JP3829614B2 - Digital type protective relay device - Google Patents

Digital type protective relay device Download PDF

Info

Publication number
JP3829614B2
JP3829614B2 JP2000328434A JP2000328434A JP3829614B2 JP 3829614 B2 JP3829614 B2 JP 3829614B2 JP 2000328434 A JP2000328434 A JP 2000328434A JP 2000328434 A JP2000328434 A JP 2000328434A JP 3829614 B2 JP3829614 B2 JP 3829614B2
Authority
JP
Japan
Prior art keywords
line
phase
voltage
protection
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000328434A
Other languages
Japanese (ja)
Other versions
JP2002135969A (en
Inventor
英之 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2000328434A priority Critical patent/JP3829614B2/en
Publication of JP2002135969A publication Critical patent/JP2002135969A/en
Application granted granted Critical
Publication of JP3829614B2 publication Critical patent/JP3829614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、平行2回線送電線等の電力系統送電線の主保護のデジタル継電器と、後備保護のデジタル継電器とを一体化した主後一体形のデジタル形保護継電装置に関する。
【0002】
【従来の技術】
従来、電力系統送電線においては、主保護用の保護継電器としての例えば回線選択継電器と、後備保護用の保護継電器としての方向距離継電器とを設け、短絡事故が発生したときに、主保護とそのバックアップの後備保護とを別々の保護継電器で行って故障回線を遮断して送電線から切離すことが行われている。
【0003】
そして、マイクロコンピュータを用いたデジタルリレーの出現に伴い、前記の主保護及び後備保護の保護継電器は、デジタルリレーを用いてデジタル形に形成される傾向にある。
【0004】
【発明が解決しようとする課題】
前記従来のように主保護と後備保護とを別々の保護継電器で行う場合、近年の保護装置の小形化等の要求に応えることができない。
【0005】
そこで、近年のデジタルリレーの複合化技術の進歩に基づき、デジタルリレーを用いて主保護と後備保護とを一体化し、主後一体形の1台のデジタル形継電装置により、小型化等を図って送電線の主保護及び後備保護を行うことが考えられる。
【0006】
この場合、装置内では、アナログ入力の電流,電圧をA/D変換してマイクロコンピュータの演算回路部に供給し、この演算回路部により、回線選択保護(主保護)、及び方向距離継電器保護(後備保護)のデジタルリレー演算をする。
【0007】
そして、これらの演算によって故障回線の発生を検出すると、その回線の遮断器を開放し、故障回線を遮断して切離す。
【0008】
ところで、短絡事故に対する回線選択保護にあっては、いわゆる平衡継電方式により、送電線の各回線の電流分布の不平衡から故障回線を検出するため、その検出に相電流及び相電圧(母線電圧)が必要である。
【0009】
また、方向距離継電器保護にあっては、線間電圧と線間電流とにより故障点までの系統インピーダンスを測定し、その方向(位相特性)により短絡事故を検出するため、相間電流,相間電圧と方向判別の極性電圧とが必要である。
【0010】
したがって、平行2回線送電線の場合、前記のアナログ入力の電流,電圧として、主保護に、回線毎の相電流と、相電圧(系統の母線電圧)を要し、後備保護に、回線毎の間電流及び系統の線間電圧と、方向判別用の極性電圧とを要し、この極性電圧は系統の線間電圧である。
【0011】
なお、地絡保護等も行うとすれば、主保護及び後備保護に零相の電流も必要になる。
【0012】
また、事故が発生すると、一般に、電流要素は増加するが電圧要素は極端に減少し、電圧要素の計測誤差が大きくなってデジタルリレー演算の演算誤差が大きくなることから、電圧要素である前記の相電圧,線間電圧については、2段階のスケール(レンジ)でA/D変換してその結果を切換えて用いる必要がある。
【0013】
そのため、回線当りの前記のアナログ入力の電流,電圧の数(チャンネル数)は、零相の相電流,線間電流も考慮すると、つぎの表1に示すように、20チャンネルにもなり、主後一体形の保護を行うとすれば、そのデジタル形保護継電装置のアナログ入力数(チャンネル数)が極めて多くなる問題点がある。
【0014】
【表1】

Figure 0003829614
【0015】
なお、表1の相電流,相電圧のA,B,Cは相を示し、線間電流,線間電圧のA,B,CはAとB,BとC,CとAの線間を示す。
【0016】
また、実際には、相電、線間電流は回線毎に入力されるが、相電圧,線間電圧は各回線に共通である。
【0017】
つぎに、後備保護としての方向距離継電器保護にあっては、モー要素の特性式が、一般に、つぎの数1のベクトル式で示され、式中のZは整定インピーダンス、Iは線間電流,Vは線間電圧,Vpは方向判別用の極性電圧(線間電圧)である。
【0018】
【数1】
Figure 0003829614
【0019】
そして、このモー要素の位相特性は、図5の方向距離継電器の特性図に示すように方向性(極性)があり、モー要素の特性円イとリアクタンス要素の整定直線ロとで囲まれた範囲が動作領域である。
【0020】
なお、図中のR,Lの直交する2軸は、抵抗成分,リアクタンス成分の軸である。
【0021】
また、モー要素の方向特性は極性電圧Vpの極性で定まり、その動作値特性は線間電圧Vの大きさで定まる。
【0022】
そして、線間電圧Vを表1のアナログ入力の各線間電圧とし、極性電圧は、アナログ入力数を少なくするため、専用の線間電圧をアナログ入力する代わりに、主保護のアナログ入力の相電圧をデジタル演算でベクトル合成して得ることが考えられるが、この場合、とくに、この装置が設けられる送電線の端部から100m以内の系統事故(至近端事故)が発生したときに、アナログ入力の相電圧が極端に小さくなり、その誤差が大きくなることから、図6の(a),(b)に示すように、例えば相電圧VA,VBをベクトル合成して得た線間電圧VAB’は、それぞれの破線の真の線間電圧VABの位相からずれる。
【0023】
すなわち、相電圧のベクトル合成で極性電圧Vpとしての線間電圧を得る場合、一般的なデジタルリレーと同様、系統基本波の電気角30°毎に系統の相電圧の瞬時値をサンプリングし、フーリエ演算によって、その余弦(cos)成分,正弦(sin)成分を求めてベクトル合成するため、このベクトル合成で得られた線間電圧に、相電圧を検出する変圧器での位相誤差及びA/D変換の量子化誤差等が含まれる。
【0024】
そして、系統正常時は相電圧が定格電圧で十分に大きいため、前記の誤差が殆ど影響しないが、系統事故により相電圧が小さくなると、前記の誤差の影響が大きくなり、ベクトル合成で得られた線間電圧の位相は時々刻々変動して、図6の(a),(b)のように真の線間電圧の位相からずれる。
【0025】
そのため、極性電圧Vpとしての線間電圧を相電圧のベクトル合成から求めると、方向距離継電器保護の特性方向(極性)を誤判別し、後備保護の誤動作を引起こすおそれがある。
【0026】
本発明は、この種の主後一体形のデジタル形保護継電装置において、アナログ入力数を極力少なくし、かつ、方向距離継電器保護の方向判別用の極性電圧の位相ずれを防止してその誤判別を防止し、後備保護の誤動作を防止して信頼性を向上することを課題とする。
【0027】
【課題を解決するための手段】
前記の課題を解決するために、本発明は、電力系統送電線の相電流,相電圧により回線選択保護等の主保護のデジタルリレー演算を行い、該演算により、故障回線を遮断して前記送電線から切離する主保護の機能と、
前記送電線の線間電流、線間電圧及び方向判別用の極性電圧により後備保護の方向距離継電器保護のデジタルリレー演算を行い、該演算により、前記主保護のバックアップ保護を行う後備保護の機能と
を有する主後一体形のデジタル形保護継電装置であって、
回線毎の各相の相電流を計測する計器用変流器ユニットと、
該計器用変流器ユニットにより計測された各相のアナログの計測電流が供給される回線毎の電流検出用の補助変流器ユニットと、
各補助変流器ユニットの各相のアナログの電流検出信号が、アナログフィルタのフィルタ処理及びゲインコントローラのゲイン調整が施された後、サンプリング回路によりサンプルホールドされて信号選択用のマルチプレクサに供給される手段と、
回線毎の各相の相電圧計測する計器用変圧器ユニットと、
該計器用変圧器ユニットにより計測されたアナログの計測電圧が供給され、各相のアナログの相電圧検出信号が計測される一方の補助変圧器ユニットの各変圧器と、
前記計器用変圧器ユニットにより計測されたアナログの計測電圧が供給され、前記方向距離継電器保護の極性電圧の相電圧が計測され各相間のアナログの線間電圧検出信号が計測される他方の補助変圧器ユニットの各変圧器と、
前記相電圧検出信号及び前記線間電圧検出信号が、アナログフィルタのフィルタ処理及びゲインコントローラのゲイン調整が施された後、サンプリング回路によりサンプルホールドされてマルチプレクサに供給され手段と、
前記マルチプレクサにより前記電流検出信号、前記相電圧検出信号及び前記線間電圧検出信号が順に選択されてA/D変換器にくり返し供給される手段と、
前記A/D変換器によりそれぞれデジタル信号にA/D変換してマイクロコンピュータ構成の演算回路部に供給される手段とを備え、
前記演算回路部に、
前記電流検出信号及び前記電圧検出信号のデジタル信号により、各回線の相電流、相電圧を検出して前記主保護のデジタルリレー演算を行う手段と、
前記電流検出信号及び前記電圧検出信号のベクトル合成のデジタル演算を行、各回線の線間電流及び線間電圧を求める演算手段と、
前記極性電圧、送電線の線間電流及び線間電圧(スケール大)のアナログ入力を省き、前記主保護のアナログ入力を前記後備保護にも用い、A/D変換されたアナログ入力の前記線間電圧検出信号から生成される手段と、
前記演算手段により求めた線間電流及び線間電圧と、前記極性電圧とにより、前記方向距離継電器保護のデジタルリレー演算を行う手段とを設ける。
【0028】
したがって、主保護に必要な送電線の相電流,相電圧は、アナログ入力されてA/D変換され、主保護のデジタルリレー演算に用いられるが、後備保護としての方向距離継電器保護のデジタルリレー演算に必要な送電線の線間電流,線間電圧は、主保護のためにアナログ入力されてA/D変換された送電線の相電流,相電圧をデジタル演算でベクトル合成して得られる。
【0029】
また、方向距離継電器保護の方向判別に必要な極性電圧は、送電線の線間電圧のアナログ入力から専用の電圧として得られる。
【0030】
そのため、アナログ入力回路の入力が、送電線の相電流,相電圧及び極性電圧専用の線間電圧になり、少なくとも送電線の線間電流は入力されず、アナログ入力回路のアナログ入力数が極めて少なくなる。
【0031】
また、方向判別用の極性電圧がアナログ入力の専用の線間電圧により形成され、相電圧のベクトル合成等の演算で形成されたりしないため、至近端事故であっても極性電圧の位相ずれがなく、特性方向の誤判別が防止されて後備保護の誤動作が防止され、信頼性が向上する。
【0032】
【発明の実施の形態】
本発明の実施の1形態につき、図1ないし図4を参照して説明する。
まず、図1は平行2回線送電線のデジタル形保護継電装置の単線結線図であり、抵抗接地の送電線1の電源端Ta,負荷端Tb間の平行2回線2a,2bは、例えば電源端Taに設けられた回線毎の計器用変流器ユニット3により、A,B,C各相の相電流IA,IB,IC が計測され、両変流器ユニット3の各相のアナログの計測電流が本体装置4のアナログ入力回路5の回線毎の電流検出用の補助変流器ユニット6に供給される。
【0033】
そして、変流器ユニット3,6は図2に示すように形成され、変流器ユニット3の相毎の変流器3a,3b,3cの計測電流の信号は変流器ユニット6の各相の補助変流器6a,6b,6cに供給されて適当な電圧信号に変換される。
【0034】
さらに、各相の電流から回線の零相電流I0 も検出するため、補助変流器6a〜6cを通った各相の計測信号は補助変流器6dで加算されてベクトル合成される。
【0035】
そして、補助変流器6a〜6cの各相のアナログの相電流検出信号S(IA),S(IB),S(IC)及び補助変流器6dのアナログの零相電流検出信号S(I0 )は、アナログ入力回路5のアナログフィルタ7のフィルタ処理及びゲインコントローラ8のゲイン調整が施された後、サンプリング回路(図示せず)によりサンプルホールドされて信号選択用のマルチプレフサ9に供給される。
【0036】
一方、電源端T1の計器用変圧器ユニット10は電源端T1の各相の系統電圧を両回線の各相の相電圧として計測し、アナログの計測電圧を電圧検出用の補助変圧器ユニット11,12に供給する。
【0037】
この変圧器ユニット11,12は図3に示すように形成される。なお、図3においては、変圧器ユニット10を図示省略して変圧器ユニット11,12と送電線1の各相との関係を示し、1’は送電線1の接地抵抗である。
【0038】
そして、変圧器ユニット11の各変圧器11a,11b,11cにより、両回線の各相の相電圧として、送電線1の各相電圧VA,VB,VC が計測され、変圧器ユニット12の各変圧器12a,12b,12cにより、方向距離継電器保護の極性電圧Vpとして、送電線1の相電圧VAB,VBC,VCAが計測される。
【0039】
さらに、変圧器11a〜11cの各相のアナログの相電圧検出信号S(VA),S(VB),S(VC)及び変圧器12a〜12cの各相間のアナログの線間電圧検出信号S(VAB),S(VBC),S(VCA)は、変圧器ユニット11,12に接続されたアナログフィルタ7,ゲインコントローラ8の処理が施された後、サンプリング回路(図示せず)によりサンプルホールドされてマルチプレクサ9に供給される。
【0040】
なお、相電圧VA,VB,VC については、従来と同様にスケール大,スケール小のものが必要であることから、例えばゲインコントローラ8によりスケール大とスケール小の2種類の相電圧検出信号S(VA)〜S(VC)が形成される。
【0041】
そして、マルチプレクサ9は電流検出信号S(IA)〜S(IC),S(I0 及び電圧検出信号S(VA)〜S(VC),S(VAB)〜S(VCA)を順に選択してA/D変換器13に供給することをくり返し、この変換器13のA/D変換によりそれぞれデジタル信号に変換してマイクロコンピュータ構成の演算回路部14に供給する。
【0042】
この演算回路部14は、予め設定された保護継電器の主保護及び後備保護のプログラムを実行し、送電線1の相電流IA,IB,IC,相電圧VA,VB,VCに基づく回線選択保護等の主保護のデジタルリレー演算により、故障回線を遮断して送電線1から切離す主保護の機能と、送電線1の線間電流IAB,IBC,ICA,線間電圧VAB,VBC,VCA及び方向判別用の極性電圧Vpに基づく方向距離継電器保護のデジタルリレー演算により、主保護のバックアップ保護を行う後備保護の機能とを有する。
【0043】
そして、電流検出信号S(IA)〜S(IC),S(I0 )及び電圧検出信号S(VA)〜S(VC)のデジタル信号により、両回線の相電流IA〜IC,相電圧VA〜VCを検出して主保護としての回線選択保護のデジタルリレー演算を実行し、短絡の故障回路が発生すると、故障回線の遮断器15をトリップ開放して遮断し、送電線1から切離す。
【0044】
つぎに、主保護のアナログ入力を後備保護に共用して、後備保護としての方向距離継電器保護のデジタルリレー演算を行うため、演算回路部14は電流検出信号S(IA)〜S(IC),電圧検出信号S(VA)〜S(VC)のベクトル合成のデジタル演算(IA−IB,IB−IC,IC−IA,VA−VB,VB−VC,VC−VA)を行って、回線2a,2bの線間電流IAB,IBC,ICA及び線間電圧VAB,VBC,VCAを求める。
【0045】
一方、極性電圧Vpについては、A/D変換された電圧検出信号S(VAB)〜S(VCA)を用いる。
【0046】
このとき、極性電圧Vpが、方向判別(極性判別)にのみ用いられるため、電圧検出信号S(VAB)〜S(VCA)は、ゲインコントローラ8のゲイン調整又はA/D変換器13のレンジ設定により、方形波の入力に加工されてA/D変換される。
【0047】
そして、演算回路部14は、演算で求めた線間電流IAB〜ICA,線間電圧VAB〜VCAと、アナログ入力の極性電圧Vpとにより、方向距離継電器保護のデジタルリレー演算を行い、このデジタルリレー演算に基づき、故障回線の発生時、主保護から若干遅れて故障回線を検出し、主保護でその遮断器15がトリップ開放されていなければ、直ちにその遮断器15をトリップ開放し、主保護のバックアップ保護を行う。
【0048】
この場合、主保護のアナログ入力を後備保護にも用いるため、回線当りのアナログ入力の電流,電圧は、つぎの表2に示すように13チャンネルとなり、表1の20チャンネルより著しく少なくなる。
【0049】
【表2】
Figure 0003829614
【0050】
すなわち、この場合は前記表1の後備保護の線間電流及びスケール大,小の線間電圧の計10チャンネルのアナログ入力が省かれるため、極性電圧Vpの専用の線間電圧VAB〜VCAをアナログ入力しても、全体としては表1より7チャンネル減少してアナログ入力数が少なくなる。
【0051】
そのため、アナログ入力数を極力少なくした主後一体形のデジタル保護継電装置を提供することができる。
【0052】
なお、相電圧のアナログ入力は両回線に共用でき、相電圧及び線間電圧のみ回線毎に入力される。
【0053】
つぎに、極性電圧Vpは実際に検出されてアナログ入力した線間電圧VAB〜VCAからなり、演算回路部14はベクトル合成の演算等をすることなく、A/D変換器13の極性電圧Vpのデジタル信号の極性から特性方向(極性)を検出する。
【0054】
この場合、至近端事故が発生しても、A/D変換器13の極性電圧Vpのデジタル信号から演算回路部14が検出する特性方向は、図4の極性電圧Vpに示すように、図中の破線の真の線間電圧VABに一致し、相電圧のベクトル合成の演算等が不要で演算が簡単かつ迅速になり、しかも、極性電圧Vpの位相のずれがないことから、方向距離継電器保護の特性方向(極性)の誤検出がなく、後備保護の誤動作等を招くことがなく、信頼性の高いデジタル形保護継電器を提供することができる。
【0055】
したがって、入力チャンネル数が少ない小型でしかも信頼性の高い主後一体形のデジタル形保護継電器を提供することができる。
【0056】
ところで、主保護により短絡だけでなく地絡の回線選択保護も行い、後備保護により短絡保護(距離継電器保護)だけでなく地絡の方向継電器保護も行うようにしてもよく、この場合、地絡の回線選択保護は両回線の零相電流の差と零相電圧とに基づいて行われ、地絡方向継電器保護は零相電圧と零相電流との位相関係の検出に基づいて行われる。
【0057】
そして、本発明は主保護が回線選択保護以外の保護であっても、その保護が相電流IA〜IC,相電圧VA〜VCを用いたデジタルリレー演算で行われる限り、前記実施の形態と同様にして適用することができ、電力系統送電線が平行2回線のものに限られないのは勿論である。
【0058】
すなわち、本発明は種々の電力系統送電線の主保護と後備保護の機能を有する主後一体形のデジタル形保護継電装置に適用することができる。
【0059】
【発明の効果】
本発明は、以下に記載する効果を奏する。
主保護に必要な送電線1の相電流IA,IB,IC,相電圧VA,VB,VCは、アナログ入力されてA/D変換され、デジタルリレー演算に用いられるが、後備保護としての方向距離継電器保護のデジタルリレー演算に必要な送電線1の線間電流IAB,IBC,ICA,線間電圧VAB,VBC,VCAは、主保護のアナログ入力の相電流IA〜IC,相電圧VA〜VCを利用し、これらの電流IA〜IC,電圧VA〜VCからデジタル演算でベクトル合成して得られる。
【0060】
また、方向距離継電器保護の方向判別に必要な極性電圧Vpは、送電線の線間電圧の専用のアナログ入力から得られる。
【0061】
この場合、アナログ入力回路5のアナログ入力が、送電線の相電流I〜I,相電圧V〜V及び性電圧Vpの専用の線間電圧VAB〜VCAからなり、少なくとも送電線1の線間電流IAB〜ICAのアナログ入力を省くことができ、アナログ入力回路5のアナログ入力数を著しく少なくすることができる。
【0062】
また、極性電圧Vpが計測されたアナログ入力の線間電圧VAB〜VCAをA/D変換して形成され、相電圧VA〜VCのベクトル合成等の演算で形成されたりしないため、方向距離継電器保護の方向特性が著しく改善され、至近端事故であっても極性電圧Vpの位相ずれがなく、特性方向の誤判別がなく、後備保護の誤動作を防止して信頼性を著しく向上することができる。
【0063】
したがって、アナログ入力数が少なく、小型で、しかも、いわゆる至近端事故が発生しても、後備保護の方向制御用の極性電圧Vpの位相ずれがなく、その方向特性が著しく改善されて信頼性が極めて高い主後一体形のデジタル形保護継電装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の1形態の単線結線図である。
【図2】図1の一部の詳細な3相結線図である。
【図3】図1の他の一部の詳細な3相結線図である。
【図4】図1の後備保護の極性電圧の特性図である。
【図5】方向距離継電器の特性図である。
【図6】(a),(b)はそれぞれ相電圧のベクトル合成で求めた場合の後備保護の極性電圧の特性図である。
【符号の説明】
1 送電線
2a,2b 回線
3,6 変流器ユニット
5 アナログ入力回路
10,11,12 変圧器ユニット
13 A/D変換器
14 演算回路部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a main-rear integrated digital protection relay device in which a main relay digital relay for a power system transmission line such as a parallel two-line transmission line and a rear protection digital relay are integrated.
[0002]
[Prior art]
Conventionally, in a power system transmission line, for example, a line selection relay as a protective relay for main protection and a directional distance relay as a protective relay for back-end protection are provided. Backup backup protection is performed with a separate protective relay to cut off the faulty line and disconnect it from the transmission line.
[0003]
With the advent of digital relays using microcomputers, the protective relays for main protection and back-end protection tend to be formed digitally using digital relays.
[0004]
[Problems to be solved by the invention]
When the main protection and the backup protection are performed by separate protective relays as in the conventional case, it is not possible to meet the recent demand for downsizing of the protective device.
[0005]
Therefore, based on recent advances in digital relay compounding technology, digital protection is used to integrate main protection and back-end protection, and the main rear-integrated single digital relay device is used for miniaturization and the like. Therefore, it is conceivable to carry out main protection and protection of transmission lines.
[0006]
In this case, in the apparatus, analog input current and voltage are A / D converted and supplied to the operation circuit unit of the microcomputer, and this operation circuit unit provides line selection protection (main protection) and direction distance relay protection ( Digital relay calculation (protection protection).
[0007]
When the occurrence of a faulty line is detected by these calculations, the circuit breaker for that line is opened, and the faulty line is cut off and disconnected.
[0008]
By the way, in line selection protection against short-circuit accidents, a so-called balanced relay system is used to detect a faulty line from an imbalance in the current distribution of each line of the transmission line. )is required.
[0009]
For directional distance relay protection, the system impedance to the fault point is measured by the line voltage and line current, and the short-circuit fault is detected by the direction (phase characteristics). A polarity voltage for direction discrimination is required.
[0010]
Therefore, in the case of a parallel two-line transmission line, the current and voltage of the analog input require a phase current and a phase voltage (system bus voltage) for each line for main protection, A line current and a line voltage of the system and a polarity voltage for direction determination are required, and this polarity voltage is a line voltage of the system.
[0011]
If ground fault protection or the like is performed, a zero-phase current is also required for main protection and rear-end protection.
[0012]
In addition, when an accident occurs, generally, the current element increases but the voltage element decreases extremely, and the measurement error of the voltage element increases and the calculation error of the digital relay operation increases. As for the phase voltage and the line voltage, it is necessary to perform A / D conversion on a two-stage scale (range) and switch the results.
[0013]
Therefore, the number of analog input currents and voltages (number of channels) per line is 20 channels as shown in Table 1 below, taking into account the zero-phase phase current and line-to-line current. If the back-to-back protection is performed, there is a problem that the number of analog inputs (number of channels) of the digital protection relay device becomes extremely large.
[0014]
[Table 1]
Figure 0003829614
[0015]
The phase currents and phase voltages A, B, and C in Table 1 indicate phases, and the line currents and line voltages A, B, and C are between A and B, B and C, and C and A, respectively. Show.
[0016]
In practice, phase current, although the line current is input for each line, the phase voltage, line voltage is common to each line.
[0017]
Next, in the directional distance relay protection as a back-up protection, the characteristic equation of the MO element is generally expressed by the following vector equation (1), where Z is a settling impedance, I is a line current, V is a line voltage, and Vp is a polarity voltage (line voltage) for direction determination.
[0018]
[Expression 1]
Figure 0003829614
[0019]
The phase characteristic of the MO element has directionality (polarity) as shown in the characteristic diagram of the directional distance relay in FIG. 5, and is a range surrounded by the characteristic circle of the MO element and the settling straight line B of the reactance element. Is the operating area.
[0020]
In the figure, two orthogonal axes of R and L are axes of a resistance component and a reactance component.
[0021]
Further, the direction characteristic of the MO element is determined by the polarity of the polarity voltage Vp, and the operation value characteristic thereof is determined by the magnitude of the line voltage V.
[0022]
Then, the line voltage V is the line voltage of each analog input in Table 1, and the polarity voltage is the phase voltage of the main input analog input instead of analog input of the dedicated line voltage in order to reduce the number of analog inputs. It is conceivable to obtain a vector by digitally computing, but in this case, especially when a system fault within 100m (proximal end accident) occurs from the end of the transmission line where this device is installed, analog input As shown in FIGS. 6 (a) and 6 (b), for example, the line voltage obtained by vector synthesis of the phase voltages V A and V B is obtained. V AB ′ is out of phase with the true line voltage V AB of each broken line.
[0023]
That is, when the line voltage as the polar voltage Vp is obtained by vector synthesis of the phase voltage, the instantaneous value of the phase voltage of the system is sampled at every electrical angle of 30 ° of the system fundamental wave as in the case of a general digital relay. Since the cosine (cos) component and the sine (sin) component are obtained by calculation and vector synthesis is performed, the phase error and A / D in the transformer for detecting the phase voltage are added to the line voltage obtained by this vector synthesis. The quantization error of the transformation is included.
[0024]
And, when the system is normal, the phase voltage is sufficiently large at the rated voltage, so the error is hardly affected, but when the phase voltage is reduced due to a system fault, the effect of the error is increased and obtained by vector synthesis. The phase of the line voltage fluctuates every moment and deviates from the phase of the true line voltage as shown in FIGS.
[0025]
Therefore, when the line voltage as the polarity voltage Vp is obtained from the vector synthesis of the phase voltage, the characteristic direction (polarity) of the directional distance relay protection may be erroneously determined, which may cause malfunction of the back-up protection.
[0026]
In this kind of main and rear integrated digital protection relay device, the number of analog inputs is reduced as much as possible, and the misregistration is prevented by preventing the phase shift of the polarity voltage for direction determination of the directional distance relay protection. It is an object to improve reliability by preventing rearrangement protection and preventing malfunction of back-end protection.
[0027]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is the power phase current of the system transmission line performs more digital relay computation of the main protection line selection protection, etc. to the phase voltage by the operational, to cut off the fault line the The main protection function to disconnect from the transmission line,
Line-to-line current of the transmission line, performs a digital relay computation direction distance relay protection protect more back-up retention in the line voltage and the polarity voltage for direction determination, by the calculation, the backup protection to backup protection of the main protection A main and rear integrated digital protective relay device having the functions
A current transformer unit for measuring the phase current of each phase for each line ;
An auxiliary current transformer unit for current detection for each line to which an analog measured current of each phase measured by the current transformer unit is supplied;
Each phase of the phase current detection signal of the analog of the each auxiliary current transformer units, after filtering and gain controller of the gain adjustment of the analog filter is applied, it is sampled and held by the multiplexer for signal selected by the sampling circuit Means to be supplied;
And instrument transformer unit for measuring the phase voltage of each phase of each line,
The regimen dexterity transformer analog measurement voltage measured by the unit is supplied with the transformer one of the auxiliary transformer unit phase voltage detection signal of each phase of the analog is measured,
The measurement voltage of the analog measured by the potential transformer unit is supplied, the direction distance relay protection phase voltage polarity voltage is measured, and the other of the line voltage detection signal of the analog between each phase is measured each transformer auxiliary transformer unit,
The phase voltage detection signal and said line voltage detection signal, after filtering and gain controller of the gain adjustment of the analog filter is applied, and means are sample hold Ru is supplied to the multiplexer by the sampling circuit,
By the multiplexer, the phase current detection signal, the phase voltage detection signal and said line voltage detection signal, and means that will be repeatedly supplied to the selected sequentially A / D converter,
And means to be supplied to the arithmetic circuit of the microcomputer constructed by an A / D conversion into digital signals by the A / D converter,
In the arithmetic circuit section,
Means for performing a digital relay operation of the main protection by detecting a phase current and a phase voltage of each line by a digital signal of the phase current detection signal and the phase voltage detection signal;
There line digital computation of the vector synthesis of the phase current detection signal and the phase voltage detection signal, and calculating means for calculating a line-to-line current and the line voltage of each line,
The polarity voltage, eliminating the analog input of the line current and the line voltage of the transmission line (scale size), the analog input of the main protection have use in the backup protection, A / D converted the analog input means that will be generated from the line voltage detecting signal,
And the line current and the line voltage obtained by said arithmetic means, by the previous SL-polarity voltage, provided with means for performing digital relay computation of the direction distance relay protection.
[0028]
Therefore, the phase current and phase voltage of the transmission line necessary for main protection are analog input and A / D converted, and used for main relay digital relay calculation. The line current and line voltage of the transmission line necessary for the above are obtained by vector synthesis by digital calculation of the phase current and phase voltage of the transmission line analog-input and A / D converted for main protection.
[0029]
Moreover, the polarity voltage required for the direction determination of the direction distance relay protection is obtained as a dedicated voltage from the analog input of the line voltage of the transmission line.
[0030]
Therefore, the input of the analog input circuit becomes the line voltage dedicated to the phase current, phase voltage and polarity voltage of the transmission line, at least the line current of the transmission line is not input, and the number of analog inputs of the analog input circuit is extremely small Become.
[0031]
In addition, the polarity voltage for direction determination is formed by the line voltage dedicated for analog input, and is not formed by calculation such as vector synthesis of phase voltage. In addition, misidentification of the characteristic direction is prevented, malfunction of the back-up protection is prevented, and reliability is improved.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
First, FIG. 1 is a single-line connection diagram of a digital protective relay device for parallel two-line transmission lines. The parallel two lines 2a and 2b between the power supply terminal Ta and the load terminal Tb of the resistance-grounded transmission line 1 are, for example, power supplies. The phase currents I A , I B , and I C of the phases A , B , and C are measured by the current transformer unit 3 for each line provided at the terminal Ta, and each phase of the current transformer units 3 is measured. An analog measurement current is supplied to the auxiliary current transformer unit 6 for current detection for each line of the analog input circuit 5 of the main unit 4.
[0033]
The current transformer units 3 and 6 are formed as shown in FIG. 2, and the signals of the measured currents of the current transformers 3 a, 3 b, and 3 c for each phase of the current transformer unit 3 are each phase of the current transformer unit 6. Are supplied to the auxiliary current transformers 6a, 6b and 6c and converted into appropriate voltage signals.
[0034]
Further, since the zero-phase current I 0 of the line is also detected from the currents of the respective phases, the measurement signals of the respective phases that have passed through the auxiliary current transformers 6a to 6c are added by the auxiliary current transformer 6d to be vector-synthesized.
[0035]
Then, the analog phase current detection signals S (I A ), S (I B ), S (I C ) of each phase of the auxiliary current transformers 6a to 6c and the analog zero-phase current detection signal of the auxiliary current transformer 6d. S (I 0 ) is subjected to filter processing of the analog filter 7 of the analog input circuit 5 and gain adjustment of the gain controller 8, and then is sampled and held by a sampling circuit (not shown) to be a signal selection multiplexer 9. To be supplied.
[0036]
On the other hand, voltage transformer unit 10 of the power supply terminal T 1 measures the phase of the system voltage of the power supply terminal T 1 as a phase voltage of each phase of the two lines, the auxiliary transformer unit for voltage detection an analog measurement voltage 11 and 12.
[0037]
The transformer units 11 and 12 are formed as shown in FIG. In FIG. 3, the illustration of the transformer unit 10 is omitted, and the relationship between the transformer units 11 and 12 and each phase of the power transmission line 1 is shown, and 1 ′ is the ground resistance of the power transmission line 1.
[0038]
Then, the phase voltages V A , V B , and V C of the transmission line 1 are measured as the phase voltages of the phases of both lines by the transformers 11a, 11b, and 11c of the transformer unit 11, and the transformer unit 12 The phase voltages V AB , V BC , V CA of the transmission line 1 are measured as the polarity voltage Vp for protecting the directional distance relay by the transformers 12a, 12b, 12c.
[0039]
Further, analog phase voltage detection signals S (V A ), S (V B ), S (V C ) of each phase of the transformers 11a to 11c and analog line voltage detection between the phases of the transformers 12a to 12c. The signals S (V AB ), S (V BC ), and S (V CA ) are processed by an analog filter 7 and a gain controller 8 connected to the transformer units 11 and 12 and then a sampling circuit (not shown). The sample is held and supplied to the multiplexer 9.
[0040]
Since the phase voltages V A , V B , and V C need to be large scale and small scale as in the conventional case, for example, the gain controller 8 detects two types of phase voltage, large scale and small scale. Signals S (V A ) -S (V C ) are formed.
[0041]
Then, the multiplexer 9 generates current detection signals S (I A ) to S (I C ), S (I 0 ). And the voltage detection signals S (V A ) to S (V C ), S (V AB ) to S (V CA ) are sequentially selected and repeatedly supplied to the A / D converter 13. The signals are converted into digital signals by A / D conversion and supplied to the arithmetic circuit unit 14 having a microcomputer configuration.
[0042]
The arithmetic circuit unit 14 executes a main protection program and a protection program for the protection relay set in advance, and the phase currents I A , I B , I C , phase voltages V A , V B , V C of the transmission line 1. The main protection function that cuts off the faulty line and disconnects it from the transmission line 1 by the digital relay operation of the main protection such as line selection protection based on the above, and the line currents I AB , I BC , I CA , line of the transmission line 1 It has a backup protection function that performs backup protection of the main protection by digital relay calculation of the direction distance relay protection based on the voltage V AB , V BC , V CA and the polarity voltage Vp for direction determination.
[0043]
Then, based on the digital signals of the current detection signals S (I A ) to S (I C ), S (I 0 ) and the voltage detection signals S (V A ) to S (V C ), the phase currents I A to When I C and phase voltages V A to V C are detected and digital relay operation for line selection protection as the main protection is performed and a short circuit fault circuit occurs, the circuit breaker 15 of the fault line is tripped open and shut off. Disconnect from the transmission line 1.
[0044]
Next, the arithmetic circuit unit 14 uses the current detection signals S (I A ) to S (I C ) in order to perform the digital relay calculation of the direction distance relay protection as the backup protection by sharing the analog input of the main protection for the backup protection. ), digital computation of the vector synthesis of the voltage detection signal S (V a) ~S (V C) (I a -I B, I B -I C, I C -I a, V a -V B, V B - V C , V C −V A ) to obtain line currents I AB , I BC , I CA and line voltages V AB , V BC , V CA of the lines 2a, 2b.
[0045]
On the other hand, for the polarity voltage Vp, voltage detection signals S (V AB ) to S (V CA ) subjected to A / D conversion are used.
[0046]
At this time, since the polarity voltage Vp is used only for direction determination (polarity determination), the voltage detection signals S (V AB ) to S (V CA ) are used for the gain adjustment of the gain controller 8 or the A / D converter 13. By the range setting, it is processed into a square wave input and A / D converted.
[0047]
Then, the arithmetic circuit unit 14 performs digital relay calculation for directional distance relay protection based on the line currents I AB to I CA , the line voltages V AB to V CA obtained by the calculation, and the polarity voltage Vp of the analog input. Based on this digital relay calculation, when a faulty line occurs, the faulty line is detected with a slight delay from the main protection, and if the circuit breaker 15 is not tripped by main protection, the circuit breaker 15 is immediately tripped open. , Perform primary protection backup protection.
[0048]
In this case, since the main protection analog input is also used for back-up protection, the current and voltage of the analog input per line are 13 channels as shown in the following Table 2, which is significantly less than the 20 channels in Table 1.
[0049]
[Table 2]
Figure 0003829614
[0050]
That is, in this case, since the analog input of the total of 10 channels of the line current and the scale large and small line voltages for the protection of the above-mentioned Table 1 is omitted, the line voltage V AB to V CA dedicated to the polar voltage Vp is omitted. As a whole, the number of analog inputs is reduced by reducing 7 channels from Table 1.
[0051]
Therefore, it is possible to provide a main and rear integrated digital protection relay device in which the number of analog inputs is reduced as much as possible.
[0052]
The analog input of the phase voltage can be shared by both lines, and only the phase voltage and the line voltage are input for each line.
[0053]
Next, the polarity voltage Vp is composed of the line voltages V AB to V CA that are actually detected and analogly input, and the arithmetic circuit unit 14 does not perform vector synthesis operation or the like, and the polarity voltage of the A / D converter 13 is calculated. The characteristic direction (polarity) is detected from the polarity of the Vp digital signal.
[0054]
In this case, even if a near-end accident occurs, the characteristic direction detected by the arithmetic circuit unit 14 from the digital signal of the polarity voltage Vp of the A / D converter 13 is as shown by the polarity voltage Vp in FIG. Since it coincides with the true line voltage V AB of the broken line in the middle, the calculation of the phase voltage vector synthesis is unnecessary, the calculation is simple and quick, and there is no phase shift of the polarity voltage Vp, so the direction distance There is no erroneous detection of the characteristic direction (polarity) of the relay protection, and there is no malfunction of the back-up protection, and a highly reliable digital protection relay can be provided.
[0055]
Therefore, it is possible to provide a compact main-relay protective relay with a small number of input channels and high reliability.
[0056]
By the way, not only a short circuit but also a ground fault line selection protection can be performed by the main protection, and a ground fault direction relay protection can be performed not only by a short circuit protection (distance relay protection) but also by a ground protection. The line selection protection is performed based on the difference between the zero-phase currents of the two lines and the zero-phase voltage, and the ground fault relay protection is performed based on the detection of the phase relationship between the zero-phase voltage and the zero-phase current.
[0057]
And even if the main protection is protection other than line selection protection, the present invention is not limited as long as the protection is performed by digital relay calculation using the phase currents I A to I C and the phase voltages V A to V C. Of course, the present invention can be applied in the same manner as described above, and the power transmission line is not limited to two parallel lines.
[0058]
That is, the present invention can be applied to a main and rear integrated digital protection relay device having functions of main protection and back-up protection for various power system transmission lines.
[0059]
【The invention's effect】
The present invention has the following effects.
The phase currents I A , I B , I C and phase voltages V A , V B , V C of the transmission line 1 necessary for main protection are analog input, A / D converted, and used for digital relay calculation. The line currents I AB , I BC , I CA , and line voltages V AB , V BC , V CA of the transmission line 1 necessary for the digital relay operation of the directional distance relay protection as the backup protection are the analog inputs of the main protection phase current I a ~I C, utilizing phase voltage V a ~V C, these currents I a ~I C, obtained by vector synthesis with digital computation from the voltage V a ~V C.
[0060]
In addition, the polarity voltage Vp necessary for determining the direction of protection of the directional distance relay is obtained from a dedicated analog input of the line voltage of the transmission line.
[0061]
In this case, the analog input of the analog input circuit 5, the phase current I A ~I C of the transmission line consists of the phase voltage V A ~V C and dedicated line voltage V AB ~V CA of polarity voltage Vp, at least The analog inputs of the line currents I AB to I CA of the transmission line 1 can be omitted, and the number of analog inputs of the analog input circuit 5 can be significantly reduced.
[0062]
In addition, since the analog input line voltages V AB to V CA where the polarity voltage Vp is measured are formed by A / D conversion and are not formed by operations such as vector synthesis of the phase voltages V A to V C , The direction characteristics of the directional distance relay protection are remarkably improved, there is no phase shift of the polarity voltage Vp even in the case of a near-end accident, there is no misjudgment of the characteristic direction, and the malfunction of the back-up protection is prevented and the reliability is remarkably improved can do.
[0063]
Therefore, the number of analog inputs is small, the size is small, and even if a so-called near-end accident occurs, there is no phase shift of the polarity voltage Vp for directional control for the protection of the back-end protection, and the directional characteristics are remarkably improved and the reliability is improved. Therefore, it is possible to provide a main and rear integrated digital type protective relay device that is extremely high.
[Brief description of the drawings]
FIG. 1 is a single-line connection diagram of a first embodiment of the present invention.
FIG. 2 is a detailed three-phase connection diagram of a part of FIG. 1;
FIG. 3 is a detailed three-phase connection diagram of another part of FIG. 1;
4 is a characteristic diagram of a polarity voltage of the back-up protection of FIG. 1. FIG.
FIG. 5 is a characteristic diagram of a directional distance relay.
FIGS. 6A and 6B are characteristic diagrams of polarity voltages for back-up protection obtained by vector synthesis of phase voltages, respectively.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Transmission line 2a, 2b Line 3, 6 Current transformer unit 5 Analog input circuit 10, 11, 12 Transformer unit 13 A / D converter 14 Arithmetic circuit part

Claims (1)

電力系統送電線の相電流,相電圧により回線選択保護等の主保護のデジタルリレー演算を行い、該演算により、故障回線を遮断して前記送電線から切離する主保護の機能と、
前記送電線の線間電流、線間電圧及び方向判別用の極性電圧により後備保護の方向距離継電器保護のデジタルリレー演算を行い、該演算により、前記主保護のバックアップ保護を行う後備保護の機能と
を有する主後一体形のデジタル形保護継電装置であって、
回線毎の各相の相電流を計測する計器用変流器ユニットと、
該計器用変流器ユニットにより計測された各相のアナログの計測電流が供給される回線毎の電流検出用の補助変流器ユニットと、
各補助変流器ユニットの各相のアナログの電流検出信号が、アナログフィルタのフィルタ処理及びゲインコントローラのゲイン調整が施された後、サンプリング回路によりサンプルホールドされて信号選択用のマルチプレクサに供給される手段と、
回線毎の各相の相電圧計測する計器用変圧器ユニットと、
該計器用変圧器ユニットにより計測されたアナログの計測電圧が供給され、各相のアナログの相電圧検出信号が計測される一方の補助変圧器ユニットの各変圧器と、
前記計器用変圧器ユニットにより計測されたアナログの計測電圧が供給され、前記方向距離継電器保護の極性電圧の相電圧が計測され各相間のアナログの線間電圧検出信号が計測される他方の補助変圧器ユニットの各変圧器と、
前記相電圧検出信号及び前記線間電圧検出信号が、アナログフィルタのフィルタ処理及びゲインコントローラのゲイン調整が施された後、サンプリング回路によりサンプルホールドされてマルチプレクサに供給され手段と、
前記マルチプレクサにより前記電流検出信号、前記相電圧検出信号及び前記線間電圧検出信号が順に選択されてA/D変換器にくり返し供給される手段と、
前記A/D変換器によりそれぞれデジタル信号にA/D変換してマイクロコンピュータ構成の演算回路部に供給される手段とを備え、
前記演算回路部に、
前記電流検出信号及び前記電圧検出信号のデジタル信号により、各回線の相電流、相電圧を検出して前記主保護のデジタルリレー演算を行う手段と、
前記電流検出信号及び前記電圧検出信号のベクトル合成のデジタル演算を行、各回線の線間電流及び線間電圧を求める演算手段と、
前記極性電圧、送電線の線間電流及び線間電圧(スケール大)のアナログ入力を省き、前記主保護のアナログ入力を前記後備保護にも用い、A/D変換されたアナログ入力の前記線間電圧検出信号から生成される手段と、
前記演算手段により求めた線間電流及び線間電圧と、前記極性電圧とにより、前記方向距離継電器保護のデジタルリレー演算を行う手段と
を設けたことを特徴とするデジタル形保護継電装置。
Phase current of the power system transmission lines, performs more digital relay computation of the main protection line selection protection, etc. to the phase voltage by the operational, and that disconnected from the power transmission line to interrupt the fault line of the main protection
Line-to-line current of the transmission line, performs a digital relay computation direction distance relay protection protect more back-up retention in the line voltage and the polarity voltage for direction determination, by the calculation, the backup protection to backup protection of the main protection A main and rear integrated digital protective relay device having the functions
A current transformer unit for measuring the phase current of each phase for each line ;
An auxiliary current transformer unit for current detection for each line to which an analog measured current of each phase measured by the current transformer unit is supplied;
Each phase of the phase current detection signal of the analog of the each auxiliary current transformer units, after filtering and gain controller of the gain adjustment of the analog filter is applied, it is sampled and held by the multiplexer for signal selected by the sampling circuit Means to be supplied;
And instrument transformer unit for measuring the phase voltage of each phase of each line,
The regimen dexterity transformer analog measurement voltage measured by the unit is supplied with the transformer one of the auxiliary transformer unit phase voltage detection signal of each phase of the analog is measured,
The measurement voltage of the analog measured by the potential transformer unit is supplied, the direction distance relay protection phase voltage polarity voltage is measured, and the other of the line voltage detection signal of the analog between each phase is measured each transformer auxiliary transformer unit,
The phase voltage detection signal and said line voltage detection signal, after filtering and gain controller of the gain adjustment of the analog filter is applied, and means are sample hold Ru is supplied to the multiplexer by the sampling circuit,
By the multiplexer, the phase current detection signal, the phase voltage detection signal and said line voltage detection signal, and means that will be repeatedly supplied to the selected sequentially A / D converter,
And means to be supplied to the arithmetic circuit of the microcomputer constructed by an A / D conversion into digital signals by the A / D converter,
In the arithmetic circuit section,
Means for performing a digital relay operation of the main protection by detecting a phase current and a phase voltage of each line by a digital signal of the phase current detection signal and the phase voltage detection signal;
There line digital computation of the vector synthesis of the phase current detection signal and the phase voltage detection signal, and calculating means for calculating a line-to-line current and the line voltage of each line,
The polarity voltage, eliminating the analog input of the line current and the line voltage of the transmission line (scale size), the analog input of the main protection have use in the backup protection, A / D converted the analog input means that will be generated from the line voltage detecting signal,
Wherein the voltage between the line current and the line obtained by computing means, before SL by the polarity voltage, the direction distance relay digital protective relay device, characterized in that the provided means for performing a digital relay computation of protection.
JP2000328434A 2000-10-27 2000-10-27 Digital type protective relay device Expired - Fee Related JP3829614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000328434A JP3829614B2 (en) 2000-10-27 2000-10-27 Digital type protective relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000328434A JP3829614B2 (en) 2000-10-27 2000-10-27 Digital type protective relay device

Publications (2)

Publication Number Publication Date
JP2002135969A JP2002135969A (en) 2002-05-10
JP3829614B2 true JP3829614B2 (en) 2006-10-04

Family

ID=18805289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000328434A Expired - Fee Related JP3829614B2 (en) 2000-10-27 2000-10-27 Digital type protective relay device

Country Status (1)

Country Link
JP (1) JP3829614B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103514363A (en) * 2013-07-18 2014-01-15 浙江大学 Method for online setting of power network backup protection according to increment factors

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4540621B2 (en) * 2006-02-17 2010-09-08 中国電力株式会社 Line selection relay device with electrical premises protection function and line selection relay system with electrical premises protection function
JP2008079484A (en) * 2006-09-25 2008-04-03 Chugoku Electric Power Co Inc:The Digital protection relay system and digital protection relay panel
JP6362569B2 (en) * 2015-06-10 2018-07-25 三菱電機株式会社 Distance relay device and power line protection method
CN109902735B (en) * 2019-02-22 2022-06-07 武汉格蓝若智能技术有限公司 Method for realizing running error assessment of three-phase voltage transformer in transformer substation
CN110716467B (en) * 2019-10-16 2021-03-30 南京南瑞继保电气有限公司 Communication method and control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103514363A (en) * 2013-07-18 2014-01-15 浙江大学 Method for online setting of power network backup protection according to increment factors
CN103514363B (en) * 2013-07-18 2016-12-28 浙江大学 A kind of electric power networks back-up protection on-line tuning method based on increment factor

Also Published As

Publication number Publication date
JP2002135969A (en) 2002-05-10

Similar Documents

Publication Publication Date Title
EP0769836A2 (en) A directional element
US5783946A (en) Fault type classification algorithm
WO2001076036A2 (en) Differential protective relay for electrical buses with improved immunity to saturation of current transformers
US7965478B2 (en) System and method for detecting a fault condition
JP3829614B2 (en) Digital type protective relay device
KR102057201B1 (en) Out of order discrimination apparatus and protective relay apparatus
US8395871B2 (en) Device and method for detecting faulted phases in a multi-phase electrical network
JPH01190215A (en) Phase selector
JP4921246B2 (en) Ground fault distance relay
JP2957187B2 (en) Secondary circuit disconnection detector for instrument transformer
JP6193672B2 (en) Three-phase phase loss protection device and three-phase phase loss protection method
KR200344922Y1 (en) Composite protective relay device
JP2581061B2 (en) Power system protection device
JP6362569B2 (en) Distance relay device and power line protection method
US6154687A (en) Modified cosine filters
KR20040028238A (en) Apparatus for preventing mal-operation of sudden pressure relay system for protecting transformer
JPH0837730A (en) Bus protective relay
JP3560297B2 (en) Ground fault distance relay device
JP2001016767A (en) Failure section decision device for transformer station
JP3843663B2 (en) Protection relay device
JPH02106126A (en) Method and apparatus for distinguishing types of failures in transmission line
KR200299879Y1 (en) Apparatus for preventing mal-operation of sudden pressure relay system for protecting transformer
JP3763345B2 (en) Ratio differential relay
JP2000166082A (en) Short-circuit directional relay
JPH0235539B2 (en) ITSUSENCHIRAKUKENSHUTSUKEIDENKI

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees