JPH04190627A - Digital bus protective relay - Google Patents

Digital bus protective relay

Info

Publication number
JPH04190627A
JPH04190627A JP2319818A JP31981890A JPH04190627A JP H04190627 A JPH04190627 A JP H04190627A JP 2319818 A JP2319818 A JP 2319818A JP 31981890 A JP31981890 A JP 31981890A JP H04190627 A JPH04190627 A JP H04190627A
Authority
JP
Japan
Prior art keywords
zero
phase
bus
vector sum
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2319818A
Other languages
Japanese (ja)
Other versions
JP2791209B2 (en
Inventor
Kuniyasu Inamura
稲村 國康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2319818A priority Critical patent/JP2791209B2/en
Publication of JPH04190627A publication Critical patent/JPH04190627A/en
Application granted granted Critical
Publication of JP2791209B2 publication Critical patent/JP2791209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To detect ground fault of a quadruple bus by providing means for performing differential operation based on a vector sum of zero-phase currents of all feeders fed from the quadruple bus and means for comparing the phase between the vector sum of zero-phase currents and the zero-phase voltage of each bus and allowing an output from the operating means based on an operating output from the phase comparing means. CONSTITUTION:Zero-phase currents i01-i04 and zero-phase voltages V01-V04 are obtained from quadruple buses 2-1-4. A CPU 9 operates the vector sum Iod of zero-phase currents of all feeders required for judgment of operation of a 87G element 13. Furthermore, zero-phase voltages of the buses 2-1-4 are subjected to phase comparison with the vector sum Iod. Decision is also made whether phase comparison conditions are satisfied for all bus voltages and the 87G element 13 is operated when the conditions are satisfied. According to the constitution, fault can be detected in any one of the quadruple buses.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、ディジタル形母線保護リレー、特に零相t7
Mとt線零相電圧により抵抗接地系4重母線の地絡事故
を検出するディジタル形母線保護リレーに関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a digital bus protection relay, particularly a zero-phase t7
This invention relates to a digital bus protection relay that detects ground faults in a resistive grounding system quadruple bus using M and T line zero-sequence voltages.

(従来の技術) 従来技術によるディジタル形母線保護リレーの構成例を
第5図に示す。
(Prior Art) An example of the configuration of a digital bus protection relay according to the prior art is shown in FIG.

第5図においてティフタル形母線保護継電器1は、母線
2に接続される各フィーダ3−1 、3−2 。
In FIG. 5, the Tiftal type busbar protection relay 1 includes feeders 3-1 and 3-2 connected to the busbar 2.

3−3 、3−4に設けられた変流器4−1 、4−2
 、4−3 。
Current transformers 4-1 and 4-2 installed in 3-3 and 3-4
, 4-3.

4−4の2次側電流を導入するが、この場合、補助変流
器5−1 、5−2 、5−3 、5−4により、各ツ
イータ電流の整合をとって導入する。この電流はサンプ
ルホールド回路6により一定のサンプリング周波数でサ
ンプリングされ、マルチプレクサ7により順次選択され
、A/D変換器8に送られティジタル量に変換される。
4-4 is introduced, but in this case, each tweeter current is matched and introduced by auxiliary current transformers 5-1, 5-2, 5-3, and 5-4. This current is sampled at a constant sampling frequency by a sample and hold circuit 6, sequentially selected by a multiplexer 7, sent to an A/D converter 8, and converted into a digital quantity.

 CPU9はA/D変換器8より出力される系統電流の
ディジタルデータをもとにして保護演算を行ない、系統
の事故検出、及び保護出力の送出等の保護動作を行なう
。設定部10はCPU9に対し事故検出感度、動作時間
整定等を入力するものである。
The CPU 9 performs protection calculations based on the digital data of the system current output from the A/D converter 8, and performs protection operations such as detecting system accidents and sending out protection outputs. The setting section 10 inputs accident detection sensitivity, operation time setting, etc. to the CPU 9.

ここで零相電流は図示していないが、各相電流の残留回
路接続により得られ、これも図示していない零相電流用
補助変流器より導入され、第5図に示す各相電流と同様
にCPu9へ導入される。さらに母線の電圧は変圧器1
1−1.11−2と図示していない補助変圧器より導入
され、零相電流と同様にCPIJ9へ導入される。但し
以下の処理は3相電圧よりベクトル合成された零相電圧
■。とじて取扱う。
Although the zero-sequence current is not shown here, it is obtained by connecting the residual circuit of each phase current, and this is introduced from the auxiliary current transformer for zero-sequence current, which is also not shown, and the each phase current shown in Figure 5. Similarly, it is introduced into CPU9. Furthermore, the bus voltage is changed to transformer 1
1-1, 11-2 and an auxiliary transformer (not shown), and is introduced into CPIJ9 in the same way as the zero-sequence current. However, the following processing is a zero-phase voltage that is vector-synthesized from three-phase voltages. Handle as closed.

CPU9では第5図に示したように、短絡事故を検出す
る87S要素12と地絡事故を検出する87G要素13
の演算及び保護シーケンス処理も行なっている。
As shown in FIG. 5, the CPU 9 has an 87S element 12 for detecting a short circuit fault and an 87G element 13 for detecting a ground fault fault.
It also performs calculations and protection sequence processing.

第5図において、87S要素12.87G要素13は以
下に示す電流差動原理により母線内部事故を検出する差
動要素である。
In FIG. 5, an 87S element 12 and an 87G element 13 are differential elements that detect a fault inside the bus bar based on the current differential principle described below.

第5図に示すディジタル形母線保護リレーの構成例にお
いては、各フィーダ3−1.〜3−4の相電流11,1
2,13.14よりベクトル和I、を演算すると、T 
d” 11 + 12 + 13+ l 、sとなり、
通常時及び動線外部事故時は、母線へ流入する電流と流
出する電流は等しく、l I、l=o<Kとなる。ここ
でKは87S要素12の動作レベルであり、87S要素
12は不動作である。しかしながら母線の内部事故時は
、母線へ流入する電流が大きく、+I、i>Kとなり、
873要素12は動作となって母線の内部、外部の事故
判別ができる。87G要素13は上記処理にて、零相電
流1゜1〜’04を用い、!I 1を求めて動作レベル
k。と比較し、d 動作判定を行なうものである。
In the configuration example of the digital busbar protection relay shown in FIG. 5, each feeder 3-1. ~3-4 phase current 11,1
2.13.14, when calculating the vector sum I, we get T
d” 11 + 12 + 13+ l, s,
In normal times and in the event of an accident outside the flow line, the current flowing into the busbar is equal to the current flowing out, and lI, l=o<K. Here, K is the operating level of the 87S element 12, and the 87S element 12 is inactive. However, when an internal fault occurs on the bus, the current flowing into the bus is large, and +I, i>K,
The 873 element 12 becomes operational and can determine whether an accident occurs inside or outside the bus. The 87G element 13 uses a zero-sequence current of 1°1 to '04 in the above process, and! Find I 1 and the operating level k. d motion is determined.

ここで87G要素13は不要応動を極力防止するため、
母線零相電圧■。と零相差電流■。、との位相比較を行
ない、所定の電気角の重なりがあることを検出して最終
要素出力としている。
Here, 87G element 13 is designed to prevent unnecessary responses as much as possible.
Bus line zero-sequence voltage■. and zero-sequence current ■. , and detects that there is a predetermined electrical angle overlap, which is used as the final element output.

第6図は87G要素のブロック図であり、全ツイータ零
相電流のベクトル和を求めるブロック21とベクトル和
の絶対値と動作レベルk。とを比較するブロック22と
母線2−1.2−2の零相電圧■01’■ とベクトル
和I。、との位相比較を各々行なうブロック23−1と
23−2からなっている。したがって零相電流I か所
定値k。以上あることと、いすd れかの母線の零相電圧V。1.Vo2と零相電流I。。
FIG. 6 is a block diagram of the 87G element, in which block 21 calculates the vector sum of all tweeter zero-sequence currents, the absolute value of the vector sum, and the operating level k. The zero-sequence voltage of the block 22 and the bus 2-1, 2-2, ■01'■, and the vector sum I are compared. , and 23-2, respectively. Therefore, the zero-sequence current I is a fixed value k. In addition to the above, the zero-sequence voltage V of either bus. 1. Vo2 and zero-sequence current I. .

とが所定角度以内であることをもって、リレー出力を導
出させるようにしている。
The relay output is derived when the angle is within a predetermined angle.

(発明が解決しようとする課題) 以上のような母線保護リレーを第7図に示すような、4
重母線に適用する場合、87G要素への母線電圧入力を
補助リレーの接点14を用いて切替える手法がとられて
いた。
(Problem to be Solved by the Invention) The above-mentioned bus bar protection relay is constructed using four
When applied to heavy busbars, a method has been adopted in which the busbar voltage input to the 87G element is switched using contacts 14 of an auxiliary relay.

即ち、常時は、母線2−1 、2−2 fullの母線
電圧を供給しておき、を線事故が2−1 、2−2側で
あればそのまま使用し、反対に2−3 、2−4側であ
れば、補助リレーの接点を切替え、2−3 、2−4側
の母線電圧を供給するものである。なお、図示してはい
ないが、本構成では母線2−3 、2−4111Iの事
故を検出して補助リレーの接点を切替える手段も必要で
ある。
In other words, full bus voltage is normally supplied to bus lines 2-1 and 2-2, and if a line fault occurs on lines 2-1 and 2-2, they are used as is, and vice versa. If it is on the 4 side, the contact of the auxiliary relay is switched and the bus voltage on the 2-3 and 2-4 sides is supplied. Although not shown in the drawings, this configuration also requires means for detecting an accident on the busbars 2-3 and 2-4111I and switching the contacts of the auxiliary relays.

以上のように従来技術には次の問題があった。As described above, the conventional technology has the following problems.

■補助リレーで各母線電圧を切替えるなめ、ハード構成
が複雑となり、また、接点を介して母線電圧を供給する
ため信頼性が低い。
■The hardware configuration is complicated because each bus voltage is switched using an auxiliary relay, and the reliability is low because the bus voltage is supplied via contacts.

■母線2−3 、2−4側事故時は一度、該当isであ
ることを検出したのち、補助リレーの接点を切替え該当
母線電圧を導入するため、87G要素の動作時間が遅く
なる。
- In the event of an accident on the bus 2-3 or 2-4 side, once the corresponding IS is detected, the auxiliary relay contacts are switched to introduce the corresponding bus voltage, which slows down the operation time of the 87G element.

本発明は上記問題を解決するためになされたものであり
、4重母線の地絡事故を高速に、しがも確実に検出する
ことを可能としたディジタル形母線保護リレーを提供す
ることを目的としている。
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide a digital bus protection relay that can quickly and reliably detect a quadruple busbar ground fault. It is said that

[発明の構成] (課題を解決するための手段) 本発明は4重母線の母線につながる全フィーダの零相電
流のベクトル和を用いて差動演算を行なう演算手段と、
零相電流のベクトル和と各母線零相電圧と各々位相比較
を行なう複数の位相比較手段と、これら位相比較手段の
少なくとも1つの動作出力により前記演算手段の出力を
許可する手段とから構成した。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a calculation means for performing differential calculation using a vector sum of zero-sequence currents of all feeders connected to a bus of a quadruple bus;
It is comprised of a plurality of phase comparison means for performing a phase comparison with the vector sum of zero-sequence currents and each bus zero-sequence voltage, and means for permitting the output of the arithmetic means based on the operational output of at least one of these phase comparison means.

(作 用) 地絡事故がいずれかの母線で発生したとき、差動演算に
よって零相電流のベクトル和か所定値以上発生する。し
たがっていずれかのtiに発生した零相電圧と前記零相
電流とで位相比較出力が発生し、前記零相電流のベクト
ル和と位相比較出力との論理積によって地絡事故を検出
できる。
(Function) When a ground fault occurs on either bus, the vector sum of zero-sequence currents or more than a predetermined value is generated by differential calculation. Therefore, a phase comparison output is generated by the zero-sequence voltage generated at any ti and the zero-sequence current, and a ground fault can be detected by the logical product of the vector sum of the zero-sequence currents and the phase comparison output.

(実施例) 以下、図面を参照し、本発明の詳細な説明する。第1図
は本発明によるディジタル形母線保護リレーの一実施例
の構成図である。
(Example) Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram of an embodiment of a digital busbar protection relay according to the present invention.

第1図において、第5図と同一部分については、同一機
能を有しており、同一符号を付して説明を省略する。
In FIG. 1, the same parts as in FIG. 5 have the same functions, are given the same reference numerals, and description thereof will be omitted.

第1図と第5図との差異は、導入する母線電圧の数が4
であること、及びCPU9で処理する位相比較部が4で
あることである。
The difference between Figure 1 and Figure 5 is that the number of bus voltages introduced is 4.
and that the number of phase comparators processed by the CPU 9 is four.

上記構成としたディジタル形母線保護リレーの保護シー
ケンス図を第2図に示す。
FIG. 2 shows a protection sequence diagram of the digital busbar protection relay configured as described above.

本図では4つの母線零相電圧と零相電流のベクトル和と
の位相比較ブロックがあり、何れの位相比較ブロックの
出力でも電流差動演算出力を許可する構成としている。
In this figure, there are four phase comparison blocks for the vector sum of the bus zero-sequence voltage and the zero-sequence current, and the configuration is such that the output of any phase comparison block allows current differential calculation output.

第3図は第2図に示す保護シーケンス図の作用を説明す
るフローチャートである。そして第3図では、母線より
各フィーダ1〜nの零相電流i。1〜’On及び4重母
線の各tmの零相電圧V。1〜■o4が得られている場
合を示している。
FIG. 3 is a flowchart illustrating the operation of the protection sequence diagram shown in FIG. 2. In FIG. 3, the zero-sequence current i of each feeder 1 to n is calculated from the bus bar. 1 to 'On and the zero-sequence voltage V of each tm of the quadruple bus. 1 to ■o4 are obtained.

先ず、ステップS31では各フィーダの零相電流i。1
〜’Onを得る。ステ・ツブS32では零相電圧■o1
〜■o4を得て、ステ・ンプS33では87G要素の動
作判定に必要な全フィーダ零相電流のベクトル和■ を
演算する。次にステ・yプS34では動d 作レベルk との比較のためベクトル和の絶対値11O
dlを得る。
First, in step S31, the zero-sequence current i of each feeder is calculated. 1
~'Get On. In Ste-tube S32, zero-phase voltage ■o1
~■o4 is obtained, and in step S33, a vector sum (■) of all feeder zero-sequence currents necessary for determining the operation of the 87G element is calculated. Next, in step S34, the absolute value of the vector sum is 11O for comparison with the motion level k.
Get dl.

ステップS35では、零相電流のベクトル和の絶対値I
Iod1と動作レベルkoとの大小比較を行ない。判定
結果によりステ・ツブS36 、 S37で各々動作フ
ラグF=1 (l Io、l >koのとき)復帰フラ
グF=0(IIodlくkoのとき)をセ・ン卜する。
In step S35, the absolute value I of the vector sum of zero-sequence currents is
A comparison is made between Iod1 and the operating level ko. Based on the determination results, in steps S36 and S37, the operation flag F=1 (when l Io, l > ko) and the return flag F=0 (when II od l > ko) are set.

次のステップ338〜S45では、各allの零相電圧
とベクトル和■ どの位相比較を行なって0る。
In the next steps 338 to S45, the zero-phase voltage of each all and the vector sum are compared and zeroed.

d 即ち、ステップS38ではカウンタjに初期値1を与え
、ステップ339ではjの値に相当する零相電圧■。、
とベクトル和I。d、!:の位相比較を行なう。
d That is, in step S38, an initial value 1 is given to the counter j, and in step 339, a zero-sequence voltage corresponding to the value of j is given. ,
and vector sum I. d,! : Perform phase comparison.

ステップS40では位相比較条件が成立したか否かを判
定し、成立時ステップS41でフラグGjにG、=1を
セットし、不成立時ステップS42でフラグG にG、
二〇をセットする。ステップS43゜J S44でカウンタjを制御し全母線電圧4 V oだけ
同様の判定を行なう、最後にステップS45にて、フラ
グFが“1”のときフラグG 〜G4の何れかが“1″
であれば、ステップ846で87G要素動作とし、フラ
グFが“0”か又はフラグ01〜G5が全て“0”のと
きは、ステップ347で87G要素を復帰させる。
In step S40, it is determined whether the phase comparison condition is satisfied, and when the condition is satisfied, the flag Gj is set to G,=1 in step S41, and when it is not satisfied, the flag G is set to G,=1 in step S42.
Set twenty. In step S43゜J S44, counter j is controlled and the same determination is made for the total bus voltage 4Vo.Finally, in step S45, when flag F is "1", any one of flags G to G4 is "1".
If so, the 87G element is operated in step 846, and if the flag F is "0" or all flags 01 to G5 are "0", the 87G element is restored in step 347.

上記構成によれば、各母線の零相電圧を同時に得て、零
相電流のベクトル和との位相比較を各々独立に行なう構
成としており、母線零相電圧の切替えハードも不要とな
り、何れの母線における事故でも高速に動作するディジ
タル形母線保護リレーを提供できる。
According to the above configuration, the zero-sequence voltage of each bus bar is obtained simultaneously, and the phase comparison with the vector sum of the zero-sequence currents is performed independently.Therefore, there is no need for hardware to switch the bus zero-sequence voltage. It is possible to provide a digital bus protection relay that operates at high speed even in the event of an accident.

なお、上記実施例では、各母線の零相電圧と零相電流の
ベクトル和との位相比較を1つのCPU9で同時に処理
しているが本発明はこれに限定されるものではない。
In the above embodiment, the phase comparison between the zero-sequence voltage of each bus and the vector sum of the zero-sequence currents is simultaneously processed by one CPU 9, but the present invention is not limited to this.

第4図は他の実施例であり、本実施例では複数ノcpu
例えばCPU9−1. CPU9−2ヲ用イタ場合テア
ル。
FIG. 4 shows another embodiment, in which multiple CPUs
For example, CPU9-1. If it is for CPU9-2, please use it.

CPU9−1では各々V01”02による位相比較部が
あり、CPU9−2では■。3.ko4による位相比較
部がある。そして各CPuの出力をOR楕構成すること
で最終的な出力を得るものであり、上記実施例と同様の
効果が得られる。
Each CPU9-1 has a phase comparator based on V01"02, and the CPU9-2 has a phase comparator based on ■.3.ko4.Then, the final output is obtained by ORing the outputs of each CPU. Therefore, the same effect as in the above embodiment can be obtained.

[発明の効果] 以上説明したように、本発明によれば零相電流による差
動要素と、零相電流のベクトル和と4重母線の全tI!
零相電圧との位相比較を行なう手段と、これら位相比較
手段の少なくとも1つの動作出力により前記差動要素の
出力を許可する構成としたので、4重母線のいずれのt
llAにおける事故も高速に検出でき、信頼性の高いデ
ィジタル形母線保護リレーを桿供できる。
[Effects of the Invention] As explained above, according to the present invention, the differential element due to the zero-sequence current, the vector sum of the zero-sequence current, and the total tI of the quadruple bus!
Since the configuration is such that the output of the differential element is permitted by the means for performing phase comparison with the zero-sequence voltage and the operation output of at least one of these phase comparison means, any t of the quadruple bus
Accidents in IIA can also be detected at high speed, and a highly reliable digital bus protection relay can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるディジタル形母線保護リレーの一
実施例の構成図、第2図は零相電流による差動要素のブ
ロック図、第3図は第2図の作用を説明するフローチャ
ート、第4図は他の実施例の構成図、第5図は従来技術
の構成図、第6図は従来技術の差動要素のブロック図、
第7図は従来技術による保護方式例である。 1・・・ディジタル形母線保護リレー 2・・・分線       3・・・ツイータ4・・・
変流器      5・・・補助変流器6・・・サンプ
ルホールド回路 7・・・マルチズレフサ  8・・・A/D変換器9・
・・cpu        io・・・整定部11・・
・変圧器      12・・・873要素13・・・
87G要素     14・・・補助リレーの接点特許
出願人  株式会社 東 芝 代理人弁理士  石 井   紀 男 J1!2図 s3図 第6図
FIG. 1 is a block diagram of an embodiment of a digital bus protection relay according to the present invention, FIG. 2 is a block diagram of a differential element using zero-sequence current, and FIG. 3 is a flowchart explaining the operation of FIG. 4 is a block diagram of another embodiment, FIG. 5 is a block diagram of a prior art, and FIG. 6 is a block diagram of a differential element of a prior art.
FIG. 7 is an example of a protection system according to the prior art. 1...Digital type busbar protection relay 2...Segment line 3...Tweeter 4...
Current transformer 5...Auxiliary current transformer 6...Sample hold circuit 7...Multiple shifter 8...A/D converter 9.
...cpu io...setting section 11...
・Transformer 12...873 element 13...
87G element 14... Auxiliary relay contact Patent applicant Toshiba Corporation Patent attorney Nori Ishii J1!2 Figure s3 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 抵抗接地系4重母線の地絡事故を、母線につながる全フ
ィーダの零相電流のベクトル和を用いる差動要素にて保
護するディジタル形母線保護リレーにおいて、4重母線
の零相電圧各々と前記零相電圧のベクトル和との位相差
が所定値以内であることを各々検出する位相比較手段と
、各位相比較手段の少なくとも1つの動作出力により前
記差動要素の出力を許可する手段とを備えたことを特徴
とするディジタル形母線保護リレー。
In a digital bus protection relay that protects against ground faults in a resistive grounding system quadruple busbar using a differential element that uses the vector sum of the zero-sequence currents of all feeders connected to the busbar, the zero-sequence voltage of each of the quadruple busbars and the comprising phase comparison means for each detecting that the phase difference with the vector sum of the zero-sequence voltages is within a predetermined value; and means for permitting the output of the differential element by at least one operation output of each phase comparison means. A digital busbar protection relay characterized by:
JP2319818A 1990-11-22 1990-11-22 Digital bus protection relay Expired - Fee Related JP2791209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2319818A JP2791209B2 (en) 1990-11-22 1990-11-22 Digital bus protection relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2319818A JP2791209B2 (en) 1990-11-22 1990-11-22 Digital bus protection relay

Publications (2)

Publication Number Publication Date
JPH04190627A true JPH04190627A (en) 1992-07-09
JP2791209B2 JP2791209B2 (en) 1998-08-27

Family

ID=18114546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2319818A Expired - Fee Related JP2791209B2 (en) 1990-11-22 1990-11-22 Digital bus protection relay

Country Status (1)

Country Link
JP (1) JP2791209B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185289A (en) * 2011-05-25 2011-09-14 重庆新世纪电气有限公司 Bus coupler charging protection method and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185289A (en) * 2011-05-25 2011-09-14 重庆新世纪电气有限公司 Bus coupler charging protection method and system

Also Published As

Publication number Publication date
JP2791209B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
EP1020729B1 (en) Fault detection for power lines
US4281386A (en) Systems for detecting faults in electric power systems
JPH02303314A (en) Solid state trip device
JP3808624B2 (en) System protection relay device
CN106526429B (en) A kind of ground fault line selecting method with error correction
US5566082A (en) Method of detecting a fault section of busbar
JPH0538041A (en) Detecting device for abnormality of differential relay
JPH04190627A (en) Digital bus protective relay
JP2957187B2 (en) Secondary circuit disconnection detector for instrument transformer
EP0020073B1 (en) Common suspension multi-line grounding protective relay
JP3829614B2 (en) Digital type protective relay device
Wijekoon et al. Transient based faulted conductor selection method for double circuit lines
JPH08265957A (en) Matrix operation type system protector
JPH04275018A (en) Substation fault section detecting apparatus
JP3942137B2 (en) Transmission line protection device
JP2778148B2 (en) Ground fault line selection relay for shared multi-line system
JPH0837730A (en) Bus protective relay
JP3266925B2 (en) Distribution line ground fault relay
JPH0322822A (en) Digital bus protective relay
JP5224760B2 (en) Disconnection protection relay
JPS59149721A (en) Ground-fault channel selecting relay
JPH01238420A (en) Ground-fault protective relay
JPH069429B2 (en) Digital ground fault bus protection relay
JPH03214076A (en) Fault section detector for substation
JPH0332285B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees