JPH04154970A - Method for synthesizing cubic boron nitride - Google Patents

Method for synthesizing cubic boron nitride

Info

Publication number
JPH04154970A
JPH04154970A JP27440690A JP27440690A JPH04154970A JP H04154970 A JPH04154970 A JP H04154970A JP 27440690 A JP27440690 A JP 27440690A JP 27440690 A JP27440690 A JP 27440690A JP H04154970 A JPH04154970 A JP H04154970A
Authority
JP
Japan
Prior art keywords
gas
substrate
boron nitride
cubic boron
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27440690A
Other languages
Japanese (ja)
Inventor
Hajime Takimoto
肇 滝本
Toshiaki Oimizu
利明 生水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP27440690A priority Critical patent/JPH04154970A/en
Publication of JPH04154970A publication Critical patent/JPH04154970A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently obtain uniform cubic BN having satisfactory quality as a film by simultaneously using microwave plasma and excimer laser light when cubic BN is synthesized from B-contg. gas and N-contg. gas by chemical vapor deposition. CONSTITUTION:Gaseous N2 1 and gaseous BCl3 2 are used as gaseous starting materials, an Si wafer is used as a substrate 3 set on a susceptor 4 in a chamber 6 and this chamber 6 is evacuated. The gaseous starting materials 1, 2 are mixed at 10cc/min and 1cc/min flow rates, respectively, this mixture is introduced into the chamber 6 and electric discharge is caused with microwaves of 245 MHz from a microwave oscillator 7 without using electrodes in a microwave cavity 8 enclosing the periphery of the substrate 3. At the same time, the surface of the substrate 3 is heated to 300-1,300 deg.C by irradiation with laser light from excimer laser 9 set at the outside of the chamber 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、切削工具等の工具材料やヒートシンク等の電
子材料となる立方晶窒化硼素の合成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for synthesizing cubic boron nitride, which is used as a tool material for cutting tools and the like, and as an electronic material for heat sinks and the like.

〔従来の技術〕[Conventional technology]

立方晶窒化硼素(c −B N)は、ダイヤモンドに次
、゛硬さと熱伝導率を有し、鉄族合金に対して極めて化
学的に安定であり、切削工具、金型等の耐久性向上への
応用あるいは半導体素子1発光素子等への応用なと、幅
広い用途か考えられる。−般に、c−BNの製造には、
プラズマを用いた各種製造方法か知られている。
Cubic boron nitride (c-BN) has hardness and thermal conductivity second only to diamond, and is extremely chemically stable against iron group alloys, improving the durability of cutting tools, molds, etc. A wide range of applications can be considered, such as application to semiconductor devices, light emitting devices, etc. -Generally, for the production of c-BN,
Various manufacturing methods using plasma are known.

従来、CVD法を用いた立方晶窒化硼素(C−BN)合
成方?Lとしては、4¥間昭62−205271;公t
tJに開小されるように、マイクロil!i (二\。
Conventional method of synthesizing cubic boron nitride (C-BN) using CVD method? As L, 4 yen period 1986-205271; public t
Microil to be opened and small by tJ! i (2\.

Di去によl)、硼素用(i゛含灯カ′ス、窒素IC肖
“−含f1ガスおよび水素ガスのl昆合ガスをマイクロ
波無電極放電中を通過させ、鉄分解反12によ1)、3
00〜1300 ’(j:f用執されている基板の表面
にc−BNを析出させろ方法か知らオ]ている。
For boron (light-containing gas, nitrogen IC type), a mixture of F1 gas and hydrogen gas is passed through a microwave electrodeless discharge to react with iron decomposition reactor 12. Yo1), 3
00-1300' (I know how to deposit c-BN on the surface of the substrate used for j:f).

また、特開昭63−134662号公報には、硼素原子
含有ガスおよび窒素原子含存ガスをエキシマレーザ−C
VD法にて分解、励起状態とした後、高周波プラズマ中
を通過させ、300〜2000℃に加熱した基板の表面
に導入し、C−BNを析出させる方法が開示されている
Furthermore, in Japanese Patent Application Laid-Open No. 63-134662, a boron atom-containing gas and a nitrogen atom-containing gas are
A method is disclosed in which C-BN is precipitated by being decomposed and brought into an excited state by a VD method, then passed through high-frequency plasma, and introduced onto the surface of a substrate heated to 300 to 2000°C.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

しかし、特開昭62−205277号公報の従来の合成
方法においては、原料ガスをマイクロ波無電極放電中に
通過させるのみであるため、反応ガスへの投入エネルギ
ーか不足し、所望の膜質が得られにくく、再現性に乏し
いという問題点かあった。
However, in the conventional synthesis method disclosed in JP-A No. 62-205277, the raw material gas is simply passed through microwave electrodeless discharge, so the energy input to the reaction gas is insufficient and the desired film quality cannot be obtained. There were problems in that it was difficult to reproduce and had poor reproducibility.

一方、特開昭63−134662号公報の従来法におい
ては、原料ガスにエキシマレーザ−光を照射した後に高
周波プラズマ中を通過させる方式をとっている。この方
式によると、基板近傍での光CVDの効果か低いため、
所望の膜質か得られにくく、光の照射位置により再現性
か乏しいという問題点かあった。
On the other hand, in the conventional method disclosed in Japanese Patent Application Laid-Open No. 63-134662, a method is adopted in which a raw material gas is irradiated with excimer laser light and then passed through high-frequency plasma. According to this method, the effect of photo-CVD near the substrate is low;
There were problems in that it was difficult to obtain the desired film quality and the reproducibility was poor depending on the position of light irradiation.

本発明は、かかる従来の問題点に鑑みてなされたもので
、CVD法において、c−BN形成に有利なc−BNの
合成方法を提供することを目的とする。
The present invention was made in view of such conventional problems, and an object of the present invention is to provide a c-BN synthesis method that is advantageous for c-BN formation in the CVD method.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は、硼素原子含有ガ
スおよび窒素原子含有ガスを原料ガスとして用い、気相
化学蒸着法により立方晶窒化硼素を合成する方法におい
て、前記原料ガスをマイクロ波無電極放電中を通過させ
ると同時に、エキシマレーサー光を光源とする紫外光を
照射し、300〜1300℃に加熱した基板表面にc−
BN膜を形成することとした。
In order to achieve the above object, the present invention provides a method for synthesizing cubic boron nitride by a vapor phase chemical vapor deposition method using a boron atom-containing gas and a nitrogen atom-containing gas as raw material gases. At the same time as passing through the electrode discharge, ultraviolet light from an excimer laser light source is irradiated, and c-
It was decided to form a BN film.

また、本発明において、原料ガスに水素または不活性ガ
スの少なくともいずれか一方を混入させて導入してもよ
い。
Further, in the present invention, at least one of hydrogen and an inert gas may be mixed into the raw material gas before being introduced.

さらに、マイクロ波無電極放電の下流に磁界を設けても
よい。
Furthermore, a magnetic field may be provided downstream of the microwave electrodeless discharge.

〔作 用〕[For production]

すなわち、本発明においては、硼素原子含存ガス、窒素
原子含有ガスを原料ガスとして用いる。
That is, in the present invention, a boron atom-containing gas and a nitrogen atom-containing gas are used as source gases.

原料ガスをマイクロ波無電極放電中を通過させると同時
に、外部に設置したエキシマレーザ−による紫外光を照
射し、原料ガスの分解、励起、反応を促し、300〜1
300℃に加熱した基板表面にc−BNを析出させる。
While passing the raw material gas through a microwave electrodeless discharge, it is simultaneously irradiated with ultraviolet light from an excimer laser installed outside to promote decomposition, excitation, and reaction of the raw material gas.
c-BN is deposited on the surface of the substrate heated to 300°C.

c−BNを生成させるための原料ガスの励起手法として
、マイクロ波プラズマのみではエネルギー的に不十分で
あり、紫外光の導入が必要となる。
As a method for exciting source gas to generate c-BN, microwave plasma alone is insufficient in terms of energy, and introduction of ultraviolet light is required.

本発明の特徴は励起手段として、マイクロ波プラズマと
エキシマレーザ−を同時に用いている点である。再励起
手段を比較的近い領域で、同時に用いているのは、イオ
ンあるいはラジカル等の活性種の生成を多量に効率良く
行なうためである。
A feature of the present invention is that microwave plasma and excimer laser are simultaneously used as excitation means. The reason why the re-excitation means are used simultaneously in a relatively close area is to efficiently generate a large amount of active species such as ions or radicals.

それは、原料ガスの放電位置とレーザー照射位置とに隔
たりがあると、活性種の寿命の関係で片方の励起手段を
用いている効果が抑えられてしまう場合かあるからであ
る。また、両励起方式とも空間的エネルギー密度か高く
、原料ガスの分解、励起、成膜か効率良く進み、均一で
膜質の良好なC−BNか生成する。
This is because if there is a gap between the raw material gas discharge position and the laser irradiation position, the effect of using one of the excitation means may be suppressed due to the lifetime of the active species. In addition, both excitation methods have high spatial energy densities, and the decomposition of the source gas, excitation, and film formation proceed efficiently, producing C-BN that is uniform and has good film quality.

特に、原料ガスに水素または不活性ガスの少なくともい
ずれか一方を混入させて導入すれば、c−BN構造以外
のBN構造を選択的にエツチング除去することができ、
c−BN形成に有利である。
In particular, if at least one of hydrogen and inert gas is introduced into the raw material gas, BN structures other than the c-BN structure can be selectively etched away.
It is advantageous for c-BN formation.

また、マイクロ波無電極放電の下流に磁界を設けること
により、イオンを加速し、基板表面付近で均一に反応を
行うことができ、c−BN形成に有利である。
Further, by providing a magnetic field downstream of the microwave electrodeless discharge, ions can be accelerated and reactions can be uniformly performed near the substrate surface, which is advantageous for c-BN formation.

〔実 施 例〕〔Example〕

(第1実施例) 第1図に示す合成装置を用いて、c−BN膜の形成を行
った。原料ガスとしてN2ガス1.BCl3ガス2を用
い、基板3としてSiウェハを用いた。基板3をサセプ
ター4の上に設置し、排気系5によりチャンバー6内を
減圧にした。
(First Example) A c-BN film was formed using the synthesis apparatus shown in FIG. N2 gas as raw material gas 1. BCl3 gas 2 was used, and a Si wafer was used as the substrate 3. The substrate 3 was placed on the susceptor 4, and the pressure inside the chamber 6 was reduced by the exhaust system 5.

あらかじめN、ガスI、BC1sガス2をそれぞれl 
Occ/min、 lcc/minの流速で混合し、チ
ャンバー6内に導入し、2450MHzのマイクロ波発
振器7により基板3の外周を囲繞するマイクロ波キャビ
ティ8内に無電極放電を発生させた。これと同時に、チ
ャンバー6の外部に設けたエキシマレーザ−9により石
英窓lOを介してレーザー光を照射した。チャンバー6
内の圧力はI Torrて、基板3の温度は900’C
とした。
In advance, add l each of N, gas I, and BC1s gas 2.
The mixture was mixed at a flow rate of occ/min and lcc/min, introduced into the chamber 6, and a 2450 MHz microwave oscillator 7 generated an electrodeless discharge in the microwave cavity 8 surrounding the outer periphery of the substrate 3. At the same time, a laser beam was irradiated from an excimer laser 9 provided outside the chamber 6 through the quartz window IO. chamber 6
The internal pressure is I Torr, and the temperature of the substrate 3 is 900'C.
And so.

1時間反応させ、基板3表面に1μmの厚さの膜を成膜
した。
The reaction was allowed to proceed for 1 hour, and a film having a thickness of 1 μm was formed on the surface of the substrate 3.

この膜をFT−IR(フーリエ変換赤外線吸収スペクト
ル)で調べたところ、1050an−’に顕著な吸収を
示した。これにより、c−BN膜の形成を確認すること
ができた。
When this film was examined by FT-IR (Fourier transform infrared absorption spectrum), it showed remarkable absorption at 1050an-'. Thereby, formation of the c-BN film could be confirmed.

(第2実施例) 第2図に示す合成装置を用いて、第1実施例と同様にc
−BN膜の成膜を行った。基板3としてSiウェハを用
い、原料ガスとしてB、H,ガス11、NN2ガス12
、アシストガスとしてH,ガス13を用いた。基板3を
サセプター4の上に設置し、排気系5によりチャンバー
6内を減圧にした。
(Second Example) Using the synthesis apparatus shown in FIG. 2, c
- A BN film was formed. A Si wafer is used as the substrate 3, and B, H, gas 11, and NN2 gas 12 are used as the raw material gases.
, H gas 13 was used as an assist gas. The substrate 3 was placed on the susceptor 4, and the pressure inside the chamber 6 was reduced by the exhaust system 5.

あらかじめB 2 H−ガス+ +、NH3ガス12お
よびN2ガス13をそれぞれlcc/min、5cc/
minおよび20 cc/minの流速で混合し、チャ
ンバー6内に導入し、2450MHzのマイクロ波発振
器7により基板3の外周を囲繞するマイクロ波キャビテ
ィ8内に無電極放電を発生させた。これと同時に、チャ
ンバー6の外部に設けたエキシマレーザ−9により石英
窓IOを介してレーザー光を照射した。チャンバー6内
の圧力はI Torrて、基板3の温度は950℃とし
た。
B 2 H-gas ++, NH3 gas 12 and N2 gas 13 were supplied in advance at lcc/min and 5cc/min, respectively.
The mixture was mixed at a flow rate of 20 cc/min and 20 cc/min, introduced into the chamber 6, and a 2450 MHz microwave oscillator 7 generated an electrodeless discharge in the microwave cavity 8 surrounding the outer periphery of the substrate 3. At the same time, an excimer laser 9 provided outside the chamber 6 irradiated laser light through the quartz window IO. The pressure inside the chamber 6 was I Torr, and the temperature of the substrate 3 was 950°C.

2時間反応させ、基板3表面に1μmの厚さの膜を成膜
した。
The reaction was carried out for 2 hours, and a film with a thickness of 1 μm was formed on the surface of the substrate 3.

この膜をFT−IRて調べたところ、1050の−1に
顕著な吸収を示し、c−BN膜の形成を確認できた。
When this film was examined by FT-IR, it showed remarkable absorption at -1 of 1050, confirming the formation of a c-BN film.

(第3実施例) 第3図に示す合成装置を用いて、第1実施例と同様にc
−BN膜の成膜を行った。基板3としてSiウェハを用
い、原料ガスとしてBCz、ガス2、NH3ガス12お
よびArガス14をそれぞれI cc/min、  l
 Occ/minおよび30 cc/minの流速で混
合した後、チャンバー6内に導入し、2450MHzの
マイクロ波発振器7により無電極放電を発生させた。こ
れと同時に、外部より石英窓lOを介し、エキシマレー
ザ−光を基板3に照射した。
(Third Example) Using the synthesis apparatus shown in FIG. 3, c
- A BN film was formed. A Si wafer was used as the substrate 3, and BCz, gas 2, NH3 gas 12, and Ar gas 14 were used as source gases at I cc/min, l, respectively.
After mixing at flow rates of Occ/min and 30 cc/min, the mixture was introduced into the chamber 6 and a 2450 MHz microwave oscillator 7 generated an electrodeless discharge. At the same time, excimer laser light was irradiated onto the substrate 3 from the outside through the quartz window IO.

本実施例では、基板3の近傍でマイクロ波キャビティ8
のすぐ下(下流)の位置にコイル!5を □配置し、8
75ガウスの磁場を設けた。チャンバー6内の圧力は2
 Torrで、基板3の温度は920℃とした。
In this embodiment, a microwave cavity 8 is provided near the substrate 3.
Coil located just below (downstream)! Place 5 □ and place 8
A magnetic field of 75 Gauss was set up. The pressure inside chamber 6 is 2
Torr, and the temperature of the substrate 3 was 920°C.

1時間反応させ、基板3表面にlamの厚さの膜を成膜
した。
The reaction was allowed to proceed for 1 hour, and a film having a thickness of 1 lam was formed on the surface of the substrate 3.

この膜をFT−IRで調べたところ、105105O’
に顕著な吸収を示し、c−BN膜の形成を確認できた。
When this film was examined by FT-IR, it was found that 105105O'
It was confirmed that a c-BN film was formed.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明のc−BNの合成方法によれば、
マイクロ波プラズマとエキシマレーザ−を同時に用いる
こととしたので、原料ガスの分解、励起、成膜か効率良
く進行し、c−BNの形成に有利である。
As described above, according to the c-BN synthesis method of the present invention,
Since microwave plasma and excimer laser are used simultaneously, the decomposition, excitation, and film formation of the source gas proceed efficiently, which is advantageous for the formation of c-BN.

特に、原料ガスに水素または不活性ガスの少なくともい
ずれか一方を混入させて導入したり、マイクロ波無電極
放電の下流に磁界を設けることにより、c−BNをさら
に有利に形成できる。
In particular, c-BN can be formed more advantageously by introducing at least one of hydrogen or an inert gas into the raw material gas or by providing a magnetic field downstream of the microwave electrodeless discharge.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第3図はそれぞれ本発明の第1、
第2および第3実施例で用いた合成装置の概略構成図で
ある。 l・・・N2ガス 2・・・BC1sガス 3・・・基板 6・・・チャンバー 7・・・マイクロ波発信器 8・・・マイクロ波キャビティ 9・・・エキシマレーザ− II・・・B2H,ガス 12・・・NH,ガス 13・・・N2ガス 14・・・Arガス 15・・・コイル
FIG. 1, FIG. 2, and FIG. 3 are the first and second embodiments of the present invention, respectively.
FIG. 2 is a schematic configuration diagram of a synthesis apparatus used in the second and third examples. l...N2 gas 2...BC1s gas 3...Substrate 6...Chamber 7...Microwave transmitter 8...Microwave cavity 9...Excimer laser II...B2H, Gas 12...NH, Gas 13...N2 gas 14...Ar gas 15...Coil

Claims (3)

【特許請求の範囲】[Claims] (1)硼素原子含有ガスおよび窒素原子含有ガスを原料
ガスとして用い、気相化学蒸着法により立方晶窒化硼素
を合成する方法において、前記原料ガスをマイクロ波無
電極放電中を通過させると同時に、エキシマレーザー光
を光源とする紫外光を照射し、300〜1300℃に加
熱した基板表面に立方晶窒化硼素膜を形成することを特
徴とする立方晶窒化硼素の合成方法。
(1) In a method of synthesizing cubic boron nitride by a vapor phase chemical vapor deposition method using a boron atom-containing gas and a nitrogen atom-containing gas as raw material gases, at the same time passing the raw material gases through a microwave electrodeless discharge, A method for synthesizing cubic boron nitride, which comprises forming a cubic boron nitride film on the surface of a substrate heated to 300 to 1300° C. by irradiating ultraviolet light using excimer laser light as a light source.
(2)原料ガスに水素または不活性ガスの少なくともい
ずれか一方を混入させて、導入することを特徴とする請
求項1記載の立方晶窒化硼素の合成方法。
(2) The method for synthesizing cubic boron nitride according to claim 1, characterized in that the raw material gas is mixed with at least one of hydrogen and an inert gas before being introduced.
(3)マイクロ波無電極放電の下流に磁界を設けたこと
を特徴する請求項1又は2記載の立方晶窒化硼素の合成
方法。
(3) The method for synthesizing cubic boron nitride according to claim 1 or 2, characterized in that a magnetic field is provided downstream of the microwave electrodeless discharge.
JP27440690A 1990-10-12 1990-10-12 Method for synthesizing cubic boron nitride Pending JPH04154970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27440690A JPH04154970A (en) 1990-10-12 1990-10-12 Method for synthesizing cubic boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27440690A JPH04154970A (en) 1990-10-12 1990-10-12 Method for synthesizing cubic boron nitride

Publications (1)

Publication Number Publication Date
JPH04154970A true JPH04154970A (en) 1992-05-27

Family

ID=17541229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27440690A Pending JPH04154970A (en) 1990-10-12 1990-10-12 Method for synthesizing cubic boron nitride

Country Status (1)

Country Link
JP (1) JPH04154970A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238504A (en) * 2008-03-26 2009-10-15 National Institute For Materials Science Method for forming cone emitter
JP2011060796A (en) * 2009-09-07 2011-03-24 Hitachi Zosen Corp Thin film depositing method and apparatus therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238504A (en) * 2008-03-26 2009-10-15 National Institute For Materials Science Method for forming cone emitter
JP2011060796A (en) * 2009-09-07 2011-03-24 Hitachi Zosen Corp Thin film depositing method and apparatus therefor

Similar Documents

Publication Publication Date Title
JP4281059B2 (en) Deposition method and apparatus using microwave excitation
JPS6164124A (en) Thin film manufacturing equipment
JPS6184379A (en) Production of high-hardness boron nitride film
JPH04154970A (en) Method for synthesizing cubic boron nitride
JPH0420985B2 (en)
JPH0499871A (en) Synthetic method for cubic carbon nitride
JPH03264670A (en) Method and device for synthesizing cubic boron nitride
JPH1018042A (en) Thin film forming device
JPH04341567A (en) Method for synthesizing cubic boron nitride
JP2726149B2 (en) Thin film forming equipment
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPH051381A (en) Method for synthesizing cubic boron nitride
JP3056050B2 (en) Thin film deposition method
JPH04157159A (en) Method and device for synthesis of cubic boron nitride
JPH03111573A (en) Method for synthesizing cubic boron nitride
JP2995339B2 (en) How to make a thin film
JPH049472A (en) Method for synthesizing cubic boron nitride
JPH04341566A (en) Method for synthesizing cubic boron nitride
JPH04314865A (en) Method for synthesizing cubic boron nitride
JP2676091B2 (en) How to make a thin film
JPH04141588A (en) Method and apparatus for synthesizing cubic boron nitride
JPH0742197B2 (en) Diamond synthesis method using plasma
JPH01103988A (en) Production of hard film by ion cyclotron resonance method
JPH0361371A (en) Thin film forming device
JPH036379A (en) Chemical vapor growth device