JP3942137B2 - Transmission line protection device - Google Patents

Transmission line protection device Download PDF

Info

Publication number
JP3942137B2
JP3942137B2 JP2000217009A JP2000217009A JP3942137B2 JP 3942137 B2 JP3942137 B2 JP 3942137B2 JP 2000217009 A JP2000217009 A JP 2000217009A JP 2000217009 A JP2000217009 A JP 2000217009A JP 3942137 B2 JP3942137 B2 JP 3942137B2
Authority
JP
Japan
Prior art keywords
zero
current
line
phase
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000217009A
Other languages
Japanese (ja)
Other versions
JP2002034145A (en
Inventor
高久 阿部
正弘 伊藤
政夫 堀
道彦 犬飼
茂 佐藤
秀昌 杉浦
弘司 半沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Chubu Electric Power Co Inc
Original Assignee
Toshiba Corp
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Chubu Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP2000217009A priority Critical patent/JP3942137B2/en
Publication of JP2002034145A publication Critical patent/JP2002034145A/en
Application granted granted Critical
Publication of JP3942137B2 publication Critical patent/JP3942137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、零相循環電流の存在する並行2回線系統に適用するのに好適な送電線保護装置に関する。
【0002】
【従来の技術】
並行多回線の電力系統においては、系統の各相事故インピーダンスの不平衡により、事故時以外でも常時、零相循環電流が存在する。この零相循環電流が事故電流に比べて無視できない場合、特に高抵抗接地系においては、保護リレーの検出感度に影響が及び、高速度・高感度の保護が不可能になりかねない。
【0003】
一般に、送電線の保護リレー方式の内で主保護として使用される電流差動継電装置では、保護回線内の地絡故障を検出するために比率特性を持った零相差電流リレーを用いるが、零相循環電流が増大すると比率特性上において抑制量が大きくなって、地絡故障検出感度が低下する。特に零相循環電流が大きい場合は保護リレーとして電流差動継電装置を系統に適用できなくなる。
【0004】
以上のことを図を参照しながら説明する。図8は並行2回線の系統構成例を示すものである。図8において、母線1aと母線1bとの間に、両端に遮断器2a,2bを有する第1の送電線4aと、両端に遮断器2c,2dを有する第2の送電線4bとが並行2回線を構成するように設けられている。母線1aと1bには、送電線4aを流れる零相電流が、夫々電流変成器(以下、CTと称す)3a,3bによって検出される。
【0005】
第1の送電線のF点で1線地絡故障があった場合、差電流リレー5aでは、CT3aで検出された零相電流(Io3a)とCT3bで検出された零相電流(Io3b)とから、動作量としてIo3aとIo3bのベクトル和として得られる零相差電流の絶対値(|Iod|)と、抑制量としてIo3aとIo3bのスカラー和(Σ|Io|)を算出する。
【0006】
差電流リレー5aは、零相差電流(Iod)と各CTで検出された零相電流のスカラー和(Σ|Io|)が下記(1)式に示す関係を満たし、電流ベクトルと電圧ベクトルの位相関係が保護対象系統の内部方向を示すと動作し、遮断器2a,2bの遮断を可能とする。
【数1】
|Iod|≧a・Σ|Io|+(1−1/a)b ………(1)
【0007】
図9は差電流リレーの比率特性例を示すものである。図の特性において、零相差電流の絶対値(|Iod|)を縦軸とし、CT3aで検出された零相電流(Io3a)とCT3bで検出された零相電流(Io3b)のスカラー和(Σ|Io|)を横軸としている。(1)式にあるaは比率特性の傾きとして表され、bは縦軸と交わる切片として表される。本比率特性において(1)式を満たす動作域cは、比率特性上の斜線よりも上の部分となる。又、不動作域dは、比率特性上の斜線より下の部分となる。
【0008】
図10は零相循環電流(Ico)が存在する系統において、第1の送電線4aのF点で1線地絡事故が発生した場合を示すものである。零相循環電流(Ico)だけが系統に流れているときに、CT3a,CT3bで検出される電流をIco3a,Ico3bとすると、図示した場合において差電流リレー5aが取り込む電気量は、1a端子において故障電流Io3aと零相循環電流Ico3aのベクトル和Ioaとなり、1b端子においては故障電流Io3bと零相循環電流Ico3bのベクトルの差Iobとなる。
【0009】
図11は零相循環電流(Ico)が存在する系統に適用された差電流リレー5aに取り込まれる電気量のベクトル図である。零相循環電流は地絡事故による故障電流とランダムな位相に発生する。例として90度方向に零相循環電流の位相があったものとすると、CT3a,CT3bで検出する零相電流ベクトルのIoa及びIobの大きさは、CT3aで検出する故障電流ベクトルをIo3a,CT3bで検出する故障電流ベクトルをIo3b,CT3bで検出する零相循環電流ベクトルを(−Ico3b)とすると(2)式,(3)式で表される。
【0010】
又、差電流リレー5aの抑制量(Σ|Io|)はIoaとIobのスカラー和であることから(4)式で表される。(4)式の結果から、零相循環電流が存在する系統では、差電流リレー5aの比率特性において抑制量が大きくなることが分かる。
【0011】
【数2】

Figure 0003942137
【0012】
【発明が解決しようとする課題】
図12は差電流リレー5aが適用された系統に、零相循環電流(Ico)が存在しなかった場合と、存在した場合との、比率特性上における差電流(Iod)とCT3aで検出された零相電流とCT3bで検出された零相電流のスカラー和(Σ|Io|)の関係の比較である。差電流リレー5aが検出する差電流(Iod)は零相循環電流の有無に関わらず一定である。
【0013】
零相循環電流が無い場合の比率特性上の点を6aとし、零相循環電流が存在する場合の比率特性上の点を6bとする。CT3aで検出された零相電流とCT3bで検出された零相電流のスカラー和(Σ|Io|)は、(4)式の結果から零相循環電流(Ico)が存在すると大きくなるため、6bは6aを横軸方向に移動させた点となる。このため、差電流リレー5aの地絡故障感度が低下し、零相循環電流の大きさによっては、差電流リレー5aが不動作になる問題がある。
【0014】
本発明は上記課題を解決するためになされたものであり、構成簡単にして零相循環電流の大きい系統における地絡事故検出感度低下を排除することの可能な送電線保護装置を提供することを目的としている。
【0015】
【課題を解決するための手段】
本発明の[請求項1]に係る送電線保護装置は、並行2回線送電線の複数端子の電気量を用いて、電力系統の地絡事故を判別する零相循環電流対策付差電流リレー(以下差電流リレー5と称す)を用いた送電線保護装置において、
前記差電流リレー5は、前記並行2回線一括で内部地絡を検出する地絡検出手段を備えると共に、動作量として並行2回線送電線の全端子の零相電流情報Io3a,Io3b,Io3c,Io3dをベクトル和して得ると共に,抑制量として並行2回線送電線の各端子から検出された零相電流情報Io3aとIo3cのベクトル和及びIo3bとIo3dのベクトル和を夫々求めこれらの各ベクトル和をスカラー和して得る2回線一括差動リレー5a´と、
前記並行2回線送電線の第1 , 第2の各回線毎の零相電流情報の内、第1回線についてはIo3a,Io3b,2回線についてはIo3c,Io3dをもとに夫々のベクトル和を求めて前記第1,第2の各回線毎の動作量を得ると共に,2回線一括零相差電流情報の大きさIo3a,Io3b,Io3c,Io3dのベクトル和を求めて前記第1,第2の各回線共通の抑制量を得る差電流比較リレー5b´とを備え、
前記2回線一括差動リレー5a´による下記動作式(5)と、前記差動電流比較リレー5b´による下記動作式(6)との論理積条件により、第1回線遮断器2a,2b又は、第2回線遮断器2C,2dのいずれかを遮断するように構成した。

2回線一括差動リレーの動作式
|Io3a+Io3b+Io3c+Io3d|≧a・(|Io3a+Io3c|+|Io3b+Io3d|)+(1−1/a)b ………(5)
第1回線の動作式
|Io3a+Io3b|≧K・|Io3a+Io3b+Io3c+Io3d|
第2回線の動作式
|Io3c+Io3d|≧K・|Io3a+Io3b+Io3c+Io3d|
………(6)
但し、aは比率特性の傾き
bは切片
kは係数
【0016】
本発明の[請求項]に係る送電線保護装置は、[請求項1]において、前記各回線毎の零相差電流の大きさと位相とから電力系統の地絡事故回線を判別する手段に対して、前記並行2回線送電線運用の遮断器及び断路器の開閉状態をもとに各回線の運用状態を判別する論理回路手段を付加し、前記回線運用状態に応じて使用する保護手段を切り替えるよう構成した。
【0017】
本発明の[請求項]に係る送電線保護装置は、[請求項1]において、前記各回線毎の零相差電流の大きさと位相とから電力系統の地絡事故回線を判別する手段に対して、前記電力系統の電気量から零相循環電流の大きさを算出する手段を付加し、前期零相循環電流の大きさに応じて使用する保護方式を切り替えるよう構成した。
【0019】
【発明の実施の形態】
(第1の実施の形態)
図1は並行2回線の系統構成例を示す。図1において、母線1aと母線1bとの間に、両端に遮断器2a,2bを有する第1の送電線4aと、両端に2c,2dを有する第2の送電線4bとが並行2回線を構成するように設けられている。母線1aと1bにおいては、第1の送電線4aを流れる零相電流が、夫々CT3a,CT3bによって検出される。又、第2の送電線4bを流れる零相電流は、夫々CT3c,CT3dによって検出される。
【0020】
第1の送電線F点の1線地絡故障を検出すると、零相循環電流対策付差電流リレー5に含まれる2回線一括差電流リレー5a´では、電気量としてCT3a,CT3b,CT3c,CT3dから夫々検出された零相電流Io3a,Io3b,Io3c,Io3dを用いる。
【0021】
前記2回線一括差電流リレー5a´では、動作量としてIo3aとIo3bとIo3cとIo3dをベクトル和して得られる2回線一括零相差電流(IodT)を用いる。又、抑制量としてはIo3aとIo3cのベクトル和と、Io3bとIo3dのベクトル和を、スカラー和して得られる2回線一括抑制量(Σ|IoT|)を用いる。
【0022】
ここで2回線一括差電流リレー5a´では、2回線一括零相差電流(IodT)と、2回線一括抑制量(Σ|IoT|)が(5)式に示した関係を満たすと出力する。
【数3】
|Io3a+Io3b+Io3c+Io3d|≧
a・(|Io3a+Io3c|+|Io3b+Io3d|)+(1−1/a)b ………(5)
【0023】
又、零相循環電流対策付差電流リレー5に含まれる差電流比較リレー5b´は、第1の送電線4a,第2の送電線4b夫々の零相差電流(Iod)と、2回線一括零相差電流(IodT)を比較する。このため、零相電流Io3aとIo3bをベクトル和し、第1の送電線4aの零相差電流(Ioda)を得る。
【0024】
差電流比較リレー5b´は、第1の送電線4aの零相差電流(Ioda)の大きさが2回線一括零相差電流(IodT)の大きさの所定の割合を超過していることを条件に出力する。同様に第2の送電線4bの地絡故障は、零相電流Io3cとIo3dをベクトル和して得られる送電線4bの零相差電流(Iodb)の大きさが2回線一括零相差電流(IodT)の大きさの所定の割合を超過していることを条件に出力する。本リレーの処理は(6)式で表される。
【0025】
【数4】
|Io3a+Io3b|≧
K|Io3a+Io3b+Io3c+Io3d|
|Io3+Io3d|≧
K|Io3a+Io3b+Io3c+Io3d|
………………………………(6)
【0026】
零相循環電流対策付差電流リレー5は、2回線一括差電流リレー5aと差電流比較リレー5bの出力がアンド条件で成立した場合に動作し、遮断器2a,2bあるいは遮断器2c,2dを遮断する。本方式では、従来の保護リレー方式と同様に、電圧ベクトルと電流ベクトルの位相関係から保護対象の内部故障であることを検出する手段を組合せることも可能であるが、組み合わせなくても機能する。
【0027】
図2は第1の実施の形態を実施するためのシーケンスブロック図である。送電線4aの差電流比較リレー6aの出力6dと、2回線一括差電流リレー6cの出力6fが夫々アンド回路6gに入力され、その出力が送電線4aの遮断器2a,2bを開路させるよう働く。又、同様に、送電線4bの差電流比較リレー6bの出力6eと、2回線一括差電流リレー6cの出力6fが夫々アンド回路6hに入力され、その出力が送電線4bの遮断器2c,2dを開路させるよう働く。
【0028】
図3は零相循環電流対策付差電流リレー5において、零相循環電流(Ico)の影響を排除可能な原理について示したものである。図において、母線1aと母線1bとの間に、送電線4a,4bが並行2回線を構成するように設けられている。
【0029】
送電線4aに設置されたCT3aでは、1線地絡故障点Fに母線1aから流入する故障電流IoFaと零相循環電流Icoのベクトル和Ioaaを検出し、CT3bでは故障点Fに母線1bから流入する故障電流IoFbと零相循環電流(−Ico)のベクトル和Ioabを検出する。送電線4bに設置されたCT3cでは、零相循環電流(−Ico)をIobaとして検出し、CT3dでは零相循環電流IcoをIobbとして検出する。
【0030】
零相循環電流Icoは送電線4a,母線1b,送電線4bを通過して母線1aから送電線4aに戻る。このため、各母線に設置されたCTで検出する電流に含まれる零相循環電流成分は、隣接する回線のCTで検出される零相循環電流成分の逆位相で同じ大きさとなる。
【0031】
2回線一括差電流リレー5aの抑制量算出においては、隣回線のCTで検出された電流とベクトル和すると零相循環電流成分が消去されることを利用し、CT3aで検出する零相電流IoaaとCT3cで検出する零相電流Iobaのベクトル和を取り、Ioaaの中の事故電流成分であるIoFaだけを取り出す。
【0032】
又、同様に、CT3bで検出する零相電流IoabとCT3dで検出する電流Iobbのベクトル和を取り、Ioabの中の事故電流成分であるIoFbだけを取り出す。2回線一括抑制量(Σ|Io|)は事故電流IoFaと事故電流IoFbのスカラー和であるから、原理上、零相循環電流は演算量に含まれない。
【0033】
2回線一括差電流リレー5aの動作量となる2回線一括差電流(IodT)の算出では、全CTで検出される零相電流を全てベクトル和している。この処理は、隣りあう回線のCTで検出された零相電流をベクトル和して零相循環電流成分を消去したうえで、保護リレー演算に用いているため、零相循環電流の影響を受けない。
【0034】
具体的には、CT3a,CT3b,CT3c,CT3dで夫々検出する電流Ioaa,Ioab,Ioba,Iobbのベクトル和を取るとIoFa+IoFbとなり、このベクトルは地絡事故点Fからの流出する地絡事故電流となり、零相循環電流(Ico)が含まれないものとなる。
【0035】
又、差電流比較リレー5bでは、回線毎の差電流を保護リレー演算に用いる。送電線の所定の端子で検出された零相電流値をベクトル和するため、零相循環電流の影響が排除される。具体的にはCT3a,CT3bで夫々検出する電流Ioaa,Ioabのベクトル和を取ると、IoFa+IoFbとなり、このベクトルは地絡事故点Fから大地に流出する地絡事故電流となり、零相循環電流Icoが含まれないものとなる。
【0036】
本実施の形態によれば、動作原理として零相循環電流の影響を受けないため、従来使用されていた保護リレー方式で問題となっていた零相循環電流が大きい系統での地絡故障検出感度の低下を防止することができる。
【0037】
(第2の実施の形態)
図4は第2の実施の形態である並行2回線の系統構成例を示す。図において、母線1aと母線1bとの間に、両端に遮断器2a,2bを有する第1の送電線4aと、両端に遮断器2c,2dを有する第2の送電線4bとが並行2回線を構成するように設けられている。母線1aと1bにおいては、第1の送電線4aを流れる零相電流が、夫々CT3a,CT3bによって検出される。又、第2の送電線4bを流れる零相電流は、夫々CT3c,CT3dによって検出される。
【0038】
第1の送電線のF点で1線地絡故障があった場合、零相循環電流対策付差電流リレー5は、電気量としてCT3a,CT3b,CT3c,CT3dから夫々検出された零相電流Io3a,Io3b,Io3c,Io3dを用いる。零相循環電流対策付差電流リレー5は、第1の送電線4aの故障判別を行なうため、動作量として零相電流Io3aとIo3bをベクトル和して得られる回線毎の零相差電流(Ioda)を用いる。
【0039】
又、抑制量としてはIo3aとIo3cのベクトル和と、Io3bとIo3dのベクトル和を、スカラー和して得られる2回線一括抑制量(Σ|IoT|)を用いる。零相循環電流対策付差電流リレー5は(7)式の関係が満たされると、遮断器2a,2bを遮断する。
【0040】
同様に、第2の送電線4bの故障判別を行なうためには、動作量としてIo3cとIo3dをベクトル和して得られる回線毎の差電流(Iodb)を用いる。抑制量としてはIo3aとIo3cのベクトル和と、Io3bとIo3dのベクトル和を、スカラー和して得られる2回線一括抑制量(Σ|IoT|)を用い、零相循環電流対策付き差電流リレー5は(7)式の関係が満たされると、遮断器2c,2dを遮断する。
【0041】
本方式では、従来の保護リレー方式と同様に、電圧ベクトルと電流ベクトルの位相関係から保護対象の内部故障であることを検出する手段を組合せることも可能であるが、組み合わせなくても機能する。
【数5】
|Io3a+Io3b|≧
a・(|Io3a+Io3c|+|Io3b+Io3d|)+(1−1/a)b ………(7)
【0042】
図5は零相循環電流対策付差電流リレー5において、零相循環電流(Ico)の影響排除可能な原理について示したものである。図において、母線1aと母線1bとの間に、送電線4a,4bが並行2回線を構成するように設けられている。
【0043】
第1の送電線4aに設置されたCT3aでは、1線地絡故障点Fに母線1aから流入する故障電流IoFaと零相循環電流Icoとのベクトル和Ioaaを検出し、CT3bでは故障点Fに母線1bから流入する故障電流IoFbと零相循環電流(−Ico)のベクトル和Ioabを検出する。第2の送電線4bに設置されたCT3cでは、零相循環電流(−Ico)をIobaとして検出し、CT3dでは零相循環電流IcoをIobbとして検出する。
【0044】
零相循環電流Icoは第1の送電線4a,母線1b,第2の送電線4bを通過し母線1aから第1の送電線4aに戻る。このため、各母線に設置されたCTで検出する電流に含まれる零相循環電流成分は、隣接する回線のCTで検出される零相循環電流成分の逆位相で同じ大きさとなる。
【0045】
零相循環電流対策付差電流リレー5の抑制量算出においては、隣回線のCTで検出された電流とベクトル和すると零相循環電流成分が消去されることを利用し、CT3aで検出する零相電流IoaaとCT3cで検出する零相電流Iobaのベクトル和を取り、Ioaaの中の事故電流成分であるIoFaを取り出す。
【0046】
又、同様にCT3bで検出する電流IoabとCT3dで検出する電流Iobbのベクトル和を取り、Ioabの中の事故電流成分であるIoFbを取り出す。抑制量はIoFaとIoFbのスカラー和であるから、原理上零相循環電流は演算量に含まれない。
【0047】
零相循環電流対策付差電流リレー5の動作量算出では、回線毎の差電流を処理に用いる。差電流の算出は、送電線の両端で検出された電流値をベクトル和するため、零相循環電流の影響が排除される。具体的にはCT3a,CT3bで夫々検出する零相電流Ioaa,Ioabのベクトル和を取ると、IoFa+IoFbとなり、このベクトルは地絡事故点Fからの流出する地絡事故電流となり、零相循環電流Icoが含まれないものとなる。
【0048】
本実施の形態によれば、動作原理として零相循環電流の影響を受けないため、従来使用されていた保護リレー方式で問題となっていた零相循環電流が大きい系統での地絡故障検出感度の低下を防止することができる。
【0049】
(第3の実施の形態)
図6は第3の実施の形態を示すシーケンスブロック図である。図において、零相循環電流対策リレー7aの出力7dと、並行2回線送電線の機器条件から判定された2回線運用条件7cの出力7fが夫々アンド回路6gに入力される。従来の保護リレー方式を用いた地絡事故検出リレー7bの出力7eと、並行2回線送電線の機器条件から判定された2回線運用条件7cの出力7fの否定論理が夫々アンド回路6hに入力される。アンド回路6gの出力6iと、アンド回路6hの出力6jが夫々オア回路6kに入力され、その出力が送電線の遮断器を開路させるよう働く。
【0050】
零相循環電流対策リレーは零相循環電流による地絡事故検出感度の低下を生じないが、従来の保護リレー方式に比べると保護リレー演算に用いる電気量が多いため、零相循環電流の無い系統に適用された場合は、誤差によって従来の保護リレー方式よりも地絡事故検出感度が低下することが考えられる。
【0051】
又、零相循環電流は並行2回線が電気的に閉回路となっている場合には発生するが、1回線運用時には発生しない。このため、零相循環電流が発生しうる並行2回線の2回線運用時には、零相循環電流対策付リレーを用い、零相循環電流が発生しない1回線運用時には、従来の保護リレー方式を用いることにより、地絡事故検出感度をより高く維持することが可能となる。
【0052】
(第4の実施の形態)
図7は第4の実施の形態を示すシーケンスブロック図である。図において、零相循環電流対策リレー7aの出力7dと、並行2回線送電線の零相循環電流の大きさを算出し、所定のレベルを超過していると判別した場合に出力する零相循環電流リレー7cの出力7fが、夫々アンド回路6gに入力される。従来の保護リレー方式を用いた地絡事故検出リレー7bの出力7eと、零相循環電流リレー7cの出力7fの否定論理が夫々アンド回路6hに入力される。アンド回路6gの出力6iと、アンド回路6hの出力6jが夫々オア回路6kに入力され、その出力が送電線の遮断器を開路させるよう働く。
【0053】
零相循環電流対策リレーは零相循環電流による地絡事故検出感度の低下を生じないが、従来の保護リレー方式に比べると保護リレー演算に用いる電気量が多いため、零相循環電流が少ない系統に適用された場合は、誤差によって従来の保護リレー方式よりも地絡事故検出感度が低下することが考えられる。
【0054】
このため、並行2回線送電線において、零相循環電流リレーが出力しているときには零相循環電流対策リレーを用い、零相循環電流リレーが出力していないときには従来の保護リレー方式を用いることにより、地絡事故検出感度をより高く維持することが可能となる。
【0055】
【発明の効果】
以上説明したように、本発明によれば零相循環電流が大きい系統での地絡故障検出感度の低下を防止することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す構成図。
【図2】第1の実施の形態を実施するためのシーケンスブロック図。
【図3】零相循環電流対策付差電流リレー5において、零相循環電流の影響を排除可能な原理を説明する図。
【図4】第2の実施の形態を示す系統構成図。
【図5】零相循環電流対策付差電流リレーにおいて、零相循環電流の影響を排除可能な原理を説明する図。
【図6】第3の実施の形態のシーケンスブロック図。
【図7】第4の実施の形態のシーケンスブロック図。
【図8】従来技術を示す構成図。
【図9】差電流リレーの比率特性例。
【図10】零相循環電流のある系統への従来リレーの適用例。
【図11】零相循環電流が差電流リレーに取り込まれる電気量のベクトル図。
【図12】差電流リレーの比率特性例。
【符号の説明】
1 母線
2 遮断器
3 CT
4 送電線
5 零相循環電流対策付差電流リレー
6a,6b 差電流比較リレー
6c 2回線一括電流差動リレー
7a 零相循環電流対策リレー
7b 地絡事故検出リレー
7c 2回線運用条件[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power transmission line protection device suitable for application to a parallel two-line system in which a zero-phase circulating current exists.
[0002]
[Prior art]
In a parallel multi-line power system, a zero-phase circulating current always exists even at times other than an accident due to an imbalance in the fault impedance of each phase of the system. When this zero-phase circulating current is not negligible compared to the accident current, particularly in a high resistance grounding system, the detection sensitivity of the protection relay is affected, and high speed / high sensitivity protection may be impossible.
[0003]
In general, in the current differential relay device used as the main protection in the protection relay system of the transmission line, a zero phase difference current relay having a ratio characteristic is used to detect a ground fault in the protection line. When the zero-phase circulating current increases, the suppression amount increases in the ratio characteristics, and the ground fault detection sensitivity decreases. In particular, when the zero-phase circulating current is large, the current differential relay device cannot be applied to the system as a protection relay.
[0004]
The above will be described with reference to the drawings. FIG. 8 shows a system configuration example of two parallel lines. In FIG. 8, between the bus 1a and the bus 1b, a first power transmission line 4a having circuit breakers 2a and 2b at both ends and a second power transmission line 4b having circuit breakers 2c and 2d at both ends are parallel. It is provided so as to constitute a line. On the buses 1a and 1b, zero-phase currents flowing through the transmission line 4a are detected by current transformers (hereinafter referred to as CT) 3a and 3b, respectively.
[0005]
If there is a one-line ground fault at point F of the first transmission line, the difference current relay 5a uses the zero-phase current (Io3a) detected by CT3a and the zero-phase current (Io3b) detected by CT3b. Then, the absolute value (| Iod |) of the zero phase difference current obtained as the vector sum of Io3a and Io3b as the operation amount and the scalar sum (Σ | Io |) of Io3a and Io3b as the suppression amount are calculated.
[0006]
In the difference current relay 5a, the scalar sum (Σ | Io |) of the zero-phase difference current (Iod) and the zero-phase current detected by each CT satisfies the relationship shown in the following equation (1), and the phase of the current vector and the voltage vector When the relationship indicates the internal direction of the protection target system, the circuit breaker 2a, 2b can be disconnected.
[Expression 1]
| Iod | ≧ a · Σ | Io | + (1-1 / a) b (1)
[0007]
FIG. 9 shows a ratio characteristic example of the differential current relay. In the characteristics shown in the figure, the absolute value (| Iod |) of the zero-phase difference current is the vertical axis, and the scalar sum (Σ |) of the zero-phase current (Io3a) detected by CT3a and the zero-phase current (Io3b) detected by CT3b. The horizontal axis is Io |). In the equation (1), “a” is expressed as a slope of the ratio characteristic, and “b” is expressed as an intercept intersecting the vertical axis. In this ratio characteristic, the operating range c satisfying the expression (1) is a portion above the oblique line on the ratio characteristic. Further, the non-operation area d is a portion below the oblique line on the ratio characteristic.
[0008]
FIG. 10 shows a case where a one-line ground fault has occurred at point F of the first power transmission line 4a in a system in which a zero-phase circulating current (Ico) exists. If only the zero-phase circulating current (Ico) is flowing through the system and the currents detected by CT3a and CT3b are Ico3a and Ico3b, the amount of electricity taken in by the differential current relay 5a in the illustrated case is a failure at the terminal 1a. The vector sum Ioa of the current Io3a and the zero-phase circulating current Ico3a is obtained, and the vector difference Iob of the fault current Io3b and the zero-phase circulating current Ico3b is obtained at the 1b terminal.
[0009]
FIG. 11 is a vector diagram of the quantity of electricity taken into the differential current relay 5a applied to the system where the zero-phase circulating current (Ico) exists. Zero-phase circulating current occurs in random phase with fault current due to ground fault. As an example, assuming that the phase of the zero-phase circulating current is 90 degrees, the magnitudes of Ioa and Iob of the zero-phase current vector detected by CT3a and CT3b are the fault current vectors detected by CT3a as Io3a and CT3b. Assuming that the fault current vector to be detected is Io3b and the zero-phase circulating current vector to be detected by CT3b is (−Ico3b), it is expressed by equations (2) and (3).
[0010]
Further, the suppression amount (Σ | Io |) of the differential current relay 5a is expressed by the equation (4) because it is a scalar sum of Ioa and Iob. From the result of the equation (4), it can be seen that in the system in which the zero-phase circulating current exists, the suppression amount increases in the ratio characteristic of the differential current relay 5a.
[0011]
[Expression 2]
Figure 0003942137
[0012]
[Problems to be solved by the invention]
In FIG. 12, the difference current (Iod) on the ratio characteristic between the case where the zero-phase circulating current (Ico) does not exist and the case where it exists is detected by CT3a in the system to which the difference current relay 5a is applied. This is a comparison of the relationship between the zero-phase current and the scalar sum (Σ | Io |) of the zero-phase current detected by CT3b. The difference current (Iod) detected by the difference current relay 5a is constant regardless of the presence or absence of the zero-phase circulating current.
[0013]
The point on the ratio characteristic when there is no zero-phase circulating current is 6a, and the point on the ratio characteristic when there is a zero-phase circulating current is 6b. Since the scalar sum (Σ | Io |) of the zero-phase current detected by CT3a and the zero-phase current detected by CT3b becomes large when the zero-phase circulating current (Ico) exists from the result of the equation (4), 6b Is the point where 6a is moved in the horizontal axis direction. For this reason, the ground fault failure sensitivity of the differential current relay 5a is lowered, and there is a problem that the differential current relay 5a becomes inoperative depending on the magnitude of the zero-phase circulating current.
[0014]
The present invention has been made to solve the above-mentioned problems, and provides a power transmission line protection device that can simplify the configuration and eliminate a decrease in ground fault detection sensitivity in a system with a large zero-phase circulating current. It is aimed.
[0015]
[Means for Solving the Problems]
A transmission line protection apparatus according to [Claim 1] of the present invention is a differential current relay with a zero-phase circulating current countermeasure that uses a quantity of electricity at a plurality of terminals of a parallel two-line transmission line to determine a ground fault in an electric power system ( In the power transmission line protection device using the differential current relay 5) ,
The differential current relay 5 includes a ground fault detecting means for detecting an internal ground fault in the parallel two lines at a time, and zero phase current information Io3a, Io3b, Io3c, Io3d of all terminals of the parallel two lines transmission line as an operation amount. And the vector sum of zero phase current information Io3a and Io3c and the vector sum of Io3b and Io3d detected from each terminal of the parallel two-line transmission line as the amount of suppression, respectively. Two-line collective differential relay 5a 'obtained by summing,
Among the zero-phase current information for each of the first and second lines of the parallel two-line transmission line, the respective vector sums are obtained based on Io3a and Io3b for the first line and Io3c and Io3d for the two lines. In addition to obtaining the operation amount for each of the first and second lines, the vector sum of the magnitudes Io3a, Io3b, Io3c, and Io3d of the two-line collective zero phase difference current information is obtained. A differential current comparison relay 5b ′ for obtaining a common suppression amount,
Depending on the logical product condition of the following operation formula (5) by the two-line collective differential relay 5a ′ and the following operation formula (6) by the differential current comparison relay 5b ′, the first circuit breakers 2a, 2b or The second circuit breaker 2C, 2d is configured to be interrupted.
Record
2-line batch differential relay operation formula
| Io3a + Io3b + Io3c + Io3d | ≧ a · (| Io3a + Io3c | + | Io3b + Io3d |) + (1-1 / a) b ......... (5)
First line operation formula
| Io3a + Io3b | ≧ K · | Io3a + Io3b + Io3c + Io3d |
Operation formula of the second line
| Io3c + Io3d | ≧ K · | Io3a + Io3b + Io3c + Io3d |
……… (6)
Where a is the slope of the ratio characteristic
b is intercept
k is a coefficient
The power transmission line protection apparatus according to [Claim 2 ] of the present invention provides the power transmission line protection apparatus according to [Claim 1], wherein the ground fault fault line of the power system is determined from the magnitude and phase of the zero phase difference current for each line. In addition, a logic circuit means for determining the operation state of each line based on the open / close state of the circuit breaker and disconnector for the parallel two-line transmission line operation is added, and the protection means to be used is switched according to the line operation state. It was configured as follows.
[0017]
According to a third aspect of the present invention, there is provided a power transmission line protection apparatus according to the first aspect, wherein the ground fault fault line of the power system is determined from the magnitude and phase of the zero phase difference current for each line. Thus, means for calculating the magnitude of the zero-phase circulating current from the amount of electricity of the power system is added, and the protection method to be used is switched according to the magnitude of the zero-phase circulating current in the previous period.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
FIG. 1 shows a system configuration example of two parallel lines. In FIG. 1, between a bus 1a and a bus 1b, a first power transmission line 4a having circuit breakers 2a and 2b at both ends and a second power transmission line 4b having 2c and 2d at both ends are connected in parallel. It is provided to configure. In the buses 1a and 1b, zero-phase currents flowing through the first power transmission line 4a are detected by CT3a and CT3b, respectively. Further, the zero-phase currents flowing through the second power transmission line 4b are detected by CT3c and CT3d, respectively.
[0020]
When a one-line ground fault at the first power transmission line F is detected, the two-line collective current difference relay 5a included in the zero-phase circulating current countermeasure differential current relay 5a has CT3a, CT3b, CT3c, and CT3d as electric quantities. Zero phase currents Io3a, Io3b, Io3c, and Io3d detected from the above are used.
[0021]
The two-line collective difference current relay 5a ′ uses a two-line collective zero phase difference current (IodT) obtained by vector addition of Io3a, Io3b, Io3c, and Io3d as the operation amount. As a suppression amount, a two-line collective suppression amount (Σ | IoT |) obtained by scalar summing the vector sum of Io3a and Io3c and the vector sum of Io3b and Io3d is used.
[0022]
In this case two-line batch difference current relay 5 a ', a two-line batch zero retardation current (IODT), 2 lines simultaneously inhibiting amount (sigma | IoT |) is (5) outputs to satisfy the relation shown in formula.
[Equation 3]
| Io3a + Io3b + Io3c + Io3d | ≧
a · (| Io3a + Io3c | + | Io3b + Io3d |) + (1-1 / a) b (5)
[0023]
Also, the differential current comparison relay 5b ' included in the differential current relay 5 with a zero-phase circulating current countermeasure includes a zero-phase difference current (Iod) of each of the first transmission line 4a and the second transmission line 4b, and two-line batch zero. comparing a phase difference current (IODT). Therefore, hydrated vector zero-phase current Io3a and Io3b, obtain zero phase difference between currents of the first transmission line 4a to (IODA).
[0024]
Differential current comparison relay 5b 'is that the magnitude of the zero-phase difference current of the first transmission line 4a (IODA) exceeds the magnitude of a predetermined percentage of the two-line batch zero-phase difference current (IODT) Output to the condition. Similarly ground fault of the second transmission line 4b is zero-phase current Io3c and Io3d zero-phase difference of the transmission line 4b obtained by vector sum current (Iodb) size is 2 lines simultaneously zero-phase difference current ( It outputs on condition that the predetermined ratio of the magnitude | size of IodT) is exceeded. The processing of this relay is expressed by equation (6).
[0025]
[Expression 4]
| Io3a + Io3b | ≧
K | Io3a + Io3b + Io3c + Io3d |
| Io3 c + Io3d | ≧
K | Io3a + Io3b + Io3c + Io3d |
……………………………… (6)
[0026]
The differential current relay with zero-phase circulating current countermeasure 5 operates when the outputs of the two-line collective differential current relay 5a and the differential current comparison relay 5b are satisfied under an AND condition, and the circuit breakers 2a, 2b or circuit breakers 2c, 2d are connected. Cut off. In this method, as in the case of the conventional protection relay method, it is possible to combine means for detecting an internal failure to be protected from the phase relationship between the voltage vector and the current vector. .
[0027]
FIG. 2 is a sequence block diagram for carrying out the first embodiment. The output 6d of the differential current comparison relay 6a of the transmission line 4a and the output 6f of the two-line collective difference current relay 6c are input to the AND circuit 6g, respectively, and the outputs serve to open the circuit breakers 2a and 2b of the transmission line 4a. . Similarly, the output 6e of the differential current comparison relay 6b of the transmission line 4b and the output 6f of the two-line collective difference current relay 6c are respectively input to the AND circuit 6h, and the outputs are the circuit breakers 2c and 2d of the transmission line 4b. Work to open the circuit.
[0028]
FIG. 3 shows the principle by which the influence of the zero-phase circulating current (Ico) can be eliminated in the differential current relay 5 with a zero-phase circulating current countermeasure. In the figure, power transmission lines 4a and 4b are provided between the bus 1a and the bus 1b so as to form two parallel lines.
[0029]
In CT3a installed in the transmission line 4a, the vector sum Ioaa of the fault current IoFa and the zero-phase circulating current Ico flowing from the bus 1a to the 1-wire ground fault point F is detected, and in CT3b, the fault sum F flows from the bus 1b. The vector sum Ioab of the fault current IoFb and the zero-phase circulating current (-Ico) is detected. In CT3c installed in the power transmission line 4b, the zero-phase circulating current (-Ico) is detected as Ioba, and in CT3d, the zero-phase circulating current Ico is detected as Iobb.
[0030]
The zero-phase circulating current Ico passes through the power transmission line 4a, the bus 1b, and the power transmission line 4b and returns from the bus 1a to the power transmission line 4a. For this reason, the zero-phase circulating current component included in the current detected by the CT installed in each bus has the same magnitude as the opposite phase of the zero-phase circulating current component detected by the CT of the adjacent line.
[0031]
In calculating the suppression amount of the two-line collective difference current relay 5a, the zero-phase current Ioaa detected by the CT3a is calculated by using the fact that the zero-phase circulating current component is deleted when the vector sum is added to the current detected by the CT of the adjacent line. The vector sum of the zero-phase current Ioba detected by CT3c is taken, and only IoFa that is an accident current component in Ioaa is taken out.
[0032]
Similarly, the vector sum of the zero-phase current Ioab detected by CT3b and the current Iobb detected by CT3d is taken, and only the fault current component IoFb in Ioab is taken out. Since the two-line collective suppression amount (Σ | Io |) is a scalar sum of the accident current IoFa and the accident current IoFb, the zero-phase circulating current is not included in the calculation amount in principle.
[0033]
In the calculation of the two-line collective current difference (IodT) that is the operation amount of the two-line collective current difference relay 5a, all the zero-phase currents detected in all CTs are vector-summed. This processing is not affected by the zero-phase circulating current because the zero-phase circulating current component is eliminated by vector addition of the zero-phase current detected by the CT of the adjacent line and used for the protective relay calculation. .
[0034]
Specifically, when the vector sum of the currents Ioa, Ioab, Ioba, and Iobb detected by CT3a, CT3b, CT3c, and CT3d is taken, it becomes IoFa + IoFb, and this vector becomes the ground fault current that flows out from the ground fault point F. The zero-phase circulating current (Ico) is not included.
[0035]
Further, in the differential current comparison relay 5b, the differential current for each line is used for protection relay calculation. Since the zero-phase current value detected at a predetermined terminal of the transmission line is vector-summed, the influence of the zero-phase circulating current is eliminated. Specifically, when the vector sum of the currents Ioa and Ioab detected by CT3a and CT3b is taken, it becomes IoFa + IoFb. This vector becomes the ground fault current flowing out from the ground fault point F to the ground, and the zero-phase circulating current Ico is It will not be included.
[0036]
According to the present embodiment, since the operation principle is not affected by the zero-phase circulating current, the ground fault detection sensitivity in the system having a large zero-phase circulating current, which has been a problem in the protection relay method that has been conventionally used. Can be prevented.
[0037]
(Second Embodiment)
FIG. 4 shows a system configuration example of two parallel lines according to the second embodiment. In the figure, a first power transmission line 4a having circuit breakers 2a and 2b at both ends and a second power transmission line 4b having circuit breakers 2c and 2d at both ends are connected in parallel between the bus 1a and the bus 1b. Is provided. In the buses 1a and 1b, zero-phase currents flowing through the first power transmission line 4a are detected by CT3a and CT3b, respectively. Further, the zero-phase currents flowing through the second power transmission line 4b are detected by CT3c and CT3d, respectively.
[0038]
When there is a one-line ground fault at point F of the first power transmission line, the zero-phase circulating current countermeasure added differential current relay 5 detects the zero-phase current Io3a detected from the CT3a, CT3b, CT3c, and CT3d, respectively. , Io3b, Io3c, Io3d. The differential current relay 5 with zero-phase circulating current countermeasures determines the failure of the first power transmission line 4a. Therefore, the zero-phase difference current (Ioda) for each line obtained by vector addition of the zero-phase currents Io3a and Io3b as operation amounts. Is used.
[0039]
As a suppression amount, a two-line collective suppression amount (Σ | IoT |) obtained by scalar summing the vector sum of Io3a and Io3c and the vector sum of Io3b and Io3d is used. The differential current relay with zero-phase circulating current countermeasure 5 breaks the circuit breakers 2a and 2b when the relationship of the expression (7) is satisfied.
[0040]
Similarly, in order to determine the failure of the second power transmission line 4b, the difference current (Iodb) for each line obtained by vector addition of Io3c and Io3d is used as the operation amount. As the suppression amount, a two-line collective suppression amount (Σ | IoT |) obtained by scalar summing the vector sum of Io3a and Io3c and the vector sum of Io3b and Io3d is used. Breaks the circuit breakers 2c and 2d when the relationship of the expression (7) is satisfied.
[0041]
In this method, as in the case of the conventional protection relay method, it is possible to combine means for detecting an internal failure to be protected from the phase relationship between the voltage vector and the current vector. .
[Equation 5]
| Io3a + Io3b | ≧
a · (| Io3a + Io3c | + | Io3b + Io3d |) + (1-1 / a) b (7)
[0042]
FIG. 5 shows the principle by which the influence of the zero-phase circulating current (Ico) can be eliminated in the differential current relay 5 with a zero-phase circulating current countermeasure. In the figure, power transmission lines 4a and 4b are provided between the bus 1a and the bus 1b so as to form two parallel lines.
[0043]
In CT3a installed in the first power transmission line 4a, the vector sum Ioaa of the fault current IoFa and the zero-phase circulating current Ico flowing from the bus 1a to the one-line ground fault point F is detected. In CT3b, the fault point F is detected. A vector sum Ioab of the fault current IoFb and the zero-phase circulating current (−Ico) flowing from the bus 1b is detected. In CT3c installed in the second power transmission line 4b, the zero-phase circulating current (-Ico) is detected as Ioba, and in CT3d, the zero-phase circulating current Ico is detected as Iobb.
[0044]
The zero-phase circulating current Ico passes through the first power transmission line 4a, the bus 1b, and the second power transmission line 4b and returns from the bus 1a to the first power transmission line 4a. For this reason, the zero-phase circulating current component included in the current detected by the CT installed in each bus has the same magnitude as the opposite phase of the zero-phase circulating current component detected by the CT of the adjacent line.
[0045]
In calculating the suppression amount of the differential current relay 5 with zero-phase circulating current countermeasures, the zero-phase detected by CT3a is utilized by using the fact that the zero-phase circulating current component is eliminated when the vector sum is added to the current detected by the CT of the adjacent line. The vector sum of the current Ioa and the zero-phase current Ioba detected by CT3c is taken, and the fault current component IoFa in Ioa is taken out.
[0046]
Similarly, the vector sum of the current Ioab detected by CT3b and the current Iobb detected by CT3d is taken, and the fault current component IoFb in Ioab is taken out. Since the suppression amount is a scalar sum of IoFa and IoFb, the zero-phase circulating current is not included in the calculation amount in principle.
[0047]
In calculating the operation amount of the differential current relay 5 with a zero-phase circulating current countermeasure, the differential current for each line is used for processing. Since the difference current is calculated by vector summing the current values detected at both ends of the transmission line, the influence of the zero-phase circulating current is eliminated. Specifically, when the vector sum of the zero-phase currents Ioa and Ioab detected by CT3a and CT3b is taken, it becomes IoFa + IoFb. This vector becomes the ground fault current flowing out from the ground fault point F, and the zero-phase circulating current Ico. Is not included.
[0048]
According to the present embodiment, since the operation principle is not affected by the zero-phase circulating current, the ground fault detection sensitivity in the system having a large zero-phase circulating current, which has been a problem in the protection relay method that has been conventionally used. Can be prevented.
[0049]
(Third embodiment)
FIG. 6 is a sequence block diagram showing the third embodiment. In the figure, the output 7d of the zero-phase circulating current countermeasure relay 7a and the output 7f of the two-line operation condition 7c determined from the equipment conditions of the parallel two-line transmission line are input to the AND circuit 6g. The negative logic of the output 7e of the ground fault detection relay 7b using the conventional protection relay system and the output 7f of the two-line operation condition 7c determined from the equipment conditions of the parallel two-line transmission line are respectively input to the AND circuit 6h. The The output 6i of the AND circuit 6g and the output 6j of the AND circuit 6h are input to the OR circuit 6k, respectively, and the outputs serve to open the circuit breaker of the transmission line.
[0050]
Zero-phase circulating current countermeasure relays do not cause a decrease in ground fault detection sensitivity due to zero-phase circulating current, but the amount of electricity used for protection relay computation is larger than that of conventional protection relay systems, so there is no zero-phase circulating current. When applied to the above, it is conceivable that the ground fault detection sensitivity is lower than that of the conventional protection relay system due to an error.
[0051]
Further, the zero-phase circulating current is generated when the parallel two lines are electrically closed, but is not generated during the operation of one line. For this reason, use a relay with zero-phase circulating current countermeasures when operating two parallel parallel lines that can generate zero-phase circulating current, and use a conventional protection relay system when operating one-line without generating zero-phase circulating current. Thus, it becomes possible to maintain the ground fault detection sensitivity higher.
[0052]
(Fourth embodiment)
FIG. 7 is a sequence block diagram showing the fourth embodiment. In the figure, the output 7d of the zero-phase circulating current countermeasure relay 7a and the magnitude of the zero-phase circulating current of the parallel two-line transmission line are calculated, and the zero-phase circulation output when it is determined that the predetermined level is exceeded. The output 7f of the current relay 7c is input to the AND circuit 6g. The negative logic of the output 7e of the ground fault detection relay 7b using the conventional protection relay system and the output 7f of the zero-phase circulating current relay 7c is input to the AND circuit 6h. The output 6i of the AND circuit 6g and the output 6j of the AND circuit 6h are input to the OR circuit 6k, respectively, and the outputs serve to open the circuit breaker of the transmission line.
[0053]
Zero-phase circulating current countermeasure relay does not cause a decrease in ground fault detection sensitivity due to zero-phase circulating current, but because the amount of electricity used for protection relay calculation is larger than that of the conventional protection relay system, a system with less zero-phase circulating current When applied to the above, it is conceivable that the ground fault detection sensitivity is lower than that of the conventional protection relay system due to an error.
[0054]
For this reason, in the parallel two-line transmission line, the zero-phase circulating current relay is used when the zero-phase circulating current relay is outputting, and the conventional protective relay system is used when the zero-phase circulating current relay is not outputting. In addition, it becomes possible to maintain the ground fault detection sensitivity higher.
[0055]
【The invention's effect】
As described above, according to the present invention, it is possible to prevent a decrease in ground fault detection sensitivity in a system with a large zero-phase circulating current.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a first embodiment of the present invention.
FIG. 2 is a sequence block diagram for carrying out the first embodiment;
FIG. 3 is a diagram for explaining a principle capable of eliminating the influence of a zero-phase circulating current in the differential current relay with a zero-phase circulating current countermeasure;
FIG. 4 is a system configuration diagram showing a second embodiment.
FIG. 5 is a diagram for explaining a principle capable of eliminating the influence of the zero-phase circulating current in the differential current relay with a countermeasure for the zero-phase circulating current.
FIG. 6 is a sequence block diagram according to the third embodiment.
FIG. 7 is a sequence block diagram according to the fourth embodiment.
FIG. 8 is a configuration diagram showing a conventional technique.
FIG. 9 is a ratio characteristic example of a differential current relay.
FIG. 10 shows an application example of a conventional relay to a system having a zero-phase circulating current.
FIG. 11 is a vector diagram of an electric quantity in which a zero-phase circulating current is taken into a differential current relay.
FIG. 12 is a ratio characteristic example of a differential current relay.
[Explanation of symbols]
1 Bus 2 Circuit breaker 3 CT
4 Transmission line 5 Zero-phase circulating current countermeasure differential current relay 6a, 6b Differential current comparison relay 6c 2-line collective current differential relay 7a Zero-phase circulating current countermeasure relay 7b Ground fault detection relay 7c 2-line operating conditions

Claims (3)

並行2回線送電線の複数端子の電気量を用いて、電力系統の地絡事故を判別する零相循環電流対策付差電流リレー(以下差電流リレー5と称す)を用いた送電線保護装置において、
前記差電流リレー5は、前記並行2回線一括で内部地絡を検出する地絡検出手段を備えると共に、動作量として並行2回線送電線の全端子の零相電流情報Io3a,Io3b,Io3c,Io3dをベクトル和して得ると共に,抑制量として並行2回線送電線の各端子から検出された零相電流情報Io3aとIo3cのベクトル和及びIo3bとIo3dのベクトル和を夫々求めこれらの各ベクトル和をスカラー和して得る2回線一括差動リレー5a´と、
前記並行2回線送電線の第1 , 第2の各回線毎の零相電流情報の内、第1回線についてはIo3a,Io3b,2回線についてはIo3c,Io3dをもとに夫々のベクトル和を求めて前記第1,第2の各回線毎の動作量を得ると共に,2回線一括零相差電流情報の大きさIo3a,Io3b,Io3c,Io3dのベクトル和を求めて前記第1,第2の各回線共通の抑制量を得る差電流比較リレー5b´とを備え、
前記2回線一括差動リレー5a´による下記動作式(5)と、前記差動電流比較リレー5b´による下記動作式(6)との論理積条件により、第1回線遮断器2a,2b又は、第2回線遮断器2C,2dのいずれかを遮断することを特徴とする送電線保護装置。

2回線一括差動リレーの動作式
|Io3a+Io3b+Io3c+Io3d|≧a・(|Io3a+Io3c|+|Io3b+Io3d|)+(1−1/a)b ………(5)
第1回線の動作式
|Io3a+Io3b|≧K・|Io3a+Io3b+Io3c+Io3d|
第2回線の動作式
|Io3c+Io3d|≧K・|Io3a+Io3b+Io3c+Io3d|
………(6)
但し、aは比率特性の傾き
bは切片
kは係数
Using electric quantity of a plurality terminals of parallel 2-circuit transmission lines, in the power transmission line protection device using the zero-phase circulation current measures with differential current relay to determine the ground fault of the power system (hereinafter referred to as the differential current relay 5) ,
The differential current relay 5 includes a ground fault detecting means for detecting an internal ground fault in the parallel two lines at a time, and zero phase current information Io3a, Io3b, Io3c, Io3d of all terminals of the parallel two lines transmission line as an operation amount. And the vector sum of zero phase current information Io3a and Io3c and the vector sum of Io3b and Io3d detected from each terminal of the parallel two-line transmission line as the amount of suppression, respectively. Two-line collective differential relay 5a 'obtained by summing,
Among the zero-phase current information for each of the first and second lines of the parallel two-line transmission line, the respective vector sums are obtained based on Io3a and Io3b for the first line and Io3c and Io3d for the two lines. In addition to obtaining the operation amount for each of the first and second lines, the vector sum of the magnitudes Io3a, Io3b, Io3c, and Io3d of the two-line collective zero phase difference current information is obtained. A differential current comparison relay 5b ′ for obtaining a common suppression amount,
Depending on the logical product condition of the following operation formula (5) by the two-line collective differential relay 5a ′ and the following operation formula (6) by the differential current comparison relay 5b ′, the first circuit breakers 2a, 2b or A power transmission line protection device that shuts off any of the second circuit breakers 2C and 2d.
Record
2-line batch differential relay operation formula
| Io3a + Io3b + Io3c + Io3d | ≧ a · (| Io3a + Io3c | + | Io3b + Io3d |) + (1-1 / a) b ......... (5)
First line operation formula
| Io3a + Io3b | ≧ K · | Io3a + Io3b + Io3c + Io3d |
Operation formula of the second line
| Io3c + Io3d | ≧ K · | Io3a + Io3b + Io3c + Io3d |
……… (6)
Where a is the slope of the ratio characteristic
b is intercept
k is a coefficient
請求項1記載の送電線保護装置において、前記各回線毎の零相差電流の大きさと位相とから電力系統の地絡事故回線を判別する手段に対して、前記並行2回線運用の遮断器及び断路器の開閉状態をもとに各回線の運用状態を判別する論理回路手段を付加し、前記回線運用状態に応じて使用する保護手段を切り替えることを特徴とする送電線保護装置。 2. The circuit breaker and the disconnector for the parallel two-line operation according to claim 1, wherein the means for discriminating a ground fault line of the electric power system from the magnitude and phase of the zero phase difference current for each line. A transmission line protection device comprising: a logic circuit means for determining an operation state of each line based on an open / closed state of a device, and switching a protection means to be used according to the line operation state . 請求項1記載の送電線保護装置において、前記各回線毎の零相差電流の大きさと位相とから電力系統の地絡事故回線を判別する手段に対して、前記電力系統の電気量から零相循環電流の大きさを算出する手段を付加し、前記零相循環電流の大きさに応じて使用する保護方式を切り替えることを特徴とする送電線保護装置。 2. The power transmission line protection device according to claim 1, wherein a zero-phase circulation is determined from the amount of electricity of the power system, with respect to means for determining a ground fault fault line of the power system from the magnitude and phase of the zero-phase difference current for each line. A power transmission line protection apparatus characterized by adding a means for calculating a current magnitude and switching a protection method to be used according to the magnitude of the zero-phase circulating current .
JP2000217009A 2000-07-18 2000-07-18 Transmission line protection device Expired - Lifetime JP3942137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000217009A JP3942137B2 (en) 2000-07-18 2000-07-18 Transmission line protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000217009A JP3942137B2 (en) 2000-07-18 2000-07-18 Transmission line protection device

Publications (2)

Publication Number Publication Date
JP2002034145A JP2002034145A (en) 2002-01-31
JP3942137B2 true JP3942137B2 (en) 2007-07-11

Family

ID=18712183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000217009A Expired - Lifetime JP3942137B2 (en) 2000-07-18 2000-07-18 Transmission line protection device

Country Status (1)

Country Link
JP (1) JP3942137B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445339B1 (en) * 2002-11-01 2004-08-18 한국수력원자력 주식회사 ground detect apparatus of differential current for DC signal line and method theroof
JP2012135150A (en) * 2010-12-22 2012-07-12 Kansai Electric Power Co Inc:The Digital protective relay device
CN103149498B (en) * 2012-09-28 2015-08-05 西南交通大学 The charged train operation state of electric railway AT Traction networks and position identifying method

Also Published As

Publication number Publication date
JP2002034145A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
US7196884B2 (en) Apparatus and method for detecting the loss of a current transformer connection coupling a current differential relay to an element of a power system
EP0316203B1 (en) Protective relay
US20110075304A1 (en) System and method for polyphase ground-fault circuit-interrupters
KR101233266B1 (en) Short-circuit distance relay
JP3808624B2 (en) System protection relay device
EP1335470B1 (en) Directional comparison distance relay system
US5808845A (en) System for preventing sympathetic tripping in a power system
EP0604037B1 (en) Busbar protection method
JP2007244138A (en) Protective circuit
EP2328249B1 (en) Reclosing method for electrical power transmission line
JP3942137B2 (en) Transmission line protection device
EP0626107B1 (en) Method and device for preventing overstabilization of longitudinal differential protection in case of internal fault
JP2957187B2 (en) Secondary circuit disconnection detector for instrument transformer
JP5578888B2 (en) Current differential relay
KR20200038164A (en) Protection relay device
JP3560297B2 (en) Ground fault distance relay device
JP3210810B2 (en) Protective relay device and its analog part failure determination method
JPH11178199A (en) Distance relay
JP3926971B2 (en) Digital protection relay device
JP3011420B2 (en) Digital bus protection relay
CN110794259A (en) Alternating current-direct current line-touching fault line selection method and device and computer readable storage medium
JP2856826B2 (en) Differential relay
JPH0458257B2 (en)
JPH0243411B2 (en)
JPS61236320A (en) Ground-fault detection system for parallel multiple circuit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350