JP2676091B2 - How to make a thin film - Google Patents

How to make a thin film

Info

Publication number
JP2676091B2
JP2676091B2 JP2254520A JP25452090A JP2676091B2 JP 2676091 B2 JP2676091 B2 JP 2676091B2 JP 2254520 A JP2254520 A JP 2254520A JP 25452090 A JP25452090 A JP 25452090A JP 2676091 B2 JP2676091 B2 JP 2676091B2
Authority
JP
Japan
Prior art keywords
thin film
wave
pulse
film
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2254520A
Other languages
Japanese (ja)
Other versions
JPH04132683A (en
Inventor
昭治 宮永
亨 井上
舜平 山崎
Original Assignee
株式会社 半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 半導体エネルギー研究所 filed Critical 株式会社 半導体エネルギー研究所
Priority to JP2254520A priority Critical patent/JP2676091B2/en
Priority to KR1019910016843A priority patent/KR930011413B1/en
Publication of JPH04132683A publication Critical patent/JPH04132683A/en
Priority to US08/463,058 priority patent/US5626922A/en
Application granted granted Critical
Publication of JP2676091B2 publication Critical patent/JP2676091B2/en
Priority to US09/262,853 priority patent/US6110542A/en
Priority to US09/636,222 priority patent/US6660342B1/en
Priority to US10/728,987 priority patent/US7125588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は薄膜の作成方法に関するものである。The present invention relates to a method for producing a thin film.

〔発明の概要〕[Summary of the Invention]

本発明はマイクロ波電界を加えるとともに、外部磁場
を加え、それらの相互作用を用いた空間またはその近傍
に反応性気体を導入せしめ、プラズマにより活性化、分
解または反応せしめ、薄膜形成用物体の全表面に被膜を
形成せしめる薄膜形成において、マイクロ波電界に対し
限定されたパルス形を付与すること、さらにそのパルス
形が他のパルス形または同波長の定常連続波あるいは他
波長の定常連続波と安定して共存しつつプラズマを生じ
せしめる事により、凹凸に対する均一な膜形成を可能に
し、大幅な消費電力を実現した薄膜作成方法である。
INDUSTRIAL APPLICABILITY The present invention applies a microwave electric field and an external magnetic field, introduces a reactive gas into the space or its vicinity using the interaction thereof, and activates, decomposes, or reacts with plasma, so that the whole thin film forming object is formed. In forming a thin film to form a film on the surface, give a limited pulse shape to the microwave electric field, and that pulse shape is stable with other pulse shapes or stationary continuous waves of the same wavelength or stationary continuous waves of other wavelengths. By generating plasma while coexisting with each other, it is possible to form a uniform film against unevenness and realize a large power consumption.

〔従来技術〕(Prior art)

従来より薄膜の形成は多くの手段を以て試みられてい
る。たとえばCVD法、スパッタ法、MBE法等、その形式の
多様化は材料開発に多くの可能性を導き出すものと言え
る。中でもプラズマを用いた活性化・分解・反応によっ
て薄膜の形成を試みるプラズマCVD法では、化学量論的
見地を離れた素材の合成が可能と言われており、機構解
析を含めた活発な研究開発が高周波励起・マイクロ波励
起・磁場による混成共鳴等、多くの方法について進めら
れている。得に磁場による共鳴を用いたCVD法(以下、
有磁場プラズマCVD法)では従来よりも遥かに高密度の
プラズマを利用して高い効率で成膜出来るため、開発も
進められ、多方面での応用も期待されてきた。しかし、
実際の成膜作業においては、有磁場プラズマCVD法なら
ばこれまでにない高品質の成膜が可能と言われるにも関
わらず、凹凸表面を有する被膜形成物質の表面に対し、
凹凸に左右されず均一な厚さにおいて膜を形成すること
は困難であり、そのため工業生産手段としての実用化は
なかなか進展していない。それは前述の様な膜の形成状
態にもよるが、また該有磁場プラズマCVD法がその稼働
に際し巨大な電力消費を伴うからでもある。
Conventionally, formation of a thin film has been attempted by many means. For example, it can be said that the diversification of the types such as the CVD method, the sputtering method, and the MBE method brings many possibilities for material development. In particular, it is said that the plasma CVD method, which attempts to form a thin film by activation, decomposition, and reaction using plasma, enables the synthesis of materials that deviate from the stoichiometric viewpoint, and active research and development including mechanism analysis. Have advanced many methods such as high frequency excitation, microwave excitation, and hybrid resonance by magnetic field. A CVD method using resonance by a magnetic field (hereinafter,
With the magnetic field plasma CVD method), it is possible to form a film with high efficiency by using plasma with a much higher density than in the past, so development has been promoted, and it has been expected to be applied in various fields. But,
In the actual film formation work, although it is said that high-quality film formation that has never been possible with the magnetic field plasma CVD method, on the surface of the film-forming substance having an uneven surface,
It is difficult to form a film having a uniform thickness without being affected by unevenness, and therefore practical application as an industrial production means has not progressed at all. It depends on the film formation state as described above, but also because the magnetic field plasma CVD method involves enormous power consumption during its operation.

〔目的〕〔Purpose〕

本発明は、高品質の成膜が可能な有磁場プラズマCVD
法が、実用的な生産技術としてより高い汎用性を持ちう
るよう、有効な運用技術を提供することを目的とする。
The present invention is a magnetic field plasma CVD capable of high quality film formation.
The law aims to provide effective operation technology so that it can have higher versatility as a practical production technology.

〔発明の構成〕[Configuration of the invention]

本発明は、磁場を使用し、プラズマを発生させる形式
であるプラズマCVD法を用いた薄膜の作成において、パ
ルス波と定常連続波との複合波を加えることを特徴とす
る。
The present invention is characterized by adding a composite wave of a pulse wave and a standing continuous wave in the production of a thin film using a plasma CVD method that is a type of generating plasma using a magnetic field.

本発明の他の構成は、磁場を使用し、プラズマを発生
させる形式であるプラズマCVD法を用いた薄膜の作成に
おいて、複数の矩形パルス波を組み合わせた複合波を用
い、前記複合波は2段階尖端値を有し、かつ不連続波で
あることを特徴とする。
Another structure of the present invention uses a composite wave in which a plurality of rectangular pulse waves are combined in the production of a thin film using a plasma CVD method that is a type of generating a plasma using a magnetic field, and the composite wave has two stages. It is characterized by having a peak value and being a discontinuous wave.

ここでマイクロ波に与えられるパルス波形は、いくつ
かの形式が考えられる。第3図にパルス波形の例を示
す。(A)は尖端値の異なる二種類のパルスを組み合わ
せた例である。これは、ある閾値をもってある物質の生
成を増加させ、それよりも生成エネルギーの低い物質の
生成を抑制する場合に効果的である。(B)は低電力の
同じ周波数のマイクロ波を定常連続波として組合せた例
であり、(C)は低電力の異なる周波数の電磁波を定常
連続波として組み合わせた例である。この投入方法は装
置の構造あるいは成膜の諸条件からパルス波だけではプ
ラズマの安定が保てない場合に有効である。このような
投入方法を用いる事により、核生成の基板表面での均一
化というパルスプラズマの特性から、凹凸を有する被膜
形成物体に対しても非常に均一な薄膜形成が可能とな
り、また定常連続波によって成膜を行う場合に比べ、パ
ルスピークに高い電力を集中することによってより効率
良く成膜を行うことができるのである。
There are several possible pulse waveforms given to the microwave. FIG. 3 shows an example of the pulse waveform. (A) is an example in which two types of pulses having different peak values are combined. This is effective in increasing the production of a substance having a certain threshold and suppressing the production of a substance having a lower production energy than that. (B) is an example in which low power microwaves having the same frequency are combined as a stationary continuous wave, and (C) is an example in which electromagnetic waves having low power different frequencies are combined as a stationary continuous wave. This charging method is effective when the stability of the plasma cannot be maintained only by the pulse wave due to the structure of the apparatus or various conditions of film formation. By using such a charging method, it is possible to form a very uniform thin film even on a film-forming object having irregularities due to the characteristic of the pulse plasma that the nucleation is uniform on the substrate surface. As compared with the case where the film is formed by, the film can be formed more efficiently by concentrating high electric power on the pulse peak.

さて、本発明におけるプラズマCVD装置は、0.3〜30to
rr好ましくは0.3〜3torrの高い圧力で「混成共鳴」を用
いた高密度プラズマを利用して被膜形成を行うものであ
る。
Now, the plasma CVD apparatus in the present invention is 0.3 to 30 to
rr The film is formed at a high pressure of preferably 0.3 to 3 torr by using high density plasma using "hybrid resonance".

これらの被膜形成用物体を混成共鳴空間またはそれよ
り離れた活性状態を保持した空間内に配設し、反応生成
物を物体の表面にコーティングさせる。この目的のた
め、マイクロ波電力の電界強度が最も大きくなる領域ま
たはその近傍に被形成面を有する物体を配設する。ま
た、高密度プラズマを0.03〜30torrの高い圧力で発生、
持続させるために、カラムを有する空間にまず1×10-4
〜1×10-5torrの低真空下でECR(電子サイクロトン共
鳴)を生ぜしめる。気体を導入し、0.03〜30torr好まし
くは0.3〜3torrと高い空間圧力にプラズマ状態を持続し
つつ変化せしめ、この空間の生成物気体の単位空間あた
りの濃度をこれまでのECR CVD法に比べて102〜104倍程
度の高濃度にする。するとかかる高い圧力においてのみ
初めて分解または反応をさせることができる材料の被膜
形成が可能となる。例えば、ダイヤモンド、i−カーボ
ン(ダイヤモンダまたは微結晶粒を有する炭素被膜)、
高融点の金属または絶縁性セラミック被膜である。
These film-forming objects are arranged in a hybrid resonance space or in a space that maintains an active state apart therefrom, and the reaction products are coated on the surface of the object. For this purpose, an object having a surface to be formed is arranged in or near a region where the electric field strength of microwave power is the highest. In addition, high-density plasma is generated at a high pressure of 0.03 to 30 torr,
In order to maintain it, the space with the column is first 1 × 10 -4
ECR (Electron Cycloton Resonance) is generated under a low vacuum of ~ 1 × 10 -5 torr. A gas is introduced to change the plasma state to a high space pressure of 0.03 to 30 torr, preferably 0.3 to 3 torr while maintaining the plasma state, and the concentration of the product gas in this space per unit space is 10 compared to the conventional ECR CVD method. Increase the concentration by 2 to 10 4 times. Then, it becomes possible to form a film of a material that can be decomposed or reacted only at such a high pressure. For example, diamond, i-carbon (diamonda or carbon coating with fine crystal grains),
It is a high melting point metal or insulating ceramic coating.

すなわち本発明は従来より知られたマイクロ波を用い
たプラズマCVD法に磁場の力を加え、マイクロ波の電場
と磁場との相互作用を用いている。しかし、1×10-4
1×10-5torrで有効なECR(エレクトロンサイクロトロ
ン共鳴)条件を用いていない。本発明は0.03〜30torrの
高い圧力の「混成共鳴」の発生する高い圧力で高密度高
エネルギのプラズマを利用した被膜形成を行わしめたも
のである。その混成共鳴空間での高エネルギ状態を利用
して、前述の様にパルス波あるいはパルス波と定常連続
波の組合せによるプラズマ励起を行い、活性種を多量に
発生させ、かつ基板表面での均一な核生成を起こさせ、
再現性に優れた薄膜材料の形成を可能としたものであ
る。
That is, the present invention applies the force of a magnetic field to the conventionally known plasma CVD method using microwaves and uses the interaction between the electric field and the magnetic field of microwaves. However, 1 × 10 -4 ~
ECR (electron cyclotron resonance) conditions effective at 1 × 10 -5 torr are not used. The present invention has been carried out to form a film using high-density and high-energy plasma at a high pressure at which "hybrid resonance" of 0.03 to 30 torr is generated. Utilizing the high energy state in the hybrid resonance space, plasma excitation by pulse waves or a combination of pulse waves and stationary continuous waves is performed as described above, a large amount of active species is generated, and a uniform surface on the substrate surface is generated. Cause nucleation,
This enables the formation of thin film materials with excellent reproducibility.

電力の投入は前述の様にパルス(平均電力1.5〜30K
W、パルスピークはおおむねその3倍)にて行われる。
第1パルス波のパルス波長は1〜10ms好ましくは5〜8m
sとすべきである。また、加える磁場の強さを任意に変
更可能な為、電子のみではなく特定のイオンの共鳴条件
を設定することができる特徴がある。
As described above, the power input is pulse (average power 1.5 to 30K
W and pulse peaks are roughly three times higher.
The pulse wavelength of the first pulse wave is 1 to 10 ms, preferably 5 to 8 m
should be s. Further, since the strength of the applied magnetic field can be arbitrarily changed, there is a feature that resonance conditions of not only electrons but also specific ions can be set.

また本発明の構成に付加して、パルス(あるいはパル
ス+定常連続波)マイクロ波と磁場との相互作用により
高密度プラズマを発生させた後、物体面上まで至るまで
の間でも高エネルギ状態をより保持するため、光(例ば
紫外光)を同時に照射し、活性種にエネルギを与えつづ
けると、マイクロ波電界の最大となる領域即ち高密度プ
ラズマ発生領域より10〜50cmも離れた位置(反応性気体
の活性状態を保持できる位置)においても高エネルギ状
態に励起された炭素原子が存在して、より大きな空間で
ダイヤモンド膜を形成することが可能である。本発明は
かかる空間に筒状のカラムを配設し、このカラム内に被
膜形成用物体を配設し、その表面に被膜形成を行った。
In addition to the configuration of the present invention, a high-energy state is maintained even after the high-density plasma is generated by the interaction between the pulse (or pulse + stationary continuous wave) microwave and the magnetic field, and then until the object surface is reached. In order to maintain it further, when light (for example, ultraviolet light) is irradiated at the same time, and energy is continuously given to the active species, the position (reaction 10 to 50 cm away from the region where the microwave electric field is maximum, that is, the high-density plasma generation region) Even at a position where the active state of the volatile gas can be maintained), carbon atoms excited in a high energy state exist, and it is possible to form a diamond film in a larger space. In the present invention, a cylindrical column is arranged in such a space, a film-forming object is arranged in this column, and a film is formed on the surface thereof.

以下に実施例を示し、さらに本発明を説明する。 Examples are shown below to further describe the present invention.

〔実施例〕〔Example〕

第1図に本発明にて用いた磁場印加可能なマイクロ波
プラズマCVD装置を示す。
FIG. 1 shows a microwave plasma CVD apparatus capable of applying a magnetic field used in the present invention.

同図において、この装置は減圧状態に保持可能なプラ
ズマ発生空間(1),補助空間(2),磁場を発生する
電磁石(5)(5′)およびその電源(25),パルス
(およびパルス+定常連続波)マイクロ波発振器
(4),排気系を構成するターボ分子ポンプ(8),ロ
ータリポンプ(14),圧力調整バルブ(11),基板ホル
ダ(10′)被膜形成用物体(10),マイクロ波導入窓
(15),ガス系(6),(7),水冷系(18),(1
8′)ハロゲンランプ(20),反射鏡(21),加熱用空
間(3)より構成されている。
In this figure, this device has a plasma generation space (1), an auxiliary space (2) that can be maintained under reduced pressure, electromagnets (5) and (5 ') that generate a magnetic field and its power supply (25), pulse (and pulse +). Microwave oscillator (stationary continuous wave) (4), turbo molecular pump (8) constituting the exhaust system, rotary pump (14), pressure control valve (11), substrate holder (10 ') film forming object (10), Microwave introduction window (15), gas system (6), (7), water cooling system (18), (1
8 ') It is composed of a halogen lamp (20), a reflecting mirror (21), and a heating space (3).

まず薄膜形成用物体(10)を基板ホルダ(10′)上に
設置し、ゲート弁(16)よりプラズマ発生空間(1)に
配設する。この基板ホルダ(10′)はマイクロ波および
磁場をできるだけ乱させないため石英製とした。
First, the thin film forming object (10) is placed on the substrate holder (10 ') and is placed in the plasma generation space (1) through the gate valve (16). This substrate holder (10 ') is made of quartz so as not to disturb the microwave and magnetic field as much as possible.

作製工程として、まずこれら全体をターボ分子ポンプ
(8),ロータリーポンプにより1×10-6torr以下に真
空排気する。次に非生成物気体(分解反応後固体を構成
しない気体)例えば水素(6)を30SCCMガス系(7)を
通してプラズマ発生領域(1)に導入し、この圧力を1
×10-4torrとする。外部より2.45GHzの周波数のマイク
ロ波をパルス部分8msの周期で加える。磁場約2Kガウス
を磁石(5),(5′)より印加し、高密度プラズマを
プラズマ発生空間(1)にて発生させる。なお、図面に
おいて気体は上より下方向に流れるようにした。しかし
下側より上方向であっても、左より右方向であってもま
た右より左方向であってもよい。
As a manufacturing process, first, the whole is evacuated to 1 × 10 −6 torr or less by a turbo molecular pump (8) and a rotary pump. Next, a non-product gas (a gas that does not form a solid after the decomposition reaction) such as hydrogen (6) is introduced into the plasma generation region (1) through the 30SCCM gas system (7), and this pressure is set to 1
× 10 -4 torr. A microwave with a frequency of 2.45 GHz is applied from the outside with a cycle of 8 ms in the pulse part. A magnetic field of about 2K gauss is applied from the magnets (5) and (5 ') to generate high density plasma in the plasma generation space (1). In the drawing, the gas was made to flow downward from above. However, it may be upward from the lower side, rightward from the left side, or leftward from the right side.

この高密度プラズマ領域より高エネルギを持つ非生成
物気体または電子が基板ホルダ(10′)上の物体(10)
の表面上に到り、表面を清浄にする。次にこの非生成物
気体を導入しつつ、ガス系(7)より気体特に例えば生
成物気体(分解・反応後固体を構成する気体)を導入
し、その後空間の圧力をすでに発生しているプラズマ状
態を保持しつつ0.03〜30torr好ましくは0.1〜3torr例え
ば0.5torrの圧力に変更させる。この空間の圧力を高く
することにより、単位空間あたりの生成物気体の濃度を
大きくでき被膜成長速度を大きくできる。
The non-product gas or electrons having higher energy than this high-density plasma region is the object (10) on the substrate holder (10 ').
On the surface of and clean the surface. Next, while introducing this non-product gas, a gas, especially a product gas (a gas that constitutes a solid after decomposition / reaction) is introduced from the gas system (7), and then the pressure of the space is already generated. While maintaining the state, the pressure is changed to 0.03 to 30 torr, preferably 0.1 to 3 torr, for example, 0.5 torr. By increasing the pressure in this space, the concentration of the product gas per unit space can be increased and the film growth rate can be increased.

このようにして一度低い圧力でプラズマを発生させ、
そのプラズマ状態を保持しつつ生成物気体の活性濃度を
大きくでき、高エネルギに励起された活性種が生成さ
れ、基板ホルダ(10′)上の物体(10)上にこの活性種
が堆積して、薄膜材料が形成される。
In this way, once generate plasma at low pressure,
The active concentration of the product gas can be increased while maintaining the plasma state, active species excited by high energy are generated, and the active species are deposited on the object (10) on the substrate holder (10 '). , A thin film material is formed.

第1図において、磁場は2つのリング状の磁石
(5),(5′)を用いたヘルムホルツコイル方式を採
用した。さらに、4分割した空間(30)に対し電場・磁
場の強度を調べた結果を第2図に示す。
In FIG. 1, the magnetic field employs a Helmholtz coil system using two ring-shaped magnets (5) and (5 '). FIG. 2 shows the results of examining the electric and magnetic field strengths in the space (30) divided into four parts.

第2図(A)において、横軸(X軸)は空間(30)の
横方向(反応性気体の放出方向)であり、縦軸(R軸)
は磁石の直径方向を示す。図面における曲線は磁場の等
磁位面を示す。そしてその線上に示されている数字は磁
石(5)が約2000ガウスの時に得られる磁場の強さを示
す。磁石(5)の強度を調整すると、電極・磁場の相互
作用を有する空間(100)(875ガウス±185ガウス以
内)で大面積において磁場の強さを基板の被形成面の広
い面積にわたって概略均一にさせることができる、図面
は等磁面を示し、特に線(26)が875ガウスとなるECR
(電子サイクロトロン共鳴)条件を生ずる等磁場面であ
る。
In FIG. 2 (A), the horizontal axis (X axis) is the horizontal direction (reactive gas release direction) of the space (30), and the vertical axis (R axis).
Indicates the diameter direction of the magnet. The curves in the drawings show the isomagnetic surface of the magnetic field. And the number shown on that line shows the strength of the magnetic field obtained when the magnet (5) is about 2000 gauss. When the strength of the magnet (5) is adjusted, the magnetic field strength is approximately uniform over a large area of the substrate formation surface in a large area in the space (100) (within 875 Gauss ± 185 Gauss) where the electrode and magnetic field interact. The drawing shows isomagnetic surfaces, especially ECR where line (26) is 875 Gauss.
It is an isomagnetic field surface that causes (electron cyclotron resonance) conditions.

この共鳴条件を生ずる空間(100)は第2図(B)に
示す如く、電場が最大となる領域となるようにしてい
る。第2図(B)の横軸は第2図(A)と同じく反応性
気体の流れる方向を示し、縦軸は電場(電界強度)の強
さを示す。
As shown in FIG. 2 (B), the space (100) in which this resonance condition is generated is set to a region where the electric field is maximum. The horizontal axis of FIG. 2 (B) indicates the direction in which the reactive gas flows as in FIG. 2 (A), and the vertical axis indicates the strength of the electric field (electric field intensity).

すると電界領域(100)以外に領域(100′)を最大と
なる領域に該当する。しかし、ここに対応する磁場(第
2図(A))はきわめて等磁場面が多く存在している。
即ち領域(100′)では基板の被形成面の直径方向(第
2図(A)における縦軸方向)での膜厚のばらつきが大
きくなり、(26′)の共鳴条件を満たすECR条件部分で
良質の被膜ができるのみである。結果として均一かつ均
質な被膜を期待できない。
Then, in addition to the electric field region (100), the region (100 ') corresponds to the maximum region. However, the magnetic field (FIG. 2 (A)) corresponding to this has very many uniform magnetic field planes.
That is, in the region (100 '), the variation in film thickness in the diameter direction (vertical axis direction in FIG. 2A) of the surface where the substrate is formed becomes large, and in the ECR condition part satisfying the resonance condition of (26'). Only a good quality film is produced. As a result, a uniform and homogeneous coating cannot be expected.

もちろんドーナツ型に被膜を形成せんとする場合はそ
れでもよい。
Needless to say, when a doughnut-shaped film is formed.

領域(100)に対してその原点対称の反対の側にも電
場が最大であり、かつ磁場が広い領域にわたって一定と
なる領域を有する。基板の加熱を行う必要がない場合は
かかる空間での被膜形成も有効である。しかしマイクロ
波の電場を乱すことなく加熱を行う手段が得にくい。
On the opposite side of the region (100) with respect to the origin symmetry, there is a region where the electric field is maximum and the magnetic field is constant over a wide region. When it is not necessary to heat the substrate, forming a film in such a space is also effective. However, it is difficult to obtain a means for heating without disturbing the microwave electric field.

これらの結果、基板の出し入れ、加熱の容易さを考慮
し、均一かつ均質な被膜とするためには第2図(A)の
領域(100)が3つの領域の中では最も工業的に量産性
の優れた位置であった。
As a result, in consideration of the ease of loading / unloading the substrate and heating, in order to obtain a uniform and uniform film, the area (100) in FIG. 2 (A) is the most industrially mass-producible area among the three areas. It was in an excellent position.

この結果、本発明では領域(100)に基板(10)を配
設すると、この基板が円形であった場合、半径100mmま
で、好ましくは半径50mmまでの大きさで均一、均質に被
膜形成が可能となった。
As a result, according to the present invention, when the substrate (10) is arranged in the region (100), if the substrate is circular, it is possible to form a uniform and uniform film with a size up to a radius of 100 mm, preferably up to a radius of 50 mm. Became.

さらに大面積とするには、例えばこの4倍の面積にお
いて同じく均一な膜厚とするには、周波数を2.4GHzでは
なく1.225GHzとすればこの空間の直径(第2図(A)の
R方向)を2倍とすることができる。
To make the area even larger, for example, in order to obtain the same uniform film thickness in the area four times as large as this, if the frequency is set to 1.225 GHz instead of 2.4 GHz, the diameter of this space (R direction in FIG. 2 (A)) ) Can be doubled.

本発明を具体的に用いる例としては、第3図(A)の
ような複合型パルスの場合はダイヤモンドがあげられ
る。ダイヤモンドや硬質炭素膜においてはSP3結合によ
って構成された構造が好ましいとされており、成膜中に
同時に生成されるSP2結合の除去が重要である。通常、
その為にH,0プラズマによる選択的なエッチングを行っ
ているが、本発明者らによれば、SP3結合とSP2結合の解
離エネルギーはほぼ6:5であり、第1ピークを5〜50K
W、第2ピークよりも強く例えばその5/6である4.6〜を4
6KWと設定することにより、さらに確実にSP3結合の増加
を実現した。走査型電子顕微鏡により、薄膜の断面を観
察したとごろ、粒状に結晶ダイヤモンドが成長してい
た。特にその粒の大きさは定常値(連続波)のマイクロ
波を用いた場合に比べ、5〜10倍も大きかった。またこ
れまでは成長しはじめが小さな径を持ち、厚さが増すに
つれて一部のダイヤモンドが太くなってしまうため、被
形成面との密着性が悪かった。しかし本発明のパルス波
法においては、被形成面でのダイヤモンドの太さも太
く、結晶として密着性が大きいことがモホロジ的にも推
定できた。電子線回析像をとったところ、ダイヤモンド
(単結晶粒)のスポットがみられ、平均出力電力1.5KW
またはそれ以上でダイヤモンド構造がより明確となった
被膜となった。
As a concrete example of using the present invention, diamond can be mentioned in the case of the composite pulse as shown in FIG. For diamond and hard carbon films, a structure composed of SP 3 bonds is said to be preferable, and it is important to remove SP 2 bonds that are simultaneously formed during film formation. Normal,
Therefore, selective etching with H, 0 plasma is performed. According to the present inventors, the dissociation energy of SP 3 bond and SP 2 bond is approximately 6: 5, and the first peak is 5 to 5. 50K
W, stronger than the second peak, for example, 5/6 4.6 to 4
By setting it to 6KW, the increase in SP 3 coupling was realized more reliably. Around the time when the cross section of the thin film was observed with a scanning electron microscope, crystalline diamond was growing in a granular form. In particular, the size of the grains was 5 to 10 times larger than that in the case where a microwave having a steady value (continuous wave) was used. Further, until now, the growth started to have a small diameter, and as the thickness increased, some diamonds became thicker, resulting in poor adhesion to the surface to be formed. However, in the pulse wave method of the present invention, it was also morphologically presumed that the thickness of the diamond on the surface to be formed was large and the adhesion as a crystal was large. An electron diffraction image shows that diamond (single crystal grain) spots are seen and the average output power is 1.5 KW.
Or more, it became a film in which the diamond structure became clearer.

第3図(B)や(C)において示したようなパルスと
定常連続波の複合形式は、広い分野で応用が可能であ
る。例えば第3図(B)のような同一波長の場合、マイ
クロ波同士、高周波同士といった組合せで、適切且つ必
要なエネルギー領域において、均一な付着と省電力を実
現できた。また、第3図(C)のような別波長領域にお
ける場合も、高周波領域の定常連続波に対してマイクロ
波パルスを加えたところ、非常に良好な均一付着性を得
た。このような別波長の組合せでは、マイクロ波定常連
続波への直流パルスの組合せ等、目的に応じて様々な組
合せを考えることが出来る。本発明者等によれば、それ
らによって形成可能な例としては例えば基板上に炭化珪
化物気体(メチルシラン)を用い炭化珪素の多結晶膜を
作ることができる。ホウ素化物と窒素化物とを同時に流
し、例えばジボランと窒素との反応により窒化ホウ素被
膜を作ることもできる。Bi(ビスマス)系、YBCO系、Tl
(タリウム)系、V(バナジウム,非銅)系の酸化物超
伝導材料薄膜の形成を行ってもよい。窒化アルミニュー
ム、酸化アルミニューム、ジルコニア、リン化ホウ素も
同様に作製可能である。またこれらとダイヤモンドとの
多層膜の作成も可能である。タングステン、チタン、モ
リブデンまたはそれらの珪化物の高融点導体の膜の物体
上での形成もこれら金属のハロゲン化物または水素化物
それ自体の分解反応によりまたはこれらとシランとの反
応により作ることもできる。
The composite form of pulse and standing continuous wave as shown in FIGS. 3B and 3C can be applied in a wide range of fields. For example, in the case of the same wavelength as shown in FIG. 3 (B), uniform adhesion and power saving could be realized in an appropriate and necessary energy region by combining microwaves and high frequencies. Also in the case of another wavelength region as shown in FIG. 3C, when a microwave pulse was applied to the stationary continuous wave in the high frequency region, very good uniform adhesion was obtained. In such a combination of different wavelengths, various combinations such as a combination of a DC pulse to a microwave continuous continuous wave can be considered according to the purpose. According to the present inventors, as an example which can be formed by them, for example, a silicon carbide polycrystalline film can be formed on a substrate by using a silicon carbide gas (methylsilane). It is also possible to simultaneously flow the boride and the nitride to form a boron nitride coating, for example by reacting diborane with nitrogen. Bi (bismuth) type, YBCO type, Tl
A (thalium) -based or V (vanadium, non-copper) -based oxide superconducting material thin film may be formed. Aluminum nitride, aluminum oxide, zirconia, and boron phosphide can be similarly produced. It is also possible to form a multilayer film of these and diamond. The formation of films of refractory conductors of tungsten, titanium, molybdenum or their silicides on the body can also be made by the decomposition reaction of the halides or hydrides of these metals themselves or by their reaction with silanes.

〔発明の効果〕〔The invention's effect〕

本発明におけるパルスあるいはパルスと連続波の複合
波によるプラズマ成膜は、形成された被膜の成長速度が
大きくなり、凹凸面を有する物体の側面に対しても被膜
形成が可能となった。
In the plasma film formation by the pulse or the composite wave of the pulse and the continuous wave in the present invention, the growth rate of the formed coating film is increased, and the coating film can be formed even on the side surface of the object having the uneven surface.

本発明が実験的に見出した方法を取ることにより、従
来作製されていた結晶性を少なくとも一部に有する被膜
の作製条件より幅広い条件下にて作製可能になった。ま
た従来法に比べて、大きな凹凸の表面に均一な薄膜を定
常連続波よりも低い消費エネルギーで形成させることが
可能となった。
By adopting the method experimentally found by the present invention, it becomes possible to manufacture under a wider range of conditions than the conventionally prepared conditions for forming a film having at least a portion of crystallinity. In addition, compared to the conventional method, it became possible to form a uniform thin film on the surface of large unevenness with lower energy consumption than a continuous continuous wave.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明で用いる磁場・電場相互作用を用いたマ
イクロ波CVD装置の概略を示す。 第2図はコンピュータシミュレイションによる磁場およ
び電場特性を示す。 第3図は本発明における複合パルスの概略図を示す。 1……プラズマ発生空間 4……マイクロ波発振器 5,5′……外部磁場発生器 8……ターボ分子ポンプ 10……被膜形成用物体または基板 10′……基板ホルダ 20……ハロゲンランプ 21……反射鏡
FIG. 1 shows an outline of a microwave CVD apparatus using a magnetic field / electric field interaction used in the present invention. FIG. 2 shows magnetic field and electric field characteristics by computer simulation. FIG. 3 shows a schematic diagram of the composite pulse in the present invention. 1 ... Plasma generation space 4 ... Microwave oscillator 5,5 '... External magnetic field generator 8 ... Turbo molecular pump 10 ... Object or substrate for film formation 10' ... Substrate holder 20 ... Halogen lamp 21 ... …Reflector

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−123096(JP,A) 特開 平2−102197(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-62-123096 (JP, A) JP-A-2-102197 (JP, A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】磁場を使用し、プラズマを発生させる形式
であるプラズマCVD法を用いた薄膜の作成において、パ
ルス波と定常連続波との複合波を加えることを特徴とす
る薄膜の作成方法。
1. A method of forming a thin film, which comprises adding a composite wave of a pulse wave and a standing continuous wave in the formation of a thin film using a plasma CVD method in which plasma is generated by using a magnetic field.
【請求項2】特許請求の範囲第1項において、パルス波
と定常連続波とは波長が同じであることを特徴とする薄
膜の作成方法。
2. A method for producing a thin film according to claim 1, wherein the pulse wave and the standing continuous wave have the same wavelength.
【請求項3】特許請求の範囲第1項において、パルス波
と定常連続波とは波長が異なることを特徴とする薄膜の
作成方法。
3. A method for producing a thin film according to claim 1, wherein the pulse wave and the standing continuous wave have different wavelengths.
【請求項4】特許請求の範囲第1項において、パルス波
と定常連続波とがマイクロ波であることを特徴とする薄
膜の作成方法。
4. The method for producing a thin film according to claim 1, wherein the pulse wave and the standing continuous wave are microwaves.
【請求項5】特許請求の範囲第1項において、複合波が
2段階尖端値を有していることを特徴とする薄膜の作成
方法。
5. The method for producing a thin film according to claim 1, wherein the composite wave has a two-step peak value.
【請求項6】磁場を使用し、プラズマを発生させる形式
であるプラズマCVD法を用いた薄膜の作成において、複
数の矩形パルス波を組み合わせた複合波を用い、前記複
合波は2段階尖端値を有し、かつ不連続波であることを
特徴とする薄膜の作成方法。
6. A composite wave in which a plurality of rectangular pulse waves are combined is used in the production of a thin film using a plasma CVD method in which a magnetic field is used to generate plasma, and the composite wave has a two-step peak value. A method for producing a thin film, which has a discontinuous wave.
JP2254520A 1990-09-25 1990-09-25 How to make a thin film Expired - Fee Related JP2676091B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2254520A JP2676091B2 (en) 1990-09-25 1990-09-25 How to make a thin film
KR1019910016843A KR930011413B1 (en) 1990-09-25 1991-09-25 Plasma cvd method for using pulsed waveform
US08/463,058 US5626922A (en) 1990-09-25 1995-06-05 Plasma processing method
US09/262,853 US6110542A (en) 1990-09-25 1999-03-05 Method for forming a film
US09/636,222 US6660342B1 (en) 1990-09-25 2000-08-10 Pulsed electromagnetic energy method for forming a film
US10/728,987 US7125588B2 (en) 1990-09-25 2003-12-08 Pulsed plasma CVD method for forming a film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2254520A JP2676091B2 (en) 1990-09-25 1990-09-25 How to make a thin film

Publications (2)

Publication Number Publication Date
JPH04132683A JPH04132683A (en) 1992-05-06
JP2676091B2 true JP2676091B2 (en) 1997-11-12

Family

ID=17266185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2254520A Expired - Fee Related JP2676091B2 (en) 1990-09-25 1990-09-25 How to make a thin film

Country Status (1)

Country Link
JP (1) JP2676091B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230184A1 (en) * 2018-05-29 2019-12-05 株式会社エスイー Manufacturing apparatus and manufacturing method for treating raw material with microwave surface wave plasma and obtaining product different from raw material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123096A (en) * 1985-11-21 1987-06-04 Showa Denko Kk Synthesis of diamond
JPH02102197A (en) * 1988-10-07 1990-04-13 Idemitsu Petrochem Co Ltd Method for synthesizing diamond

Also Published As

Publication number Publication date
JPH04132683A (en) 1992-05-06

Similar Documents

Publication Publication Date Title
US6660342B1 (en) Pulsed electromagnetic energy method for forming a film
US5403399A (en) Method and apparatus for vapor deposition of diamond
JPH05275345A (en) Plasma cvd method and its device
US5436036A (en) Method of synthesizing hard material
US5183685A (en) Diamond film deposition by ECR CVD using a catalyst gas
JPS6136200A (en) Method for vapor-phase synthesis of diamond
US20050196549A1 (en) Microwave enhanced CVD method and apparatus
JP2676091B2 (en) How to make a thin film
JP2995339B2 (en) How to make a thin film
JPS6184379A (en) Production of high-hardness boron nitride film
US5266363A (en) Plasma processing method utilizing a microwave and a magnetic field at high pressure
JPH0420985B2 (en)
JP3028121B2 (en) How to make diamond thin film
US6677001B1 (en) Microwave enhanced CVD method and apparatus
JPS63210010A (en) Production of carbon
JPH03174397A (en) Method and device for synthesizing rigid substance
JPS63169387A (en) Formation of thin film
JP3291274B2 (en) Carbon coating method
JPH0627342B2 (en) Carbon film formation method
JP2805506B2 (en) Diamond film synthesizer by microwave plasma CVD
JP3291273B2 (en) Carbon coating method
JPS63169386A (en) Formation of thin film
JPH0449520B2 (en)
JPH04154970A (en) Method for synthesizing cubic boron nitride
JP2739286B2 (en) Plasma processing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees