive polymer and method for purifying conductive polymer
US9627144B2 (en) 2011-08-17 2017-04-18 Mitsubishi Rayon Co., Ltd. Solid electrolytic capacitor and method for manufacturing same
US11145432B2 (en) 2012-07-24 2021-10-12 Mitsubishi Chemical Corporation Conductor, conductive composition and laminate
US10096395B2 (en) 2012-07-24 2018-10-09 Mitsubishi Chemical Corporation Conductor, conductive composition and laminate
US20150303475A1 (en) * 2012-12-20 2015-10-22 Nitto Denko Corporation Power storage device, electrode used therein, and porous sheet
JP2013136759A (en) * 2013-01-30 2013-07-11 Mitsubishi Rayon Co Ltd Conductive composition for capacitor electrode
WO2018147318A1 (en) 2017-02-10 2018-08-16 三菱ケミカル株式会社 Conductive composition, method for producing conductive composition, and method for producing conductor
WO2019146715A1 (en) 2018-01-26 2019-08-01 三菱ケミカル株式会社 Electroconductive composition and production method therefor, and water-soluble polymer and production method therefor
WO2019177096A1 (en) 2018-03-15 2019-09-19 三菱ケミカル株式会社 Conductive film, method for producing same, conductor, resist pattern formation method, and laminate
WO2019198749A1 (en) 2018-04-10 2019-10-17 三菱ケミカル株式会社 Electrically conductive composition, electrically conductive film, and laminate
WO2020100791A1 (en) 2018-11-15 2020-05-22 三菱ケミカル株式会社 Conductive composition and method for manufacturing same, and conductor and method for manufacturing same
WO2021153678A1 (en) 2020-01-29 2021-08-05 三菱ケミカル株式会社 Conductive composite, resist coating material, resist, and resist pattern formation method

Similar Documents

Publication Publication Date Title
JPH04268331A (en) Production of self-doping conductive polymer
EP0804497B1 (en) Soluble, electroconductive polypyrrole and method for preparing the same
KR100488441B1 (en) Method for manufacturing water-soluble conductive polyaniline
JPS61197633A (en) Sulfonated electroconductive organic polymer
US5804649A (en) Water-soluble self acid-doped polyaniline, method of preparation thereof, and polymer blends made therefrom
EP0918766B1 (en) Self-acid-doped highly conducting polythiophenes
JPH07324132A (en) Production of soluble conductive aniline polymer
JPH0656987A (en) Produciton of conductive polymer
US5066731A (en) Process for modifying electroconductive polymers using ion exchange
CA2084360C (en) Water-soluble conducting polymer and method for production thereof
JP2763903B2 (en) Method of manufacturing conductor having self-doping function
JP3413958B2 (en) Novel conductive polymer and method for producing the same
JPH0574467A (en) Macromolecular solid electrolyte
JP3475017B2 (en) High-purity soluble aniline-based conductive polymer and method for producing the same
EP0345693A1 (en) Soluble conducting polymers of poly-o-methoxyaniline
KR100823635B1 (en) Production Method of the Conductivity Polymer Nanoparticles Using Ionic Liquid and Manufacturing of Composite Material Using This
JPH06239996A (en) Conductive polymer and its preparation
JPH07286035A (en) Soluble conductive polymer and its production
JP3043290B2 (en) Water-soluble conductive polyaniline and method for producing the same
Ng et al. Poly (o-aminobenzylphosphonic acid): a novel water soluble, self-doped functionalized polyaniline
JP3340893B2 (en) Soluble aminonaphthalene-based conductive polymer and method for producing the same
JP2982088B2 (en) Method for producing polyaniline derivative
JPH0423825A (en) Water-soluble electroconductive polymer and its production
JP2992131B2 (en) Method for producing polyaniline
JPH03152122A (en) Production of conjugate system polymer