JP2763903B2 - Method of manufacturing conductor having self-doping function - Google Patents

Method of manufacturing conductor having self-doping function

Info

Publication number
JP2763903B2
JP2763903B2 JP1009063A JP906389A JP2763903B2 JP 2763903 B2 JP2763903 B2 JP 2763903B2 JP 1009063 A JP1009063 A JP 1009063A JP 906389 A JP906389 A JP 906389A JP 2763903 B2 JP2763903 B2 JP 2763903B2
Authority
JP
Japan
Prior art keywords
self
ion exchange
conductor
doping function
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1009063A
Other languages
Japanese (ja)
Other versions
JPH02189333A (en
Inventor
義弘 斉田
芳章 池ノ上
秀夫 八島
晴雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP1009063A priority Critical patent/JP2763903B2/en
Publication of JPH02189333A publication Critical patent/JPH02189333A/en
Application granted granted Critical
Publication of JP2763903B2 publication Critical patent/JP2763903B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自己ドーピング機能を有する導電体の製造
方法に関し、更に詳しくは各種電子部品、電極、センサ
ー、光電変換素子などに有用な、自己ドーピング機能を
有する導電体の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a conductor having a self-doping function, and more particularly, to a method for producing a self-doping conductor, which is useful for various electronic components, electrodes, sensors, photoelectric conversion elements, and the like. The present invention relates to a method for manufacturing a conductor having a doping function.

〔従来の技術〕[Conventional technology]

従来,導電性ポリマーは、不溶不融と考えられてきた
が、近年、重合性複素環化合物、例えばチオフェン及び
ピロール等に長鎖のアルキル基、ケトン基またはエーテ
ル基等の置換基を付与することによって、有機溶媒に可
溶なポリマーとすることが可能であることが報告されて
いる。これらの代表的な例としては、特開昭62−220517
号公報、同62−253617号公報、ケイ・ヨシノ(K.Yoshin
o)らのケミストリー・エクスプレス(Chemistyr Expre
ss),第1巻,638頁(1986年)、及びエム・アール・ブ
ライス(M.R.Bryce)らのジャーナル・オブ・ケミカル
・ソサイアテイ.,ケミカル・コミュニケーション(J.Ch
em.Soc.,Chem.Commum.),1987年,466頁、等が知られて
いる。
Conventionally, conductive polymers have been considered insoluble and infusible, but in recent years, polymerizable heterocyclic compounds such as thiophene and pyrrole have been given substituents such as long-chain alkyl groups, ketone groups or ether groups. Report that the polymer can be made into a polymer soluble in an organic solvent. Representative examples of these are disclosed in JP-A-62-220517.
JP-A-62-253617, K. Yoshin
o) The Chemistyr Expre
ss), Volume 1, p. 638 (1986), and the Journal of Chemical Society by MR Bryce et al., Chemical Communication (J. Ch.).
em.Soc., Chem.Commum.), 1987, p.466, and the like.

しかし、これらの導電性ポリマーは、アクセプターま
たはドナーによるドーピング操作により、ポリマーを導
電体とする方法であるため、ドーピング及び脱ドーピン
グが迅速に行えず、例えば、エレクトロクロミック現象
の応答時間が長いという問題点を有する。
However, since these conductive polymers are made by using a polymer as a conductor by a doping operation using an acceptor or a donor, doping and undoping cannot be performed quickly. For example, a problem is that the response time of the electrochromic phenomenon is long. Have a point.

これら従来の導電性ポリマーの欠点を改善するため
に、導電性を付与する対イオンをポリマー自体に共有結
合させた自己ドーピング機能を有するポリマーが提案さ
れている[例えば、特開昭63−39916号公報、及びエフ
・ウドル(F.Wudl)らのジャーナル・オブ・ザ・アメリ
カン・ケミカル・ソサエテイ(J.Am.Chem.Soc),第109
巻,1858頁(1987年)、ジェー・アール・レイノルズ
(J.R.Reynolds)らのジャーナル・オブ・ザ・ケミカル
・ソサエテイ・ケミカル・コミュニケイション(J.Che
m.Soc.,Chem.Commun.1987年,621頁)]。これらの方法
によって得られる自己ドーピング機能を有するポリマー
は、高分子電解質であり、かつ水溶性であるため賦形時
のコストパフォーマンスに優れるばかりでなく、環境保
護の上でも無公害な導電性ポリマーとして注目されてい
る。
In order to improve the drawbacks of these conventional conductive polymers, there has been proposed a polymer having a self-doping function in which a counter ion imparting conductivity is covalently bonded to the polymer itself [for example, JP-A-63-39916. Gazette, and Journal of the American Chemical Society (F. Wudl) et al., J. Am. Chem. Soc, No. 109.
Vol., 1858 (1987), Journal of the Chemical Society, Chemical Communication by JR Reynolds et al. (J. Che)
m. Soc., Chem. Commun. 1987, p. 621)]. The polymer with a self-doping function obtained by these methods is a polymer electrolyte and is water-soluble, so it is not only excellent in cost performance at the time of shaping, but also as a pollution-free conductive polymer in terms of environmental protection. Attention has been paid.

また、これらの自己ドーピング機能を有するポリマー
は、拡散の遅いアニオン基を予め共有結合で共役主鎖に
結合しておき、動きやすい小さなカチオンがドーピング
・脱ドーピングにともなって出入りするので、例えば、
エレクトロクロミック現象の応答速度が早くなり、表示
材料としての応用の期待がたかまっている。
In addition, in these polymers having a self-doping function, an anion group having a slow diffusion is previously bonded to a conjugate main chain by a covalent bond, and small mobile cations enter and exit with doping and undoping.
The response speed of the electrochromic phenomenon has been increased, and expectations for application as a display material are increasing.

しかし、前記の自己ドーピング機能を有する導電性ポ
リマーは、モノマーとしての3−チオフェンアルカンス
ルホン酸及びその塩を一旦、3−チオフェンアルカンス
ルホン酸エステルに誘導してから、電気化学重合を行な
った後、加水分解することにより製造されているため、
自己ドーピング機能を有する導電性ポリマーを製造する
には多段階の反応工程が必要であり、製造工程が煩雑、
かつ収率が低いという問題点を有していた。
However, the above-mentioned conductive polymer having a self-doping function is obtained by first deriving 3-thiophenealkanesulfonic acid and a salt thereof as a monomer into 3-thiophenealkanesulfonic acid ester, and then performing electrochemical polymerization. Because it is manufactured by hydrolysis,
To produce a conductive polymer having a self-doping function, a multi-step reaction process is required, and the production process is complicated,
In addition, there was a problem that the yield was low.

このような問題点が生じる最大の要因は、モノマーと
しての3−チオフェンアルカンスルホン酸及びその塩が
親水基を有するため、電気化学重合できない点にある。
即ち、3−チオフェンアルカンスルホン酸及びその塩
は、水溶性モノマーであることから、このモノマーを溶
解させ得る溶媒は電気化学的な電位窓の狭い極性溶媒に
限られているため、電気化学重合を行なっても溶媒の分
解、もしくはオリゴマーの溶出が認められるに過ぎず、
高分子量のポリマーを得ることはできなかった。
The biggest factor that causes such a problem is that 3-thiophenealkanesulfonic acid and its salt as a monomer have a hydrophilic group and cannot be electrochemically polymerized.
That is, since 3-thiophenealkanesulfonic acid and its salt are water-soluble monomers, the solvent capable of dissolving this monomer is limited to a polar solvent having a narrow electrochemical potential window. Even if it is performed, only decomposition of the solvent or elution of the oligomer is recognized,
No high molecular weight polymer could be obtained.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明の目的は、前記従来の自己ドーピング機能を有
する導電性ポリマーの製造方法の欠点を克服し、従来の
製造方法よりも短工程で、かつ簡便な方法によって安価
に高収率で高分子量の自己ドーピング機能を有する導電
体を製造する方法を提供することにある。ここでいう高
分子量とは、ポリマー溶液の紫外可視吸収スペクトルで
のπ−π遷移に基づく吸収極大が少なくとも400nm以
上にあることを示す。
An object of the present invention is to overcome the drawbacks of the conventional method for producing a conductive polymer having a self-doping function, to achieve a high-molecular-weight, high-yield process in a shorter process than the conventional production method, and at a low cost by a simple method. An object of the present invention is to provide a method for manufacturing a conductor having a self-doping function. The term “high molecular weight” as used herein means that the absorption maximum based on the π-π * transition in the ultraviolet-visible absorption spectrum of the polymer solution is at least 400 nm or more.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者は、チオフェン類を直接重合するために、 種々の異なった酸化電位を有する酸化剤について鋭意研
究を重ねた結果、チオフェン類をチオフェン類が可溶な
極性溶媒中、酸化性遷移金属ハロゲン化物の存在下反応
させることによって、容易に化学重合し、高分子量の自
己ドーピング機能を有する導電性ポリマーが短工程で、
かつ高収率で得られることを見いだし、本発明に至っ
た。
The present inventors have conducted intensive studies on oxidizing agents having various oxidation potentials in order to directly polymerize thiophenes. As a result, oxidizing transition metal halides in thiophenes-soluble polar solvents were conducted. By conducting the reaction in the presence of a compound, the conductive polymer having a high molecular weight self-doping function is easily polymerized in a short process,
The present inventors have found that they can be obtained at a high yield, and have reached the present invention.

即ち,本発明は、一般式 (式中、Rは炭素性1〜10のエーテル結合またはアミド
結合を含んでもよい直鎖または枝分れアルキレン基であ
り、Mはプロトン、アルカリ金属カチオンまたはアルカ
リ土類金属カチオンであり、mは1または2である。) で表わされるチオフェン類を極性溶媒中、酸化性遷移
金属ハロゲン化物の存在下に化学重合し、次いで生成物
を塩基性物質で処理後、カチオン型イオン交換樹脂で処
理することを特徴とする自己ドーピング機能を有する導
電体の製造方法に関する。
That is, the present invention uses the general formula (Wherein, R is a linear or branched alkylene group which may contain a carbonic 1 to 10 ether bond or amide bond, M is a proton, an alkali metal cation or an alkaline earth metal cation, and m is 1 or 2.) The thiophenes represented by are chemically polymerized in a polar solvent in the presence of an oxidizing transition metal halide, and then the product is treated with a basic substance and then treated with a cation-type ion exchange resin. The present invention relates to a method for manufacturing a conductor having a self-doping function.

以下、本発明の自己ドーピング機能を有する導電体の
製造方法について説明する。
Hereinafter, a method for manufacturing a conductor having a self-doping function according to the present invention will be described.

まず、本発明においては、前記一般式で表わされるチ
オフェン類を極性溶媒中、酸化性遷移金属ハロゲン化物
の存在下に化学重合させる。前記一般式で表わされるチ
オフェン類は、チオフェン環の3位に親水基を有する化
合物であり、例えば、3−チオフェンメタンスルホン
酸、3−チオフェンエタンスルホン酸、3−チオフェン
プロパンスルホン酸、3−チオフェンブタンスルホン
酸、3−チオフェンペンタンスルホン酸、3−チオフェ
ンオキシメタンスルホン酸、3−チオフェンオキシエタ
ンスルホン酸、3−テニルオキシメタンスルホン酸及び
それらのナトリウム塩、カリウム塩、カルシウム塩等が
あげられる。
First, in the present invention, thiophenes represented by the above general formula are chemically polymerized in a polar solvent in the presence of an oxidizable transition metal halide. The thiophenes represented by the above general formula are compounds having a hydrophilic group at the 3-position of the thiophene ring, such as 3-thiophene methanesulfonic acid, 3-thiopheneethanesulfonic acid, 3-thiophenepropanesulfonic acid, and 3-thiophene. Butanesulfonic acid, 3-thiophenpentanesulfonic acid, 3-thiophenoxymethanesulfonic acid, 3-thiophenoxyethanesulfonic acid, 3-thenyloxymethanesulfonic acid, and their sodium, potassium, and calcium salts.

本発明において使用される極性溶媒は、チオフェン類
が可溶な溶媒であり、例えば水、メタノール及びエタノ
ール等のアルコール系溶媒、N,N−ジメチルホルムアミ
ド、ジメチルスルホキシド、アセトニトリル、プロピレ
ンカーボネート等の非水系極性溶媒があげられる。
The polar solvent used in the present invention is a solvent in which thiophenes are soluble, for example, water, alcohol solvents such as methanol and ethanol, N, N-dimethylformamide, dimethyl sulfoxide, acetonitrile, and non-aqueous solvents such as propylene carbonate. Polar solvents.

本発明において使用される酸化性遷移金属ハロゲン化
物(以下、酸化剤という)としては、例えば塩化第二
鉄、塩化モリブデン及び塩化ルテニウム等があげられ
る。
Examples of the oxidative transition metal halide (hereinafter, referred to as an oxidizing agent) used in the present invention include ferric chloride, molybdenum chloride, ruthenium chloride and the like.

化学重合する際にチオフェン類の濃度は、極性溶媒中
に0.001〜10モル/、特に好ましくは0.5〜5モル/
である。酸化剤の使用量は、モノマーユニットに対し、
2〜10倍当量が効果的であり、極性溶媒の使用量は、酸
化剤が飽和濃度以上になる量が有効である。酸化剤の使
用量が2倍当量未満では、オリゴマー段階で重合は止ま
って高分子量体は得られず、一方、10倍当量より多い場
合では過剰の酸化剤は反応に関与しないため経済的でな
い。反応温度は、−20〜60℃が好ましい。反応温度が−
20℃未満では反応速度が著しく遅く、また、反応温度が
60℃より高い温度では高分子量のポリマーは得られにく
い。反応時間は1時間から14日が好ましい。チオフェン
類及び酸化剤の添加順序には特に制限はない。
The concentration of the thiophenes during the chemical polymerization is 0.001 to 10 mol /, particularly preferably 0.5 to 5 mol / in the polar solvent.
It is. The amount of oxidizing agent used is
An equivalent amount of 2 to 10 times is effective, and the amount of the polar solvent used is an amount at which the oxidizing agent becomes a saturated concentration or more. If the amount of the oxidizing agent used is less than 2 equivalents, the polymerization stops at the oligomer stage and no high molecular weight product can be obtained. The reaction temperature is preferably from -20 to 60C. The reaction temperature is-
If the temperature is lower than 20 ° C, the reaction rate is extremely slow.
At a temperature higher than 60 ° C., it is difficult to obtain a high molecular weight polymer. The reaction time is preferably from 1 hour to 14 days. The order of adding the thiophenes and the oxidizing agent is not particularly limited.

次に、本発明においては、化学重合して得られた生成
物を塩基性物質で処理後、カチオン型イオン交換樹脂で
処理する。
Next, in the present invention, the product obtained by chemical polymerization is treated with a basic substance, and then treated with a cation-type ion exchange resin.

上記条件下で化学重合して得られたポリマーは、前記
一般式中に示すMが酸化剤中の遷移金属イオンに置換さ
れるが、このものは、過剰の塩基性物質、例えば、アル
カリ金属及びアルカリ土類金属の水酸化物、炭酸ナトリ
ウム及び炭酸水素ナトリウム等のアルカリ金属の炭酸塩
類、アンモニア、及びトリエチルアミン、ピリジン等の
有機性アミン類を添加すると一般式中に示すMが対応す
るアルカリ金属イオン、アルカリ土類金属イオン、アミ
ン類の4級イオンに容易に置換され、遷移金属イオンは
水酸化物等となって沈澱する。次に沈澱を濾過によって
除去した液をカチオン型イオン交換樹脂(例えば、市販
品アンバーライトIR−120等)に通しイオン交換を施
す。第一番目にプロトン型イオン交換樹脂に通すことに
よって一般式中のMはプロトンに交換され、さらに、液
中に微量含まれている遷移金属イオンも捕捉され除去さ
れる。プロトン型イオン交換樹脂で処理後のポリマー水
溶液を乾固することによって一般式中のMがプロトンで
ある自己ドーピング機能を有する高分子量の導電体が製
造できる。一方、第二番目にプロトン型イオン交換樹脂
で処理後の水溶液を、目標とするアルカリ金属(例え
ば、リチウム、ナトリウム及びカリウム等)イオン、ア
ルカリ土類金属(例えば、マグネシウム及びカルシウム
等)イオンまたはアミンの4級イオンに変換したイオン
交換樹脂に通した後、ポリマーの貧溶媒(例えばメタノ
ール、エタノール及びアセトン等の有機溶媒)を用いて
再沈澱処理し、析出した沈澱物を濾取することによっ
て、一般式中のMがアルカリ金属イオンまたはアルカリ
土類金属イオン等に置換された自己ドーピング機能を有
する高分子量の導電体が製造できる。
In the polymer obtained by the chemical polymerization under the above conditions, M shown in the above general formula is replaced by a transition metal ion in an oxidizing agent, which is an excess of a basic substance such as an alkali metal and When an alkaline earth metal hydroxide, alkali metal carbonates such as sodium carbonate and sodium hydrogen carbonate, ammonia, and organic amines such as triethylamine and pyridine are added, M in the general formula corresponds to an alkali metal ion. , Are easily replaced by alkaline earth metal ions and quaternary ions of amines, and the transition metal ions precipitate as hydroxides and the like. Next, the liquid from which the precipitate has been removed by filtration is passed through a cation-type ion exchange resin (for example, commercially available product Amberlite IR-120) to perform ion exchange. First, M in the general formula is exchanged for a proton by passing through a proton-type ion exchange resin, and further, transition metal ions contained in a trace amount in the liquid are captured and removed. By drying the aqueous polymer solution after treatment with a proton-type ion exchange resin, a high-molecular-weight conductor having a self-doping function in which M in the general formula is a proton can be produced. On the other hand, secondly, the aqueous solution after the treatment with the proton-type ion exchange resin is converted into a target alkali metal (for example, lithium, sodium and potassium) ion, alkaline earth metal (for example, magnesium and calcium) ion or amine. After passing through an ion exchange resin converted to quaternary ions, the polymer is reprecipitated using a poor solvent for the polymer (for example, an organic solvent such as methanol, ethanol and acetone), and the deposited precipitate is collected by filtration. A high molecular weight conductor having a self-doping function in which M in the general formula is substituted with an alkali metal ion or an alkaline earth metal ion can be produced.

〔発明の効果〕〔The invention's effect〕

以上説明したように、従来極性溶媒中で電気化学重合
できなかった自己ドーピング機能を有する導電体用のチ
オフェン類は、本発明の方法を適用することによって、
極性溶媒中での直接重合を可能にした。さらに、本発明
の製造方法によれば、従来の方法に記載の工程、即ち自
己ドーピング機能を有する導電体用のモノマーであるス
ルホン酸及びその塩を、一旦そのスルホニルクロリド
体、スルホン酸メチル体とし、そしてスルホン酸メチル
体を電気化学重合してポリマーとなしたのち、加水分解
して目的とする自己ドーピング機能を有する導電体を得
るという4工程を、化学重合、イオン交換処理の2工程
に短縮することができ、それにより収率も大幅に向上
し、生成ポリマーの共役鎖長が伸長した自己ドーピング
機能を有する導電体を製造することが可能になった。
As described above, thiophenes for a conductor having a self-doping function which could not be electrochemically polymerized in a polar solvent in the past, by applying the method of the present invention,
It allows direct polymerization in polar solvents. Furthermore, according to the production method of the present invention, the steps described in the conventional method, that is, a sulfonic acid and a salt thereof, which are monomers for a conductor having a self-doping function, are once converted into a sulfonyl chloride form and a methyl sulfonate form. Then, the four steps of electrochemically polymerizing the methyl sulfonate to form a polymer and then hydrolyzing it to obtain a conductor having the desired self-doping function are reduced to two steps of chemical polymerization and ion exchange treatment. As a result, the yield was greatly improved, and it became possible to produce a conductor having a self-doping function in which the conjugated chain length of the produced polymer was extended.

〔実施例〕〔Example〕

以下、実施例及び比較例をあげて本発明を更に詳細に
説明する。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

実施例1 ポリ[3−チオフェンプロパンスルホン酸ナトリウム]
の製造 0.16モルの塩化第二鉄(モノマーに対して8当量)を
含むメタノール溶液40mlに、3−チオフェンプロパンス
ルホン酸ナトリウムの20ミリモルとメタノール60mlから
なる溶液を窒素気流下に加えた。室温で7日間撹拌し、
反応液が固まった後、固形物を200mlのアセトンで3回
洗浄し、室温で減圧乾燥して5.20gの黒色粉末を得た。
この粉末5.09gを100mlの蒸留水に懸濁した後、0.1N−Na
OH水溶液400mlを激しく撹拌しながら加えると、濃赤色
に変化した。これを濾紙濾過により不溶物の水酸化鉄を
除去した後、プロトン型イオン交換樹脂(IR−120、市
販品)80gに通すと褐色の溶出液が得られた。このプロ
トン型ポリマーの水溶液をナトリウム型イオン交換樹脂
(IR−120)80gに通した後,濃縮乾固して得た残査少量
の蒸留水に溶かし、33ミリモル水酸化ナトリウムを含む
メタノール2500mlで再沈澱し、濾取した。室温下真空乾
燥したところ、3.82g(収率76.7%)のナトリウム塩自
己ドープ型ポリマーが得られた。
Example 1 Poly [sodium 3-thiophenepropanesulfonate]
Preparation of a solution A solution consisting of 20 mmol of sodium 3-thiophenepropanesulfonate and 60 ml of methanol was added to 40 ml of a methanol solution containing 0.16 mol of ferric chloride (8 equivalents relative to the monomer) under a nitrogen stream. Stir at room temperature for 7 days,
After the reaction solution was solidified, the solid was washed three times with 200 ml of acetone and dried at room temperature under reduced pressure to obtain 5.20 g of a black powder.
After suspending 5.09 g of this powder in 100 ml of distilled water, 0.1N-Na
When 400 ml of an OH aqueous solution was added with vigorous stirring, the solution turned deep red. After insoluble iron hydroxide was removed by filtration through filter paper, the solution was passed through a proton-type ion exchange resin (IR-120, commercially available product) 80 g to obtain a brown eluate. This aqueous solution of the proton-type polymer is passed through 80 g of sodium-type ion-exchange resin (IR-120), concentrated, dried and dissolved in a small amount of residual distilled water. The precipitate was collected by filtration. After vacuum drying at room temperature, 3.82 g (yield 76.7%) of a sodium salt self-doping polymer was obtained.

ポリ〔3−チオフェンプロパンスルホン酸ナトリウ
ム〕の元素分析結果は、 実測値 C:33.10% H:3.61% Na:8.4% S:23.2% 分子式C7H7S2O3Na・2H2Oに対する計算値は C:32.06% H:4.22% Na:8.77% S:24.45
% であった。
Elemental analysis results for poly [sodium 3-thiophenepropanesulfonate] are calculated values: C: 33.10% H: 3.61% Na: 8.4% S: 23.2% Calculation for molecular formula C 7 H 7 S 2 O 3 Na · 2H 2 O The value is C: 32.06% H: 4.22% Na: 8.77% S: 24.45
% Met.

また、図1に示した紫外可視スペクトルから高分子量
の自己ドーピング機能を有するポリマーが得られている
ことが分かる。
In addition, it can be seen from the ultraviolet-visible spectrum shown in FIG. 1 that a polymer having a high molecular weight and a self-doping function was obtained.

実施例2 ポリ[3−チオフェンプロパンスルホン酸ナトリウム]
の製造 7.0モル/の塩化第二鉄(モノマーに対して8当
量)の懸濁液0.5mlに、チオフェン−3−(3−プロパ
ンスルホン酸ナトリウム)の0.44ミリモルと水0.5mlか
らなる水溶液を窒素気流下に加えた。室温で18時間撹拌
し、反応液が固まった後、固形物を20mlのアセトンで3
回洗浄し、室温で減圧乾燥して97.9mgの黒色粉末を得
た。この粉末97.9mgを1.0mlの蒸留水に懸濁した後、0.1
N−NaOH水溶液6.4mlを激しく撹拌しながら加えると濃赤
色に変化した。これを濾紙濾過により不溶物の水酸化鉄
を除去した後、プロトン型イオン交換樹脂(IR−120、
市販品)5gに通すと褐色の溶出液が得られた。このプロ
トン型ポリマーの水溶液をナトリウム型イオン交換樹脂
(IR−120)5gに通した後,濃縮乾固して得た残査を少
量の蒸留水に溶かし、0.66ミリモル水酸化ナトリウムを
含むメタノール20mlで再沈澱し、濾取した。室温で真空
乾燥したところ、82.1mg(収率85.7%)のナトリウム塩
自己ドープ型ポリマーが得られた。
Example 2 Poly [sodium 3-thiophenepropanesulfonate]
To a 0.5 ml suspension of 7.0 mol / ferric chloride (8 equivalents relative to monomer) was added an aqueous solution consisting of 0.44 mmol of thiophene-3- (sodium 3-propanesulfonate) and 0.5 ml of water under nitrogen. Added under airflow. The mixture was stirred at room temperature for 18 hours.
It was washed twice and dried under reduced pressure at room temperature to obtain 97.9 mg of a black powder. After suspending 97.9 mg of this powder in 1.0 ml of distilled water, 0.1
When 6.4 ml of an N-NaOH aqueous solution was added with vigorous stirring, the color turned into deep red. After removing insoluble iron hydroxide by filtration through a filter paper, a proton-type ion-exchange resin (IR-120,
When passed through 5 g of a commercial product, a brown eluate was obtained. After passing the aqueous solution of the proton-type polymer through 5 g of sodium-type ion exchange resin (IR-120), the residue obtained by concentration to dryness is dissolved in a small amount of distilled water, and the residue is dissolved in 20 ml of methanol containing 0.66 mmol sodium hydroxide. Reprecipitated and collected by filtration. After vacuum drying at room temperature, 82.1 mg (85.7% yield) of a sodium salt self-doping polymer was obtained.

ポリ[3−チオフェンプロパンスルホン酸ナトリウ
ム]の元素分析結果は、実施例1の元素分析結果とほぼ
同一であった。
The results of elemental analysis of poly [sodium 3-thiophenepropanesulfonate] were almost the same as the results of elemental analysis of Example 1.

また、図2に示した紫外可視スペクトルから高分子量
の自己ドーピング機能を有するポリマーが得られている
ことが分かる。
Further, it can be seen from the ultraviolet-visible spectrum shown in FIG. 2 that a polymer having a high molecular weight and a self-doping function was obtained.

実施例3〜8 ポリ[3−チオフェンプロパンスルホン酸ナトリウム]
の製造 反応温度、反応時間及び酸化剤の使用量を表1に示し
たように変えたこと以外は、すべて実施例1と同様に行
った。その結果を表1に示した。
Examples 3 to 8 Poly [sodium 3-thiophenepropanesulfonate]
Production was carried out in the same manner as in Example 1 except that the reaction temperature, the reaction time, and the amount of the oxidizing agent used were changed as shown in Table 1. The results are shown in Table 1.

比較例 3−チオフェンプロパンスルホン酸ナトリウムの電気化
学重合 3−チオフェンプロパンスルホン酸ナトリウムをモノ
マーかつ支持電解質とする0.1モル/メタノール溶液
に使用して電気化学重合を行った。カソードにグラフォ
イルシート(市販品)、アノードにITOガラスを使用し
て、400クーロン(モノマー全てが電解酸化される通電
量。)通電したが、図3の紫外可視吸収スペクトルに示
したオリゴマーが少量得られたにすぎず、高分子量体の
ポリマーは得られなかった。
Comparative Example 3-Electrochemical Polymerization of Sodium 3-thiophenepropanesulfonate Electrochemical polymerization was performed using sodium 3-thiophenepropanesulfonate as a monomer and a supporting electrolyte in a 0.1 mol / methanol solution. Using a graphite foil (commercially available) for the cathode and ITO glass for the anode, a current of 400 coulombs (the amount of electricity that causes all the monomers to be electrolytically oxidized) was applied, but a small amount of the oligomer shown in the ultraviolet-visible absorption spectrum of FIG. Only a high molecular weight polymer was not obtained.

【図面の簡単な説明】[Brief description of the drawings]

図1、図2及び図3は、それぞれ実施例1、実施例2及
び比較例で得られたポリマーの水溶液中での紫外可視吸
収スペクトルである。
FIGS. 1, 2 and 3 are ultraviolet-visible absorption spectra of the polymers obtained in Examples 1, 2 and Comparative Examples, respectively, in an aqueous solution.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 晴雄 大分県大分市大字中の洲2 昭和電工株 式会社大分研究所内 (56)参考文献 特開 昭63−39916(JP,A) 国際公開87/5914(WO,A1) (58)調査した分野(Int.Cl.6,DB名) C08G 61/12 H01B 1/12──────────────────────────────────────────────────続 き Continuation of the front page (72) Haruo Yoshida, Inventor 2 Oita-shi, Oita City, Oita Prefecture Showa Denko KK Oita Research Institute (56) References JP-A-63-39916 (JP, A) International Publication 87 / 5914 (WO, A1) (58) Field surveyed (Int. Cl. 6 , DB name) C08G 61/12 H01B 1/12

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式 (式中、Rは炭素数1〜10のエーテル結合またはアミド
結合を含んでもよい直鎖または枝分かれアルキレン基で
あり、Mはプロトン、アルカリ金属カチオンまたはアル
カリ土類金属カチオンであり、mは1または2であ
る。) で表されるチオフェン類を水またはアルコール系溶媒か
らなる極性溶媒中、酸化性遷移金属ハロゲン化物の存在
下に化学重合し、次いで生成物を塩基性物質で処理後、
イオン交換処理を施すことを特徴とする自己ドーピング
機能を有する導電体の製造方法。
(1) General formula (Wherein, R is a linear or branched alkylene group which may contain an ether bond or an amide bond having 1 to 10 carbon atoms, M is a proton, an alkali metal cation or an alkaline earth metal cation, and m is 1 or Is chemically polymerized in a polar solvent composed of water or an alcohol solvent in the presence of an oxidizable transition metal halide, and then the product is treated with a basic substance.
A method for producing a conductor having a self-doping function, characterized by performing an ion exchange treatment.
【請求項2】イオン交換処理がイオン交換樹脂によるも
のであることを特徴とする請求項(1)に記載の自己ド
ーピング機能を有する導電体の製造方法。
2. The method for producing a conductor having a self-doping function according to claim 1, wherein the ion exchange treatment is performed with an ion exchange resin.
【請求項3】イオン交換樹脂がカチオン型イオン交換樹
脂であることを特徴とする請求項(2)に記載の自己ド
ーピング機能を有する導電体の製造方法。
3. The method for producing a conductor having a self-doping function according to claim 2, wherein the ion exchange resin is a cation type ion exchange resin.
JP1009063A 1989-01-18 1989-01-18 Method of manufacturing conductor having self-doping function Expired - Lifetime JP2763903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1009063A JP2763903B2 (en) 1989-01-18 1989-01-18 Method of manufacturing conductor having self-doping function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1009063A JP2763903B2 (en) 1989-01-18 1989-01-18 Method of manufacturing conductor having self-doping function

Publications (2)

Publication Number Publication Date
JPH02189333A JPH02189333A (en) 1990-07-25
JP2763903B2 true JP2763903B2 (en) 1998-06-11

Family

ID=11710156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1009063A Expired - Lifetime JP2763903B2 (en) 1989-01-18 1989-01-18 Method of manufacturing conductor having self-doping function

Country Status (1)

Country Link
JP (1) JP2763903B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3991566B2 (en) * 1999-09-16 2007-10-17 松下電器産業株式会社 Electrochemical capacitor
EP1728256B1 (en) 2004-03-24 2015-05-13 Showa Denko K.K. Crosslinked self-doping type electrically conducting polymer, production process thereof, product coated with the polymer and electronic device
WO2006016670A1 (en) 2004-08-09 2006-02-16 Showa Denko K.K. Antistatic agent, antistatic film and product coated with antistatic film
US20100103590A1 (en) * 2005-06-27 2010-04-29 Showa Denko K.K. Solid electrolytic capacitor and production method thereof
JP5291713B2 (en) 2008-08-20 2013-09-18 日本電子株式会社 Resist sensitivity improvement method
JP6753098B2 (en) * 2016-03-23 2020-09-09 東ソー株式会社 Method for producing self-doping polythiophene

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE90948T1 (en) * 1986-03-24 1993-07-15 Univ California SELF-DOPED POLYMERS.

Also Published As

Publication number Publication date
JPH02189333A (en) 1990-07-25

Similar Documents

Publication Publication Date Title
KR960009685B1 (en) Self-doped polymers
US4566955A (en) Preparation of finely divided electrically conductive pyrrole polymers
DE60224724T2 (en) 3,4-ALKYLENDIOXYTHIOPHONE COMPOUNDS AND THEIR POLYMERS
US4567250A (en) Preparation of finely divided electrically conductive pyrrole polymers
EP0804497B1 (en) Soluble, electroconductive polypyrrole and method for preparing the same
EP0918766B1 (en) Self-acid-doped highly conducting polythiophenes
WO2012027348A2 (en) Substituted 3,4-propylenedioxythiophene monomers and 3,4-propylenedioxythiophene-based crosslinkers and polymers thereof
US6805816B1 (en) Method of producing π-conjugated polymers
JPH05214080A (en) Fluorinated thiophenes, polymers derived therefrom and conductive polymers containing them
JP2763903B2 (en) Method of manufacturing conductor having self-doping function
JPH04268331A (en) Production of self-doping conductive polymer
JPH10168328A (en) Electroconductive polymer composite material
CN110246703B (en) Functionalized graphene oxide/poly (3, 4-ethylenedioxythiophene) composite material and preparation method thereof
Roković et al. Electrochemical synthesis of polyaniline from aniline/cyclodextrin solutions
Galal et al. Electrochemical synthesis of conducting polymers from oligomers containing thiophene and furan rings
US5587466A (en) Conductive polymer doped by a sulphonated cyclodextrin salt and device for obtaining and/or supplying an active substance incorporating said polymer
EP0313998A2 (en) Modified electrical conductive polymers
Abd-El-Aziz et al. Electropolymerization and Impedance Spectroscopic Characterization of Thiophene Derivatives with η 6-aryl-η 5-cyclopentadienyliron hexaflourophosphates
JPH0632878A (en) Poly@(3754/24)pyridine-2,5-diylvinylene) polymer and its production
JPH06239996A (en) Conductive polymer and its preparation
EP1553109B1 (en) Molecule alignment polymer gel and molecule alignment polymer cast film having self-organizing amphiphilic compound as template and process for producing the same
JP3340893B2 (en) Soluble aminonaphthalene-based conductive polymer and method for producing the same
US5331072A (en) Polyazopyrroles and electric cells based thereon
JP3058735B2 (en) Polypyrrole derivative and method for producing the same
JPH07121983B2 (en) Process for producing polymer having isothianaphthene structure

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

EXPY Cancellation because of completion of term