JPS61197633A - Sulfonated electroconductive organic polymer - Google Patents

Sulfonated electroconductive organic polymer

Info

Publication number
JPS61197633A
JPS61197633A JP3804985A JP3804985A JPS61197633A JP S61197633 A JPS61197633 A JP S61197633A JP 3804985 A JP3804985 A JP 3804985A JP 3804985 A JP3804985 A JP 3804985A JP S61197633 A JPS61197633 A JP S61197633A
Authority
JP
Japan
Prior art keywords
polymer
precursor
water
aniline
organic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3804985A
Other languages
Japanese (ja)
Other versions
JPH089662B2 (en
Inventor
Shohei Tamura
田村 正平
Sadamitsu Sasaki
佐々木 貞光
Masao Abe
正男 阿部
Takashi Ichinose
一瀬 尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP3804985A priority Critical patent/JPH089662B2/en
Publication of JPS61197633A publication Critical patent/JPS61197633A/en
Publication of JPH089662B2 publication Critical patent/JPH089662B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:The titled polymer which is stable and highly electroconductive and need not be subjected to additional doping operation, obtained by sulfonating a specified precursor electroconductive organic polymer. CONSTITUTION:A precursor electroconductive organic polymer is obtained by oxidatively polymerizing aniline, an alkylaniline or a water-soluble salt thereof in a reaction medium consisting of at least one member selected from among water, a water-miscible organic solvent (e.g., acetone) and a water- immiscible organic solvent (e.g., CCl4), all of which are resistant to oxidation with the below-mentioned oxidizing agent, containing a proton acid (e.g., sulfuric acid) and an oxidizing agent (e.g., K2Cr2O7) at a molar ratio of 1.2-50. This polymer is dispersed in a solvent such as 1,2-dichloroethane. To this solution, a sulfonating agent solution formed by dissolving sulfuric anhydride in triethyl phosphate is added under ice cooling and reacted to obtain the titled polymer consisting mainly of repeating units of quinonediimine structure of the formula (wherein R is H or an alkyl) and having a logarithmic viscosity >=0.10 (as measured in 97% H2SO4 at 0.5g/dl and 30 deg.C).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は新規な導電性有機重合体に関し、詳しくは、ア
ニリン又はその誘導体の酸化重合により得られる重合体
をスルホン化してなる新規な導電性有機重合体に関する
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a novel electrically conductive organic polymer, and more specifically, a novel electrically conductive organic polymer obtained by sulfonating a polymer obtained by oxidative polymerization of aniline or a derivative thereof. Concerning organic polymers.

(従来の技術) 殆どの有機物質は電気的に絶縁性であるが、しかし、有
機半導体として知られるmt&性を有する有機重合体の
一部が近年、注目を集めている。一般にそれ自体が導電
性である有機物質は3種類に分類される。第1はグラフ
ァイトである。グラファイトは厳密には有機物質とはみ
なされていないが、有機共役系の極限構造を有するとみ
ることもできる。このグラファイトはそれ自体で既にか
なり高い導電性を有するが、これに種々の化合物をイン
ターカレートすることにより、一層高い導電性を有せし
めることができ、遂には超電導体となる。しかし、グラ
ファイトは二次元性が強く、成形加工が困難であるので
、その応用面において障害となっている。
(Prior Art) Most organic materials are electrically insulating, but some organic polymers with mt& properties, known as organic semiconductors, have attracted attention in recent years. Organic materials that are themselves electrically conductive are generally classified into three types. The first is graphite. Although graphite is not strictly considered an organic material, it can be considered to have the ultimate structure of an organic conjugated system. Graphite itself already has fairly high conductivity, but by intercalating it with various compounds, it can be made to have even higher conductivity, eventually becoming a superconductor. However, graphite has strong two-dimensionality and is difficult to mold, which poses an obstacle in its application.

第2は電荷移動錯体であって、例えば、テトラチアフル
バレンとテトラシアノキノジメタンをそれぞれ電子供与
体及び電子受容体として得られる結晶性物質は、室温で
400〜500 S / amという非常に大きい電導
性を有するが、このような電荷移動錯体は重合体でない
ために、実用的な応用を図るにはグラファイトと同様に
成形加工性に難点がある。
The second is charge transfer complexes, for example, the crystalline materials obtained with tetrathiafulvalene and tetracyanoquinodimethane as electron donors and electron acceptors, respectively, have a very large charge transfer rate of 400-500 S/am at room temperature. Although it has electrical conductivity, since such a charge transfer complex is not a polymer, it has the same difficulty in moldability as graphite for practical application.

第3はポリアセチレンによって代表されるように、ドー
ピングによって高専電性を有するに至るπ電子共役系有
機重合体である。ドーピング前のポリアセチレンの電導
度は、トランス型が10−53 / cm、シス型が1
0−93/cmであり、半導体乃至絶縁体に近い性質を
有している。しかし、このようなポリアセチレンに五フ
ッ化ヒ素、ヨウ素、三酸化イオウ、塩化第二鉄等のよう
な電子受容性化合物或いはアルカリ金属のような電子供
与性化合物をドーピングすることにより、それぞれp型
半導体及びn型半導体を形成させることができ、更には
10’S/cmもの導体レベルの高い導電性を与えるこ
ともできる。上記ポリアセチレンは理論的には興味深い
導電性有機重合体であるが、反面、ポリアセチレンは極
めて酸化を受けやすく、空気中で容易に酸化劣化して性
質が大幅に変化する。ドーピングされた状態では一層酸
化に対して敏感であり、空気中の僅かな湿気によっても
電導度が急激に減少する。この傾向はn型半導体に特に
著しい。
The third type is a π-electron conjugated organic polymer that has high electrical properties through doping, as typified by polyacetylene. The conductivity of polyacetylene before doping is 10-53/cm for trans type and 1 for cis type.
0-93/cm, and has properties close to those of a semiconductor or an insulator. However, by doping such polyacetylene with electron-accepting compounds such as arsenic pentafluoride, iodine, sulfur trioxide, ferric chloride, etc., or electron-donating compounds such as alkali metals, p-type semiconductors can be obtained. It is possible to form an n-type semiconductor, and it is also possible to provide a high conductivity of as high as 10'S/cm. The above-mentioned polyacetylene is theoretically an interesting conductive organic polymer, but on the other hand, polyacetylene is extremely susceptible to oxidation and is easily oxidized and deteriorated in the air, causing its properties to change significantly. In the doped state, it is more sensitive to oxidation, and even a small amount of moisture in the air causes a sharp decrease in conductivity. This tendency is particularly remarkable for n-type semiconductors.

また、ポリ (p〜フェニレン)やポリ (p−フェニ
レンサルファイド)もドーピング前はその電導度がそれ
ぞれ1O−9S/cm及び10−16S/cmであるが
、例えば前記した五フッ化ヒ素をドーピングすることに
より、それぞれ電導度は500S/ cm及びIs/a
mである導電性有機重合体とすることができる。これら
のドーピングされた有機重合体の電気的性質も程度の差
こそあれ、やはり不安定である。
Furthermore, poly(p-phenylene) and poly(p-phenylene sulfide) have electrical conductivities of 1O-9S/cm and 10-16S/cm, respectively, before doping, but when doped with arsenic pentafluoride, for example, Therefore, the conductivity is 500 S/cm and Is/a, respectively.
The conductive organic polymer can be m. The electrical properties of these doped organic polymers are also unstable to varying degrees.

このようにドーピングされた導電性有機重合体の電気的
性質が一般に環境に対して非常に不安定であることは、
この種の導電性有機重合体に共通する現象であって、こ
れらの実用的な応用の障害となっている。
The electrical properties of such doped conductive organic polymers are generally very unstable to the environment.
This phenomenon is common to this type of conductive organic polymers, and is an obstacle to their practical application.

以上のように、従来より種々の有機導電性物質が知られ
ているが、その実用的な応用を展開する観点からは成形
加工性にすぐれる重合体形態が好ましい。
As described above, various organic conductive substances have been known so far, but from the viewpoint of developing practical applications, polymer forms with excellent moldability are preferred.

一方・酸化染料としてのアニリンの酸化重合体に関する
研究も、アニリンブラックに関連して古くより行なわれ
ている。特に、アニリンブラック生成の中間体として、
式(1)で表わされるアニリンの8量体がエメラルデイ
ン(emeraldine)として確認されており (
A、 G、 Green et at、、 J。
On the other hand, research on oxidized polymers of aniline as oxidized dyes has been conducted for a long time in connection with aniline black. In particular, as an intermediate for the production of aniline black,
The aniline octamer represented by formula (1) has been confirmed as emeraldine (
A. G. Green et at., J.

Chem、 Soc、、 97.2388(1910)
;胆1.1)1?<1912))、これは80%酢酸、
冷ピリジン及びN、N−ジメチルホルムアミドに可溶性
である。また、このエメラルデインはアンモニア性媒体
中で酸化されて、式(n)で表わされるニグラニリン(
nigraniline)を生成し、これもエメラルデ
ィンと類似した溶解特性を有することが知られている。
Chem, Soc, 97.2388 (1910)
;Bile 1.1)1? <1912)), which is 80% acetic acid,
Soluble in cold pyridine and N,N-dimethylformamide. In addition, this emeraldine is oxidized in an ammoniacal medium to produce nigraniline (
nigraniline), which is also known to have similar solubility properties to emeraldine.

更に、近年になって、R,Buvetらによってこのエ
メラルデインの硫酸塩が高い導電性を有することが見い
出されている(J、 Polymer Sci、、 C
+ 16+2931 i 2943(1967); 2
2.1)87(1969))。
Furthermore, in recent years, it has been discovered by R. Buvet et al. that this sulfate of emeraldine has high conductivity (J. Polymer Sci, C.
+ 16+2931 i 2943 (1967); 2
2.1) 87 (1969)).

また、既にアニリンの電解酸化重合によってエメラルデ
イン類似の有機物質を得ることができることも知られて
いる(D、 M、 Mohilner et al、、
 J。
It is also already known that an organic substance similar to emeraldine can be obtained by electrolytic oxidative polymerization of aniline (D, M, Mohilner et al.
J.

Amer、 Chem、 Sac、、 84.3618
(1962)) 、即ち、これによれば、アニリンの硫
酸水溶液を白金電極を用い、水の電気分解を避けるため
に、標準カロメル電極に対して千〇、8Vの酸化電位に
て電解酸化重合し、80%酢酸、ピリジン及びN、N−
ジメチルホルムアミドに可溶性である物質が得られる。
Amer, Chem, Sac,, 84.3618
(1962)), that is, an aqueous sulfuric acid solution of aniline was electrolytically oxidized and polymerized using a platinum electrode at an oxidation potential of 1,000,8 V relative to a standard calomel electrode in order to avoid electrolysis of water. , 80% acetic acid, pyridine and N,N-
A substance is obtained which is soluble in dimethylformamide.

そのほか、Diazら(J、 Electroanal
、 Chem、。
In addition, Diaz et al. (J, Electroanal
, Chem.

皿1)1 (1980) )や、小山ら(高分子学会予
稿集。
(1) (1980)) and Koyama et al. (Proceedings of the Society of Polymer Science and Technology).

30、 (7)、 1524(1981); J、 E
lectroanal、Chem、。
30, (7), 1524 (1981); J, E
electroanal, Chem.

16L 399(1984))もアニリンの電解酸化重
合を試みているが、いずれも高分子被覆化学修飾電極を
目的としたものであって、電解はIV以下の電位で行な
っている。
16L 399 (1984)) also attempted electrolytic oxidative polymerization of aniline, but both were aimed at polymer-coated chemically modified electrodes, and the electrolysis was performed at a potential below IV.

(発明の目的) 本発明者らは、安定で高導電性を有する有機材料、特に
、導電性有機重合体を得るために、アニリンの酸化重合
に関する研究を鋭意重ねた結果、アニリンの酸化重合の
反応条件を選択することにより、上記エメラルデインよ
りも溝かに高分子量を有し、且つ、既にその酸化重合段
階でドーピングされているために、新たなドーピング操
作を要せずして安定で且つ高導電性を有する重合体を得
ることができることを見出した(特願昭58−2122
80号及び特願昭5E1212281号)。
(Objective of the Invention) The present inventors have conducted extensive research on the oxidative polymerization of aniline in order to obtain stable and highly conductive organic materials, particularly conductive organic polymers. By selecting the reaction conditions, it has a higher molecular weight than the above-mentioned emeraldine, and since it has already been doped in the oxidative polymerization stage, it is stable and does not require a new doping operation. It was discovered that a polymer having high conductivity could be obtained (Japanese Patent Application No. 58-2122
No. 80 and Japanese Patent Application No. 5E1212281).

その後、本発明者らは更に鋭意研究した結果、この重合
体がキノンジイミン構造を主たる繰返し単位として有す
る実質的に線状の高分子量重合体であると共に、この重
合体の芳香環の一部をスルホン化することにより、更に
高い導電性を付与し得ることを見出して、本発明に至っ
たものである。
Subsequently, as a result of further intensive research, the present inventors found that this polymer is a substantially linear high molecular weight polymer having a quinone diimine structure as the main repeating unit, and that a portion of the aromatic rings of this polymer are sulfonated. The present invention was achieved based on the discovery that even higher conductivity could be imparted by adding .

従って、本発明は新規な導電性有機重合体を提供するこ
とを目的とする。
Therefore, it is an object of the present invention to provide a novel conductive organic polymer.

(発明の構成) 本発明によるスルホン化導電性有機重合体は、([[) (但し、Rは水素又は、アルキル基を示す。)で表わさ
れるキノンジイミン構造を主たる繰返し単位として有す
る実質的に線状の重合体であって、且つ、この重合体の
0.5 g/di濃硫酸溶液が30’Cにおいて0.1
0以上の対数粘度を有する重合体において、芳香環の一
部がスルホン酸基を有することを特徴とする。
(Structure of the Invention) The sulfonated conductive organic polymer according to the present invention has a quinone diimine structure represented by ([[) (where R represents hydrogen or an alkyl group) as a main repeating unit and is substantially linear. A 0.5 g/di concentrated sulfuric acid solution of this polymer has a concentration of 0.1 at 30'C.
A polymer having a logarithmic viscosity of 0 or more is characterized in that a part of the aromatic ring has a sulfonic acid group.

本発明によるスルホン化導電性有機重合体は、前記(D
I)弐で表わされる繰返し単位を有し、前記所定の対数
粘度を有する前駆体導電性有機重合体(以下、単に前駆
体という。)を常法に従ってスルホン化することにより
得ることができ、上記前駆体は、アニリン若しくはその
誘導体を所定の条件下に化学酸化剤によって酸化重合し
、又はアニリン若しくはその誘導体を所定の条件下で電
解酸化重合することによって得ることができる。
The sulfonated conductive organic polymer according to the present invention has the above-mentioned (D
I) It can be obtained by sulfonating a precursor conductive organic polymer (hereinafter simply referred to as precursor) having a repeating unit represented by 2 and having the above-mentioned predetermined logarithmic viscosity according to a conventional method, and the above-mentioned The precursor can be obtained by subjecting aniline or a derivative thereof to oxidative polymerization using a chemical oxidizing agent under predetermined conditions, or by subjecting aniline or a derivative thereof to electrolytic oxidation polymerization under predetermined conditions.

先ず、上記前駆体について説明する。First, the above precursor will be explained.

この前駆体は、例えば、アニリン若しくはアルキルアニ
リン、又はその水溶性塩をプロトン酸と酸化剤とを含有
する反応媒体中で酸化重合させることによって得ること
ができる。アルキルアニリンとしてはO−メチルアニリ
ン、m−メチル7ニリン、0−エチルアニリン、m−エ
チルアニリン等が好ましく用いられる。アニリン及びこ
れらのアルキルアニリンのなかでは、特に、高導電性を
機雷合体を与えるアニリンが好ましく用いられる。
This precursor can be obtained, for example, by oxidative polymerization of aniline or alkylaniline, or a water-soluble salt thereof, in a reaction medium containing a protic acid and an oxidizing agent. As the alkylaniline, O-methylaniline, m-methyl7niline, 0-ethylaniline, m-ethylaniline, etc. are preferably used. Among aniline and these alkylanilines, aniline, which provides a mine coalescence with high electrical conductivity, is particularly preferably used.

アニリン又はアルキルアニリンの水溶性塩としては、通
常、塩酸、硫酸等のFL酸塩が好適であるが、これらに
限定されるものではない。また、酸化剤も特に制限され
るものではないが、酸化クロム(IV)や、重クロム酸
カリウム、重クロム酸ナトリウム等の重クロム酸塩が好
適であり、特に、重クロム酸カリウムが最適である。ま
た、プロトン酸としては、硫酸、塩酸、臭化水素酸、テ
トラフロオロホウ酸(nB’P4)、ヘキサフルオロリ
ン酸CHPF&)等が用いられるが、特に硫酸が好適で
ある。アニリン又はアルキルアニリンの水)容性塩を形
成するために鉱酸を用いるとき、この鉱酸は上記プロト
ン酸と同じでも、異なってもよい。
As the water-soluble salt of aniline or alkylaniline, FL salts such as hydrochloric acid and sulfuric acid are generally preferred, but are not limited thereto. Further, the oxidizing agent is not particularly limited, but chromium (IV) oxide and dichromates such as potassium dichromate and sodium dichromate are suitable, and potassium dichromate is particularly optimal. be. Further, as the protonic acid, sulfuric acid, hydrochloric acid, hydrobromic acid, tetrafluoroboric acid (nB'P4), hexafluorophosphoric acid (CHPF&), etc. are used, and sulfuric acid is particularly preferred. When a mineral acid is used to form the water-soluble salt of aniline or alkylaniline, this mineral acid may be the same as or different from the protic acid described above.

反応媒体としては水、水混和性有機溶剤及び水非混和性
有機溶剤の1種又は2種以上の混合物を用いることがで
きるが、アニリン又はアルキルアニリンの水溶性塩が用
いられるときは、反応媒体には通常、これら水溶性塩を
溶解する水、水混和性有機溶剤又はこれらの混合物が用
いられ、また、アニリンやアルキルアニリン自体が用い
られるときは、反応媒体としては、これらを溶解する水
混和性有機溶剤又は水非混和性有機溶剤が用いられる。
As the reaction medium, one or a mixture of two or more of water, a water-miscible organic solvent, and a water-immiscible organic solvent can be used; however, when a water-soluble salt of aniline or alkylaniline is used, the reaction medium Usually, water, a water-miscible organic solvent, or a mixture thereof is used to dissolve these water-soluble salts, and when aniline or alkylaniline itself is used, the reaction medium is a water-miscible solvent that dissolves them. A water-immiscible organic solvent or a water-immiscible organic solvent is used.

尚、上記有機溶剤はいずれも用いる酸化剤によって酸化
されないことが必要である。例えば、水混和性有機溶剤
としては、アセトン、テトラヒドロフラン、酢酸等のケ
トン類、エーテル類又は有機酸類が用いられ、また、水
非混和性有機溶剤としては四塩化炭素、炭化水素等が用
いられる。
Incidentally, it is necessary that the above organic solvents are not oxidized by the oxidizing agent used. For example, as the water-miscible organic solvent, ketones, ethers, or organic acids such as acetone, tetrahydrofuran, and acetic acid are used, and as the water-immiscible organic solvent, carbon tetrachloride, hydrocarbons, etc. are used.

前駆体の好ましい製造方法は、アニリン若しくはアルキ
ルアニリン又はこれらの水溶性塩をプロトン酸含有反応
媒体中で酸化剤で酸化重合させる方法において、上記酸
化剤を含む反応媒体におけるプロトン酸/重クロム酸カ
リウムモル比を1.2以上とする。上限は特に制限され
ないが、通常、50程度である。特に、好ましくは、ア
ニリンのを機溶液又はアニリン水溶性塩の水溶液中に攪
拌下にプロトン酸酸性の酸化剤水溶液を滴下し、又は一
括添加して反応を行なわせるものである。
A preferred method for producing the precursor is a method in which aniline or alkylaniline or a water-soluble salt thereof is oxidatively polymerized with an oxidizing agent in a reaction medium containing a protonic acid, wherein the protonic acid/potassium dichromate in the reaction medium containing the oxidizing agent is oxidatively polymerized. The molar ratio is set to 1.2 or more. The upper limit is not particularly limited, but is usually about 50. Particularly preferably, the reaction is carried out by dropping an aqueous solution of a protonic acidic oxidizing agent into a solution of aniline or an aqueous solution of a water-soluble salt of aniline with stirring, or by adding it all at once.

反応温度は溶剤の沸点以下であれば特に制限されないが
、反応温度が高温になるほど、得られる酸化重合体の導
電性が小さくなる傾向があるので、高い導電性を有する
前駆体を得る観点からは常温以下が好ましい。
The reaction temperature is not particularly limited as long as it is below the boiling point of the solvent, but the higher the reaction temperature, the lower the conductivity of the resulting oxidized polymer tends to be, so from the viewpoint of obtaining a precursor with high conductivity, It is preferably at room temperature or lower.

上記のような方法によれば、通常、数分程度の誘導期間
を経た後、直ちに重合体が析出する。このように反応は
直ちに終了するが、通常、その後数分乃至数時間、熟成
のために撹拌する。次いで、反応混合物を大量の水中又
は有機溶剤中に投入し、重合体を濾別し、濾液が中性に
なるまで水洗した後、アセトン等の有機溶剤にてこれが
着色しなくなるまで洗滌し、真空乾燥して、前駆体を得
る。
According to the above method, the polymer usually precipitates immediately after an induction period of about several minutes. In this way, the reaction ends immediately, but the mixture is usually stirred for several minutes to several hours afterwards for ripening. Next, the reaction mixture was poured into a large amount of water or an organic solvent, the polymer was filtered out, and the filtrate was washed with water until it became neutral, and then washed with an organic solvent such as acetone until it was no longer colored, and the polymer was evaporated under vacuum. Dry to obtain a precursor.

このようにしそ得られる前駆体は、実質的に前記繰返し
単位からなり、その重合段階で既にプロトン酸によって
ドーピングされているために、新たなドーピング処理を
要せずして高導電性を有し、しかも、長期間にわたって
空気中に放置しても、その導電性は何ら変化せず、従来
より知られているドーピングした導電性有機重合体に比
較して、特異的に高い安定性を有している。即ち、前駆
体は、電導度が1O−6S/cm以上、通常、1o−3
〜10’S/cmである。また、前駆体は、乾燥した粉
末状態において、通常、緑色乃至黒縁色を呈し、一般に
導電性が高いほど、鮮やかな緑色を呈している。しかし
、この前駆体を加圧成形するとき、通常、光沢のある青
色を示す。
The precursor obtained in this way consists essentially of the above-mentioned repeating units and has already been doped with a protic acid during the polymerization stage, so it has high conductivity without the need for a new doping treatment. Moreover, its conductivity does not change even if it is left in the air for a long period of time, and it has a uniquely high stability compared to conventionally known doped conductive organic polymers. ing. That is, the precursor has an electrical conductivity of 1O-6S/cm or more, usually 1O-3
~10'S/cm. Further, in a dry powder state, the precursor usually exhibits a green to black edge color, and generally, the higher the conductivity, the brighter the green color. However, when this precursor is pressure molded, it usually exhibits a shiny blue color.

前駆体は水及び殆どの有機溶剤に不溶性であるが、通常
、濃硫酸に僅かに溶解し、又は溶解する部分を含む。濃
硫酸への溶解度は、重合体を生成させるための反応条件
によっても異なるが、通常、0.2〜10重量%の範囲
であり、殆どの場合、0゜25〜5重量%の範囲である
。但し、この溶解度は、特に高分子量の重合体の場合に
は、重合体が上記範囲の溶解度を有する部分を含むとし
て理解されるべきである。前記したように、エメラルデ
インが80%酢酸、冷ピリジン及びN、N−ジメチルホ
ルムアミドに可溶性であるのと著しい対照をなす。
The precursor is insoluble in water and most organic solvents, but is usually slightly soluble or contains a portion that is soluble in concentrated sulfuric acid. The solubility in concentrated sulfuric acid varies depending on the reaction conditions for producing the polymer, but is usually in the range of 0.2 to 10% by weight, and in most cases in the range of 0.25 to 5% by weight. . However, this solubility is to be understood as including, particularly in the case of high molecular weight polymers, the portion of the polymer that has a solubility in the above range. In sharp contrast, as noted above, emeraldine is soluble in 80% acetic acid, cold pyridine, and N,N-dimethylformamide.

また、前駆体は、97%濃硫酸の0.5g/di溶液が
30℃において0.1〜1.0の範囲の対数粘度を有し
、殆どの場合、0.2〜0.6である。この場合におい
ても、特に高分子量の重合体の場合には、濃硫酸に可溶
性の部分が上記範囲の対数粘°度を有するとして理解さ
れるべきである。これに対して、同じ条件下でのエメラ
ルディン及びアニリンブラックの対数粘度はそれぞれ0
.02及びO,OO5であり、前駆体が高分子量重合体
であることが示される。更に、示差熱分析結果も前駆体
が高分子量重合体であることを示している。
The precursor also has a log viscosity in the range of 0.1 to 1.0 at 30° C. in 0.5 g/di solution of 97% concentrated sulfuric acid, and in most cases 0.2 to 0.6. . In this case too, especially in the case of polymers of high molecular weight, it is to be understood that the portion soluble in concentrated sulfuric acid has a logarithmic viscosity in the above range. In contrast, the logarithmic viscosities of emeraldine and aniline black under the same conditions are 0, respectively.
.. 02 and O,OO5, indicating that the precursor is a high molecular weight polymer. Further, differential thermal analysis results also indicate that the precursor is a high molecular weight polymer.

前駆体の代表例として、アニリンの酸化重合によって得
られた前駆体の赤外線吸収スペクトルを第1図に示し、
比較のためにエメラルディン及びアニリンブラック(市
販顔料としてのダイヤモンド・ブラック)の赤外線吸収
スペクトルをそれぞれ第2図及び第3図に示す。
As a representative example of a precursor, the infrared absorption spectrum of a precursor obtained by oxidative polymerization of aniline is shown in Figure 1.
For comparison, the infrared absorption spectra of emeraldine and aniline black (diamond black as a commercially available pigment) are shown in FIGS. 2 and 3, respectively.

前駆体の赤外線吸収スペクトルはエメラルデインのそれ
に類以するが、一方において、前駆体においては、エメ
ラルデインに明瞭に認められる一置換ベンゼンのC−H
面外変角振動に基づく吸収が殆どみられないのに対して
、パラ置換ベンゼンに基づく吸収が相対的に大きい。し
かし、前駆体のスペクトルはアニリンブラックとは大幅
に異なる。従って、前駆体はパラ置換ベンゼンを多数含
むエメラルデイン類以の構造を有する。
The infrared absorption spectrum of the precursor is similar to that of emeraldine, but on the other hand, in the precursor, C-H of monosubstituted benzene, which is clearly observed in emeraldine,
While absorption based on out-of-plane bending vibration is hardly observed, absorption based on para-substituted benzene is relatively large. However, the spectrum of the precursor is significantly different from aniline black. Therefore, the precursor has a structure greater than or equal to emeraldines containing a large number of para-substituted benzenes.

前駆体は、アニリン又はその誘導体の酸化重合の段階で
系中に存在する電子受容体によってドーピングされてお
り、この結果として高導電性を有する。即ち、重合体か
ら電子受容体への電荷移動が生じて、重合体と電子受容
体との間に電荷移動錯体を形成している。前駆体を例え
ばディスク状に成形して、これに一対の電極を取付け、
これら電極間に温度差を与えて半導体に特有の熱起電力
を生ぜしめるとき、低温電極側がプラス、高温電極側が
マイナスの起電力を与えるので、前駆体がp型半導体で
あることが示される。
The precursor is doped with electron acceptors present in the system during the oxidative polymerization of aniline or its derivatives, and as a result has high electrical conductivity. That is, charge transfer occurs from the polymer to the electron acceptor, forming a charge transfer complex between the polymer and the electron acceptor. The precursor is formed into a disk shape, for example, and a pair of electrodes are attached to it.
When a temperature difference is applied between these electrodes to generate a thermoelectromotive force specific to semiconductors, the low temperature electrode side gives a positive electromotive force and the high temperature electrode side gives a negative electromotive force, which indicates that the precursor is a p-type semiconductor.

更に、前駆体は、アンモニア等にて化学補償することに
よって導電性が大幅に減少し、また、外観的にも黒縁色
から紫色に変化し、これを再度硫酸等の電子受容体にて
ドーピングすることにより、色も黒縁色に戻ると共に、
当初の高導電性を回復する。この変化は可逆的であり、
化学補償及びドーピングを繰り返して行なっても同じ結
果が得られる。第4図にこの化学補償及び再ドーピング
による重合体の赤外線吸収スペクトルの変化を示す。
Furthermore, when the precursor is chemically compensated with ammonia or the like, its conductivity is significantly reduced, and its appearance changes from black to purple, which is then doped again with an electron acceptor such as sulfuric acid. As a result, the color returns to black border color, and
Restores the original high conductivity. This change is reversible;
The same result can be obtained by repeated chemical compensation and doping. FIG. 4 shows changes in the infrared absorption spectrum of the polymer due to this chemical compensation and redoping.

Aは当初の重合体、Bは化学補償した重合体、及びCは
再ドーピングした重合体を示す。CのスペクトルがAと
ほぼ完全に一致することが明らかであり、従って、上記
化学補償及び再ドーピングは重合体の骨格構造の変化で
はなく、重合体と化学補償試薬或いは電子受容体との間
の電子の授受である。このようにして、前駆体が酸化重
合の段階で電子受容体にてドーピングされ、かくして、
前駆体はドーパントを含んでいることが理解される。
A represents the original polymer, B represents the chemically compensated polymer, and C represents the redoped polymer. It is clear that the spectrum of C almost completely matches that of A, and therefore, the above chemical compensation and redoping are not changes in the skeletal structure of the polymer, but are caused by the interaction between the polymer and the chemical compensation reagent or electron acceptor. This is the exchange of electrons. In this way, the precursor is doped with electron acceptors during the oxidative polymerization step, thus
It is understood that the precursor includes a dopant.

前駆体の化学構造は、上記した赤外線吸収スペクトルの
ほか、前駆体の元素分析によって確認され、また、前駆
体をアンモニア等で化学補償した重合体(以下、補償前
駆体という。)の元素分析からも確認され、実質的に、
前記繰返し単位からなる線状高分子重合体であり、π電
子共役系がドーパントを含むことによって高導電性を有
するとみられる。
The chemical structure of the precursor was confirmed by elemental analysis of the precursor in addition to the above-mentioned infrared absorption spectrum, and was also confirmed by elemental analysis of a polymer obtained by chemically compensating the precursor with ammonia etc. (hereinafter referred to as the compensated precursor). It has also been confirmed that, in effect,
It is a linear high-molecular polymer composed of the above-mentioned repeating units, and is considered to have high electrical conductivity because the π-electron conjugated system contains a dopant.

本発明によるスルホン化導電性有機重合体は、上記のよ
うな前駆体を常法に従ってスルホン化することにより得
ることができる。一般に、芳香族重合体のスルホン化に
ついては、既に種々の方法が知られており、本発明にお
いては、かかる従来の方法を特に制限されることなく採
用することができる。例えば、濃硫酸、クロル硫酸、無
水硫酸による方法等によっても、本発明によるスルホン
化導電性有機重合体を得ることができるが、特に、無水
硫酸/リン酸トリエチル錯体を用いる方法が比較的穏和
な条件下で前駆体をスルホン化し得るので、好ましく用
いることができる。この方法は、例えば、ポリスルホン
のスルホン化においてよく知られている(J、 App
l、 Polymer Chem、、 20゜1885
 (1976))。
The sulfonated conductive organic polymer according to the present invention can be obtained by sulfonating the above-mentioned precursor according to a conventional method. Generally, various methods are already known for sulfonation of aromatic polymers, and in the present invention, such conventional methods can be employed without particular restriction. For example, the sulfonated conductive organic polymer of the present invention can also be obtained by a method using concentrated sulfuric acid, chlorosulfuric acid, sulfuric anhydride, etc., but in particular, a method using a sulfuric anhydride/triethyl phosphate complex is relatively mild. Since the precursor can be sulfonated under certain conditions, it can be preferably used. This method is well known, for example, in the sulfonation of polysulfones (J, App.
l, Polymer Chem,, 20°1885
(1976)).

より詳細には、例えば、前駆体を1,2−ジクロロエタ
ンのような適宜の溶剤に分散させ、無水硫酸とリン酸ト
リエチルを溶解させたスルーホン化剤溶液を水冷下に上
記分散液に添加し、反応終了後、スルホン化された重合
体を濾別し、洗浄すれ(よ、スルホン化導電性有機重合
体を得る。
More specifically, for example, the precursor is dispersed in an appropriate solvent such as 1,2-dichloroethane, and a sulfonating agent solution in which sulfuric anhydride and triethyl phosphate are dissolved is added to the dispersion while cooling with water. After the reaction is completed, the sulfonated polymer is filtered off and washed to obtain a sulfonated conductive organic polymer.

本発明によるこのようなスルホン化導電性有機重合体の
化学構造は、元素分析及び赤外線吸収スペクトルによっ
て確認される。
The chemical structure of such sulfonated conductive organic polymers according to the invention is confirmed by elemental analysis and infrared absorption spectra.

(発明の効果) 本発明によるスルホン化導電性有機重合体番よ、本来、
高導電性であるアニリンスはその誘導体力・ら得られる
実質的にキノンジイミン構造からなる前駆体をスルホン
化してなり、その導電性が一層高められている。また、
このような導電性高分子重合体は、導電性を有するうえ
に、荷電を有する高分子物質として、例えば、電気的手
法と組み合わせた分離膜のような機能性高分子重合体と
して利用することができる。
(Effect of the invention) The sulfonated conductive organic polymer according to the present invention originally has
Aniline, which has high conductivity, is obtained by sulfonating a precursor obtained from its derivative, which essentially consists of a quinone diimine structure, and its conductivity is further enhanced. Also,
Such conductive polymers have electrical conductivity and can be used as charged polymer substances, for example, as functional polymers such as separation membranes combined with electrical methods. can.

(実施例) 以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら限定されるものではない。
(Examples) The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例 (1)前駆体の製造 300m1容量のフラスコ中に水45gを入れ、濃塩酸
4mlを加え、更にアニリン5g(0,0537モル)
を溶解させ、アニリン塩酸塩水溶液を調製し、氷水でフ
ラスコを冷却した。
Example (1) Preparation of precursor 45 g of water was placed in a 300 ml flask, 4 ml of concentrated hydrochloric acid was added, and 5 g of aniline (0,0537 mol) was added.
was dissolved to prepare an aqueous aniline hydrochloride solution, and the flask was cooled with ice water.

別に、水28.8 gに濃硫酸4.61 g (0,0
47モル)を加え、更に重クロム酸カリウム1.84 
g(0,00625モル)を溶解させた酸化剤水溶液(
プロトン酸/重クロム酸カリウムモル比7.5)を調製
し、これを氷水で冷却した上記アニリンの塩酸塩水溶液
中に撹拌下、滴下ろうとから30分間を要して滴下した
。滴下開始後、最初の2〜3分間は溶液が黄色に着色し
たのみであったが、その後、速やかに緑色固体が析出し
、反応液は黒縁色を呈した。
Separately, 4.61 g of concentrated sulfuric acid (0,0
47 mol) and further potassium dichromate 1.84
An oxidizing agent aqueous solution in which g (0,00625 mol) was dissolved (
A protonic acid/potassium dichromate molar ratio of 7.5) was prepared, and this was added dropwise to the aqueous aniline hydrochloride solution cooled with ice water over a period of 30 minutes from a dropping funnel while stirring. After the start of the dropwise addition, the solution was only colored yellow for the first 2 to 3 minutes, but thereafter, a green solid was quickly precipitated, and the reaction solution had a black edge color.

滴下終了後、更に30分間攪拌し、この後、反応混合物
をアセトン400m1中に投じ、2時間攪拌し、次いで
、重合体を濾別した。得られた重合体を蒸留水中で攪拌
洗滌し、濾別し、このようにして濾液が中性になるまで
洗滌を繰り返した。次いで、濾別した重合体をアセトン
により濾液が着色しなくなるまで洗滌を繰り返した。濾
別した重合体を五酸化リン上、室温で10時間真空乾燥
し、前駆体を緑色粉末として得た。
After the addition was completed, the mixture was stirred for an additional 30 minutes, and then the reaction mixture was poured into 400 ml of acetone, stirred for 2 hours, and then the polymer was filtered off. The resulting polymer was washed with stirring in distilled water, filtered off, and washing was repeated in this manner until the filtrate became neutral. Next, the filtered polymer was washed repeatedly with acetone until the filtrate was no longer colored. The filtered polymer was vacuum dried over phosphorus pentoxide at room temperature for 10 hours to obtain a precursor as a green powder.

(2)前駆体の物性 上で得た前駆体を室温において濃度97%の濃硫酸に加
え、攪拌して、その溶解炭を調べたところ、溶解量は1
.2重量%であった。また、濃度0゜5g/dlとした
この重合体の97%濃硫酸溶液の温度30℃における対
数粘度は0.46であった。比較のために、エメラルデ
イン及びダイヤモンド・ブラックの同じ条件下での粘度
はそれぞれ0.02及びo、oosであった。
(2) Physical properties of the precursor The precursor obtained above was added to concentrated sulfuric acid with a concentration of 97% at room temperature, stirred, and the dissolved carbon was examined, and the dissolved amount was 1
.. It was 2% by weight. Further, the logarithmic viscosity of a 97% concentrated sulfuric acid solution of this polymer at a concentration of 0.5 g/dl at a temperature of 30.degree. C. was 0.46. For comparison, the viscosities of Emeraldine and Diamond Black under the same conditions were 0.02 and o,oos, respectively.

更に、上記前駆体及びエメラルデインについての空気中
における熱重量分析の結果を第5図に示す、昇温速度は
10℃/分である。
Furthermore, the results of thermogravimetric analysis in air of the above precursor and emeraldine are shown in FIG. 5, and the heating rate is 10° C./min.

次に、上で得た前駆体粉末約120■を璃瑞製乳鉢で粉
砕した後、赤外分光光度計用錠剤成形器にて圧力600
0 kg/co(で直径1:3nのディスクに加圧成形
した。幅約1)mO銅箔4本を銀ペースト又はグラファ
イトペーストでディスクの四隅に接着し、空気中でファ
ン・デル・ポウ法に従って測定した結果、電導度は0.
4 OS /cmであった。
Next, approximately 120 μg of the precursor powder obtained above was crushed in a mortar made by Rizui, and then a pressure of 600 μm was used in a tablet molding machine for infrared spectrophotometers.
0 kg/co (pressure molded into a disk with a diameter of 1:3n, width about 1)mO. Four pieces of copper foil were adhered to the four corners of the disk with silver paste or graphite paste, and the van der Pouw method was applied in air. As a result of measurement according to the method, the conductivity was 0.
It was 4 OS/cm.

この重合体成形物は、10−2Torrの真空中で測定
しても、はぼ同じ電導度を示した。このディスクを4か
月間空気中に放置したが、電導度は実質的に変化しなか
った。
The polymer moldings exhibited approximately the same electrical conductivity when measured in a vacuum of 10<-2 >Torr. This disk was left in air for 4 months with virtually no change in conductivity.

(3)前駆体の赤外線吸収スペクトル 上で得た前駆体の赤外線吸収スペクトルを第1図に示す
。比較のために、エメラルデイン及び市販ダイヤモンド
・ブラックの赤外線吸収スペクトルをそれぞれ第2図及
び第3図に示す。尚、エメラルデインは A、 G、 
Green らの方法によって調製した(A、 G、 
Green et al、、 J、 Chem、 So
c、、97+2388 (1910) )。
(3) Infrared absorption spectrum of the precursor The obtained infrared absorption spectrum of the precursor is shown in FIG. For comparison, the infrared absorption spectra of Emeraldine and commercially available Diamond Black are shown in Figures 2 and 3, respectively. Furthermore, Emeraldine is A, G,
Prepared by the method of Green et al. (A, G,
Green et al., J. Chem. So.
c,,97+2388 (1910)).

前駆体の赤外線吸収スペクトルは、エメラルデインのそ
れと類似するが、同時に大きい差違もある。即ち、エメ
ラルデインには一置換ベンゼンに基づ<、C−H面外変
角振動による690cm−’及び740c+r’の明瞭
な吸収が認められるが、前駆体においては、これらの吸
収は殆ど認められず、代わりにバラ置換ベンゼンを示す
800cm−’の吸収が強く認められる。これはエメラ
ルデインが低分子量体であるために、分子末端の一置換
ヘンゼンに基づく吸収が相対的に強く現われるのに対し
て、前駆体は高分子量体であるために、高分子鎖をなす
パラ置換ベンゼンに基づく吸収が相対的に強く現われる
からである。これに対して、アニリンブラックの赤外線
吸収スペクトルは本発明による重合体及びエメラルデイ
ンのいずれとも顕著に相違し、特に、3200〜340
0cm−’付近の広幅の吸収、1680cm−’にある
キノン性カルボニル基と認められる吸収、1200〜1
300cm−’のC−N伸縮振動領域、600cm−’
以下の領域等において異なることが明らかである。
The infrared absorption spectrum of the precursor is similar to that of emeraldine, but at the same time there are significant differences. That is, in emeraldine, clear absorption at 690 cm-' and 740 c+r' due to C-H out-of-plane bending vibration is observed due to monosubstituted benzene, but these absorptions are hardly observed in the precursor. Instead, a strong absorption at 800 cm-' indicating rose-substituted benzene is observed. This is because emeraldine has a low molecular weight, so the absorption based on the monosubstituted Hensen at the end of the molecule appears relatively strong, whereas the precursor has a high molecular weight, so the parameters forming the polymer chain appear relatively strong. This is because absorption based on substituted benzene appears relatively strongly. On the other hand, the infrared absorption spectrum of aniline black is significantly different from both the polymer according to the present invention and emeraldine.
Broad absorption near 0 cm-', absorption recognized as a quinonic carbonyl group at 1680 cm-', 1200-1
C-N stretching vibration area of 300 cm-', 600 cm-'
It is clear that there are differences in the following areas.

前駆体における赤外線吸収スペクトルの帰属は次のとお
りである。
The assignment of the infrared absorption spectrum in the precursor is as follows.

1610cm−’ (ショルダー、C=N伸縮振動)1
570.1480cm−’ (ベンゼン環C−C伸縮振
動) 1300.1240cm−’ (C−N伸縮振動)1)
20cm−’(ドーパントに基づく吸収。ドーパントの
種類によらず、はぼ同じ位置に吸収を有する。) 800cm−’(バラ置換ベンゼンC−H面外片角振動
) 740.690cm+−’(−置換ベンゼンC−H面外
変角振動) また、上記前駆体をアンモニア補償したときの赤外線吸
収スペクトルを第4図(B)に示し、これを5N硫酸で
再びドーピングした後の赤外線吸収スペクトルを第4図
(C)に示す。この再ドーピング後のスペクトルは第4
図(A)に示す当初のそれとほぼ完全に同じであり、更
に、電導度もアンモニア補償前と同じである。また、電
導度の変化は、補償前(A)は0.4 OS /cm、
補償後(B)は1.6 X 10−”S/cm、再ドー
ピング後(C)は0.31 S /cmであった。従っ
て、本発明による重合体は、その酸化重合の段階で用い
たプロトン酸によって既にドーピングされていることが
示される。
1610cm-' (shoulder, C=N stretching vibration) 1
570.1480cm-' (Benzene ring C-C stretching vibration) 1300.1240cm-' (C-N stretching vibration) 1)
20cm-' (Absorption based on the dopant. Regardless of the type of dopant, absorption occurs at almost the same position.) 800cm-' (Rose-substituted benzene C-H out-of-plane single-angle vibration) 740.690cm+-' (-substituted Benzene C-H out-of-plane bending vibration) In addition, the infrared absorption spectrum when the above precursor was compensated with ammonia is shown in Figure 4 (B), and the infrared absorption spectrum after doping it again with 5N sulfuric acid is shown in Figure 4 (B). Shown in Figure (C). The spectrum after this redoping is the fourth
It is almost completely the same as the original shown in Figure (A), and furthermore, the conductivity is also the same as before the ammonia compensation. Also, the change in conductivity is 0.4 OS/cm before compensation (A),
After compensation (B) it was 1.6 x 10-''S/cm and after redoping (C) it was 0.31 S/cm. Therefore, the polymer according to the invention can be used in its oxidative polymerization step. This indicates that the protonic acid has already been doped.

(4)前駆体の化学構造 上で得た前駆体の元素分析値を示す。尚、重合体を水洗
及びアセトン洗滌によって精製しても、元素分析後に無
水酸化クロム(Crt(h)の緑色粉末が残渣として残
ることが認められるので、実測元素分析値と共に、その
合計を100としたときのそれぞれの換算値を併せて示
す。換算値が理論値と一致することが認められる。
(4) Show the elemental analysis values of the precursor obtained on the chemical structure of the precursor. Furthermore, even if the polymer is purified by washing with water and acetone, green powder of anhydrous chromium oxide (Crt(h)) remains as a residue after elemental analysis. The converted values for each are also shown.It is recognized that the converted values match the theoretical values.

また、アンモニアにて化学補償した重合体についても結
果を示す。
Results are also shown for polymers chemically compensated with ammonia.

(a)硫酸をドーパントとして含む重合体C+JaNz
(flzsOn)。、、8理論値   測定値   換
算値 C60,795B、1)   60.99H3,894
,054,25 N    1).81    10.80    1)
.34S     7.84     7.45   
 7.820   15.66    (14,87)
    (15,61)尚、理論式における硫酸量は、
イオウの実測値から算出し、この硫酸量に基づいて理論
値における酸素量を算出した。また、測定値における酸
素量は、イオウの測定値から硫酸量を算出し、この硫酸
量から算出した。
(a) Polymer C+JaNz containing sulfuric acid as a dopant
(flzsOn). ,,8 Theoretical value Measured value Converted value C60,795B, 1) 60.99H3,894
,054,25 N 1). 81 10.80 1)
.. 34S 7.84 7.45
7.820 15.66 (14,87)
(15,61) In addition, the amount of sulfuric acid in the theoretical formula is
It was calculated from the measured value of sulfur, and the amount of oxygen in the theoretical value was calculated based on this amount of sulfuric acid. Further, the amount of oxygen in the measured value was calculated from the amount of sulfuric acid calculated from the measured value of sulfur.

fbl補償重合体 C+zH1lNg 理論値   測定値   換算値 C79,9873,24’19.77 H4,4B     4.34    4.73N  
 15.54   14.23   15.50(5)
  前駆体のドーピング (1)で得た前駆体0.99 gを乳鉢で細がく粉砕し
た後、これをL2−ジクロロエタン中に分散させた。
fbl compensation polymer C+zH11Ng Theoretical value Measured value Converted value C79,9873,24'19.77 H4,4B 4.34 4.73N
15.54 14.23 15.50 (5)
After 0.99 g of the precursor obtained in Precursor Doping (1) was ground into fine pieces in a mortar, this was dispersed in L2-dichloroethane.

別に、1,2−ジクロロエタン16g中にリン酸トリエ
チル2.00 g (0,01)モル)を溶解させ、更
に、固体無水硫酸1.76 gを溶解させて、スルホン
他剤溶液を調製した。前記前駆体の分散液に氷水で冷却
しつつ、これに上記スルホン他剤溶液を20分間を要し
て滴下した。
Separately, 2.00 g (0.01 mole) of triethyl phosphate was dissolved in 16 g of 1,2-dichloroethane, and 1.76 g of solid sulfuric anhydride was further dissolved to prepare a solution of sulfone and other agents. The sulfone and other agent solution was added dropwise to the precursor dispersion while cooling with ice water over a period of 20 minutes.

滴下終了後、冷却下に1時間攪拌を続け、次いで、重合
体を濾別し、1.2−ジクロロエタンで十分に洗浄した
後、室温にて8時間乾燥し、スルホン化導電性有機重合
体1.36gを得た。この重合体を更に水酸化ナトリウ
ム水溶液でよく洗浄した後、室温にて8時間乾燥した。
After completion of the dropwise addition, stirring was continued for 1 hour while cooling, and then the polymer was filtered off, thoroughly washed with 1,2-dichloroethane, and then dried at room temperature for 8 hours to obtain sulfonated conductive organic polymer 1. .36g was obtained. This polymer was further thoroughly washed with an aqueous sodium hydroxide solution and then dried at room temperature for 8 hours.

このようにして得たスルホン化導電性有機重合体の赤外
線吸収スペクトルを第6図に示す。重合体がスルホン酸
基を有することは、106106O’及び1)40cm
−’の吸収によって確認される。また、元素分析の結果
を以下に示す。従って、前記繰返し単位5個当りに約1
個のスルホン酸基が結合されている。
The infrared absorption spectrum of the sulfonated conductive organic polymer thus obtained is shown in FIG. The fact that the polymer has a sulfonic acid group means that 106106O' and 1) 40 cm
Confirmed by absorption of -'. In addition, the results of elemental analysis are shown below. Therefore, for every 5 repeating units, approximately 1
sulfonic acid groups are attached.

C+ 21)t、sNz (SOJa)o、z理論値 
  測定値   換算値 C71,,8569,5571,38 H3,924,294,4O N     13.96     13.06    
 13.4O33,203,283,37 04,78(4,91)     (5,04)Na 
    2.29      (2,35)     
(2,41)尚、理論式におけるスルホン酸ナトリウム
基の量は、イオウの元素分析値から算出し、これに基づ
いて酸素及びナトリウム量を算出した。また、測定値に
おける酸素及びナトリウムは、イオウの測定値からSo
、Naとして算出した。
C+ 21) t, sNz (SOJa) o, z theoretical value
Measured value Converted value C71,,8569,5571,38 H3,924,294,4O N 13.96 13.06
13.4O33,203,283,37 04,78(4,91) (5,04)Na
2.29 (2,35)
(2,41) The amount of sodium sulfonate groups in the theoretical formula was calculated from the elemental analysis value of sulfur, and the amounts of oxygen and sodium were calculated based on this. In addition, the oxygen and sodium in the measured values are calculated from the measured values of sulfur.
, calculated as Na.

また、このスルホン化導電性有機重合体の電導度は5.
5 S /cmであった。
Further, the conductivity of this sulfonated conductive organic polymer is 5.
It was 5 S/cm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は前駆体導電性有機重合体の赤外線吸収スペクト
ル、第2図及び第3図はそれぞれエメラルデイン及びア
ニリン・プラックの赤外線吸収スペクトルを示す。第4
図は前駆体導電性有機重合体をアンモニア補償したとき
の赤外線吸収スペクトルの変化を示す。第5図は前駆体
及びエメラルデインの加熱による重量残存率を示すグラ
フである。 第6図は本発明によるスルホン化導電性有機重合体の赤
外線吸収スペクトルである。
FIG. 1 shows the infrared absorption spectrum of the precursor conductive organic polymer, and FIGS. 2 and 3 show the infrared absorption spectra of emeraldine and aniline plaques, respectively. Fourth
The figure shows changes in the infrared absorption spectrum when the precursor conductive organic polymer is compensated with ammonia. FIG. 5 is a graph showing the weight residual rate of the precursor and emeraldine upon heating. FIG. 6 is an infrared absorption spectrum of the sulfonated conductive organic polymer according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)一般式 ▲数式、化学式、表等があります▼ (但し、Rは水素又はアルキル基を示す。)で表わされ
るキノンジイミン構造を主たる繰返し単位として有する
実質的に線状の重合体であつて、且つ、この重合体の0
.5g/dl濃硫酸溶液が30℃において0.10以上
の対数粘度を有する重合体において、芳香環の一部がス
ルホン酸基を有することを特徴とするスルホン化導電性
有機重合体。
(1) A substantially linear polymer having a quinone diimine structure represented by the general formula ▲ mathematical formula, chemical formula, table, etc. ▼ (where R represents hydrogen or an alkyl group) as the main repeating unit. , and 0 of this polymer
.. A sulfonated conductive organic polymer having a logarithmic viscosity of 0.10 or more at 30° C. in a 5 g/dl concentrated sulfuric acid solution, wherein a part of the aromatic ring has a sulfonic acid group.
JP3804985A 1985-02-26 1985-02-26 Conductive material Expired - Lifetime JPH089662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3804985A JPH089662B2 (en) 1985-02-26 1985-02-26 Conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3804985A JPH089662B2 (en) 1985-02-26 1985-02-26 Conductive material

Publications (2)

Publication Number Publication Date
JPS61197633A true JPS61197633A (en) 1986-09-01
JPH089662B2 JPH089662B2 (en) 1996-01-31

Family

ID=12514662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3804985A Expired - Lifetime JPH089662B2 (en) 1985-02-26 1985-02-26 Conductive material

Country Status (1)

Country Link
JP (1) JPH089662B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991005979A1 (en) * 1989-10-19 1991-05-02 The Ohio State University Research Foundation Polyaniline compositions, process for their preparation and uses thereof
US5093439A (en) * 1989-10-19 1992-03-03 Ohio State University Research Foundation Processes for preparation of sulfonated polyaniline compositions and uses thereof
US5109070A (en) * 1989-10-19 1992-04-28 Ohio State University Research Foundation Compositions of insulating polymers and sulfonated polyaniline compositions and uses thereof
JPH04136816A (en) * 1990-09-27 1992-05-11 Sharp Corp Liquid crystal display device
US5135696A (en) * 1989-10-19 1992-08-04 Ohio State University Research Foundation Process for forming fibers of sulfonated polyaniline compositions and uses thereof
US5159031A (en) * 1988-05-13 1992-10-27 Ohio State University Research Foundation Sulfonated polyaniline salt compositions and uses thereof
US5164465A (en) * 1988-05-13 1992-11-17 Ohio State University Research Foundation Sulfonated polyaniline salt compositions, processes for their preparation and uses thereof
US5208301A (en) * 1988-05-13 1993-05-04 Ohio State University Research Foundation Sulfonated polyaniline compositions, ammonium salts thereof, process for their preparation and uses thereof
JPH0859830A (en) * 1995-07-17 1996-03-05 Showa Denko Kk Water-soluble self-doping conductive polymer and its production
US5589108A (en) * 1993-12-29 1996-12-31 Nitto Chemical Industry Co., Ltd. Soluble alkoxy-group substituted aminobenzenesulfonic acid aniline conducting polymers
US5980784A (en) * 1996-10-02 1999-11-09 Mitsubishi Rayon Co., Ltd. Method for producing soluble conductive polymer having acidic group
US5993694A (en) * 1996-06-10 1999-11-30 Nippon Shokubai Co., Ltd. Water-soluble electrically-conductive polyaniline and method for production thereof and antistatic agent using water-soluble electrically-conductive polymer
US6024895A (en) * 1995-08-11 2000-02-15 Mitsubishi Rayon Co., Ltd. Cross-linkable, electrically conductive composition, electric conductor and process for forming the same
KR100256217B1 (en) * 1991-12-27 2000-05-15 다구찌 에이이찌 Sulfonated aniline-type copolymer and process for production thereof
US7645400B2 (en) 2002-11-01 2010-01-12 Mitsubishi Rayon Co., Ltd. Composition containing carbon nanotubes having a coating
US8354906B2 (en) 2008-09-05 2013-01-15 Anden Co., Ltd. Electromagnetic relay
US9627144B2 (en) 2011-08-17 2017-04-18 Mitsubishi Rayon Co., Ltd. Solid electrolytic capacitor and method for manufacturing same
WO2018147318A1 (en) 2017-02-10 2018-08-16 三菱ケミカル株式会社 Conductive composition, method for producing conductive composition, and method for producing conductor
US10096395B2 (en) 2012-07-24 2018-10-09 Mitsubishi Chemical Corporation Conductor, conductive composition and laminate
WO2019146715A1 (en) 2018-01-26 2019-08-01 三菱ケミカル株式会社 Electroconductive composition and production method therefor, and water-soluble polymer and production method therefor
WO2019177096A1 (en) 2018-03-15 2019-09-19 三菱ケミカル株式会社 Conductive film, method for producing same, conductor, resist pattern formation method, and laminate
WO2019198749A1 (en) 2018-04-10 2019-10-17 三菱ケミカル株式会社 Electrically conductive composition, electrically conductive film, and laminate
WO2020100791A1 (en) 2018-11-15 2020-05-22 三菱ケミカル株式会社 Conductive composition and method for manufacturing same, and conductor and method for manufacturing same
WO2021153678A1 (en) 2020-01-29 2021-08-05 三菱ケミカル株式会社 Conductive composite, resist coating material, resist, and resist pattern formation method

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5137991A (en) * 1988-05-13 1992-08-11 The Ohio State University Research Foundation Polyaniline compositions, processes for their preparation and uses thereof
US5208301A (en) * 1988-05-13 1993-05-04 Ohio State University Research Foundation Sulfonated polyaniline compositions, ammonium salts thereof, process for their preparation and uses thereof
US5164465A (en) * 1988-05-13 1992-11-17 Ohio State University Research Foundation Sulfonated polyaniline salt compositions, processes for their preparation and uses thereof
US5159031A (en) * 1988-05-13 1992-10-27 Ohio State University Research Foundation Sulfonated polyaniline salt compositions and uses thereof
US5135696A (en) * 1989-10-19 1992-08-04 Ohio State University Research Foundation Process for forming fibers of sulfonated polyaniline compositions and uses thereof
US5109070A (en) * 1989-10-19 1992-04-28 Ohio State University Research Foundation Compositions of insulating polymers and sulfonated polyaniline compositions and uses thereof
US5093439A (en) * 1989-10-19 1992-03-03 Ohio State University Research Foundation Processes for preparation of sulfonated polyaniline compositions and uses thereof
WO1991005979A1 (en) * 1989-10-19 1991-05-02 The Ohio State University Research Foundation Polyaniline compositions, process for their preparation and uses thereof
JPH05503953A (en) * 1989-10-24 1993-06-24 ジ オハイオ ステート ユニバーシティ リサーチ ファウンデーション Sulfonated polyaniline salt composition, manufacturing method and method of use
JPH04136816A (en) * 1990-09-27 1992-05-11 Sharp Corp Liquid crystal display device
KR100256217B1 (en) * 1991-12-27 2000-05-15 다구찌 에이이찌 Sulfonated aniline-type copolymer and process for production thereof
US5589108A (en) * 1993-12-29 1996-12-31 Nitto Chemical Industry Co., Ltd. Soluble alkoxy-group substituted aminobenzenesulfonic acid aniline conducting polymers
US5700399A (en) * 1993-12-29 1997-12-23 Nitto Chemical Industry Co., Ltd. Soluble alkoxy-group substituted aminobenzenesulfonic acid aniline conducting polymers
US5932144A (en) * 1993-12-29 1999-08-03 Mitsubishi Rayon Co., Ltd. Soluble aniline conducting polymers
JPH0859830A (en) * 1995-07-17 1996-03-05 Showa Denko Kk Water-soluble self-doping conductive polymer and its production
US6024895A (en) * 1995-08-11 2000-02-15 Mitsubishi Rayon Co., Ltd. Cross-linkable, electrically conductive composition, electric conductor and process for forming the same
US5993694A (en) * 1996-06-10 1999-11-30 Nippon Shokubai Co., Ltd. Water-soluble electrically-conductive polyaniline and method for production thereof and antistatic agent using water-soluble electrically-conductive polymer
US5980784A (en) * 1996-10-02 1999-11-09 Mitsubishi Rayon Co., Ltd. Method for producing soluble conductive polymer having acidic group
US7645400B2 (en) 2002-11-01 2010-01-12 Mitsubishi Rayon Co., Ltd. Composition containing carbon nanotubes having a coating
US8354906B2 (en) 2008-09-05 2013-01-15 Anden Co., Ltd. Electromagnetic relay
US9627144B2 (en) 2011-08-17 2017-04-18 Mitsubishi Rayon Co., Ltd. Solid electrolytic capacitor and method for manufacturing same
US10096395B2 (en) 2012-07-24 2018-10-09 Mitsubishi Chemical Corporation Conductor, conductive composition and laminate
US11145432B2 (en) 2012-07-24 2021-10-12 Mitsubishi Chemical Corporation Conductor, conductive composition and laminate
WO2018147318A1 (en) 2017-02-10 2018-08-16 三菱ケミカル株式会社 Conductive composition, method for producing conductive composition, and method for producing conductor
DE202018006859U1 (en) 2017-02-10 2024-01-22 Mitsubishi Chemical Corporation Conductive composition and conductors
WO2019146715A1 (en) 2018-01-26 2019-08-01 三菱ケミカル株式会社 Electroconductive composition and production method therefor, and water-soluble polymer and production method therefor
WO2019177096A1 (en) 2018-03-15 2019-09-19 三菱ケミカル株式会社 Conductive film, method for producing same, conductor, resist pattern formation method, and laminate
WO2019198749A1 (en) 2018-04-10 2019-10-17 三菱ケミカル株式会社 Electrically conductive composition, electrically conductive film, and laminate
WO2020100791A1 (en) 2018-11-15 2020-05-22 三菱ケミカル株式会社 Conductive composition and method for manufacturing same, and conductor and method for manufacturing same
WO2021153678A1 (en) 2020-01-29 2021-08-05 三菱ケミカル株式会社 Conductive composite, resist coating material, resist, and resist pattern formation method

Also Published As

Publication number Publication date
JPH089662B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
JPS61197633A (en) Sulfonated electroconductive organic polymer
US4615829A (en) Electroconductive organic polymer and method for producing the same
KR100488441B1 (en) Method for manufacturing water-soluble conductive polyaniline
JPH05247204A (en) Production of conductive organic polymer
JP3149290B2 (en) Method for producing conductive polymer
JPS61195137A (en) Method of doping organic polymer
JPH0555532B2 (en)
EP0545417B1 (en) Water-soluble conducting polymer and method for production thereof
JPH0330618B2 (en)
Kim et al. Aromatic and rigid rod polyelectrolytes based on sulfonated poly (benzobisthiazoles)
JPS61266435A (en) Production of thin film of electrically conductive organic polymer
JP2649670B2 (en) Method for producing conductive organic polymer
KR0124125B1 (en) Method for producing thermally stable conductive polymer compound
Rethi et al. Facile synthesis of processable conductive water solubilized polyaniline
JPH0574467A (en) Macromolecular solid electrolyte
JP3455891B2 (en) Conductive substances and their synthesis
JP3043290B2 (en) Water-soluble conductive polyaniline and method for producing the same
JP2704482B2 (en) Organic polymer
JPH0555533B2 (en)
JPS61258832A (en) Electrically conductive organic polymer and production thereof
JP2517866B2 (en) Quaternized poly (quinoline-4,7-diyl) polymer, its production and use
JPS6176524A (en) Electrically conductive organic polymer
JPS61258833A (en) Production of electrically conductive organic polymer
JPS61195504A (en) Conductive compound sheet
JPS6119631A (en) Electroconductive material and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term