JPH04128306A - Manufacture of alloy powder incorporating rare earth metal - Google Patents

Manufacture of alloy powder incorporating rare earth metal

Info

Publication number
JPH04128306A
JPH04128306A JP24794390A JP24794390A JPH04128306A JP H04128306 A JPH04128306 A JP H04128306A JP 24794390 A JP24794390 A JP 24794390A JP 24794390 A JP24794390 A JP 24794390A JP H04128306 A JPH04128306 A JP H04128306A
Authority
JP
Japan
Prior art keywords
alloy
alloy powder
particle size
rare earth
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24794390A
Other languages
Japanese (ja)
Inventor
Katsuhiko Shiotani
塩谷 克彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP24794390A priority Critical patent/JPH04128306A/en
Publication of JPH04128306A publication Critical patent/JPH04128306A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the collapsibility of a reaction product and to make finely of particle size in a product by using Ca-Mg alloy incorporating the specific ratio of Mg in reducing agent at the time of manufacturing alloy powder incorporating rare earth metals. CONSTITUTION:Mixed material of rare earth metal oxide powder (1-50mu mean particle size), the other metal powder (Co, Fe, Ni, etc., having <=100 mesh particle size) and the reducing agent composed of Ca-Mg alloy in the range of 10-40wt.% of Mg content is heated at 600-1100 deg.C in an inert gaseous atmosphere or in vacuum. After completing reducing reaction, this is cooled in the inert gaseous atmosphere or in the vacuum, and charged into water and decantation- water pouring-decantation are repeated, and after removing a large part of Ca(OH)2, this is pickled with a dilute acid (acetic acid, hydrochloric acid, etc., and pH4-7). By this method, the rare earth metal-incorporating alloy powder having small particle size, is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、希土類金属を含む合金粉末を、還元拡散法と
称する方法を用いて製造する方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an improvement in a method for producing alloy powder containing rare earth metals using a method called a reduction diffusion method.

(従来技術) 希土類金属を含む合金粉末は、永久磁石材料、磁歪材料
、磁気センサー、磁気冷凍作業物質、光磁気記録材料、
水素吸蔵合金、超電導材料、耐熱耐食材料、高強度材料
などの用途に有用である。
(Prior art) Alloy powder containing rare earth metals can be used for permanent magnet materials, magnetostrictive materials, magnetic sensors, magnetic refrigeration materials, magneto-optical recording materials,
It is useful for applications such as hydrogen storage alloys, superconducting materials, heat-resistant and corrosion-resistant materials, and high-strength materials.

このような希土類金属を含む合金粉末の製造方法として
、還元拡散法が知られている。この方法は、希土類酸化
物粉末と、他の金属の粉末と、アルカリ金属、アルカリ
土類金属およびこれらの水素化物から選ばれる少なくと
も1種(還元剤)とから成る混合物に、アルカリ金属塩
化物またはアルカリ土類金属塩化物を添加し、不活性ガ
ス雰囲気中または真空中で加熱を行うものである。この
加熱によって、希土類酸化物が、アルカリ金属、アルカ
リ土類金属あるいはこれらの水素化物の融体もしくは蒸
気に接触し、該希土類金属酸化物が還元されて生成した
希土類金属が合金成分である他の金属の粉末粒子中に拡
散され、所望組成の合金粉末が得られるのである。この
場合、反応生成物中に未反応成分として含まれるアルカ
リ金属、アルカリ土類金属またはこれらの水素化物、お
よび副生したこれらアルカリ金属等の酸化物、ならびに
未反応のアルカリ金属塩化物またはアルカリ土類金属塩
化物等は、反応生成物を冷却後、水中に投入した後、必
要により酸で洗浄することにより(即ち、湿式処理を行
う)除去される(特開昭61−295308号公報等参
照)。
A reduction diffusion method is known as a method for producing alloy powder containing such rare earth metals. In this method, alkali metal chloride or alkali metal chloride or An alkaline earth metal chloride is added and heated in an inert gas atmosphere or vacuum. By this heating, the rare earth oxide comes into contact with the melt or vapor of the alkali metal, alkaline earth metal, or their hydride, and the rare earth metal oxide is reduced and the rare earth metal produced is used as an alloy component. It is diffused into metal powder particles to obtain an alloy powder with a desired composition. In this case, alkali metals, alkaline earth metals, or their hydrides contained as unreacted components in the reaction product, oxides of these alkali metals, etc. as by-products, and unreacted alkali metal chlorides or alkaline earth metals, etc. Metal chlorides, etc. are removed by cooling the reaction product, pouring it into water, and washing it with acid (i.e., wet treatment) if necessary (see JP-A No. 61-295308, etc.). ).

この還元拡散法は、希土類金属原料として比較的安価な
酸化物を直接使用すること、溶解鋳造工程が不要である
こと、添加された前記アルカリ金属塩化物およびアルカ
リ土類金属塩化物の作用により、前記湿式処理に際して
、塊状の反応生成物の崩壊性が高く、目的粒度の合金粉
末を容易に製造することができること等の点で経済的に
優れた方法である。
This reduction diffusion method uses relatively inexpensive oxides directly as rare earth metal raw materials, does not require a melting and casting process, and has the effect of the added alkali metal chlorides and alkaline earth metal chlorides. This is an economically superior method in that the bulk reaction product is highly disintegrated during the wet treatment, and alloy powder with a desired particle size can be easily produced.

(発明が解決しようとする課題) 然しながら、反応生成物の崩壊性をさらに高くし、製品
の粒度を細かくすることが可能な製造方法が望まれてい
る。
(Problems to be Solved by the Invention) However, there is a need for a manufacturing method that can further increase the disintegrability of the reaction product and reduce the particle size of the product.

即ち、本発明の目的は、上述した還元拡散法において、
CaC1,等のアルカリ金属塩化物やアルカリ土類金属
塩化物等を使用せずに、湿式処理の際の塊状生成物の崩
壊性をさらに高め、粒度の細かい希土類金属含有合金粉
末を得ることができる製造方法を提供することにある。
That is, the object of the present invention is to provide the above-mentioned reduction diffusion method,
Without using alkali metal chlorides such as CaC1, alkaline earth metal chlorides, etc., it is possible to further improve the disintegration of lumpy products during wet processing and obtain rare earth metal-containing alloy powder with fine particle size. The purpose is to provide a manufacturing method.

(課題を解決するための手段) 本発明は、還元剤として、マグネシウム含量が一定の範
囲にあるCa −Mg合金を用いることによって、上記
目的を達成することに成功したものである。
(Means for Solving the Problems) The present invention has succeeded in achieving the above object by using a Ca--Mg alloy having a magnesium content within a certain range as a reducing agent.

本発明によれば、希土類金属酸化物粉末と、他の金属粉
末と、還元剤との混合物とを、不活性ガス雰囲気中また
は真空中で加熱し、反応生成混合物を湿式処理すること
から成る希土類金属を含む合金粉末の製造方法において
、 前記還元剤として、Mg含有量が10〜40重量%の範
囲にあるCa −Mg合金を用いることを特徴とする製
造方法が提供される。
According to the present invention, rare earth metal oxide powder, which consists of heating a mixture of rare earth metal oxide powder, other metal powder and a reducing agent in an inert gas atmosphere or in vacuum, and wet-processing the reaction product mixture. There is provided a method for producing an alloy powder containing metal, characterized in that a Ca--Mg alloy having an Mg content in the range of 10 to 40% by weight is used as the reducing agent.

本発明において、希土類金属には、ランタン(La)、
セリウム(Ce)、プラセオジウム(Pr)、ネオジム
(Nd)、サマリウム(Sm)、ユウロピウム(Eu)
、ガトロニウム(Gd)、テルビウム(Tb)、ジスプ
ロシウム(Dy)、ホルミウム(Ho)、エルビウム(
Er)、ツリウム(T+n)、イッテルビウム(Yb)
、ルテチウム(Lu)、プロメチウム(Pm)、イツト
リウム(Y)およびスカンジウム(Sc)が包含される
In the present invention, rare earth metals include lanthanum (La),
Cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu)
, Gatronium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (
Er), thulium (T+n), ytterbium (Yb)
, lutetium (Lu), promethium (Pm), yttrium (Y) and scandium (Sc).

本発明において使用される希土類金属酸化物粉末は、上
記金属の何れの酸化物であってもよく、また1種単独あ
るいは2種以上の組み合わせであってもよい。また希土
類金属酸化物粉末の粒度は特に限定されないが、平均粒
度(フィッシャー・サブシーブ・サイザー法(Fsss
)、以下同じ)が、1〜50μ−の範囲にあることが好
ましい。例えば50μmよりも大きい粒度を有する場合
には、後述する他の金属粉末との混合性が悪化し、均一
な組成の合金粒子を得ることが困難となる。
The rare earth metal oxide powder used in the present invention may be any of the oxides of the above metals, and may be used alone or in combination of two or more. Furthermore, the particle size of the rare earth metal oxide powder is not particularly limited, but the average particle size (Fischer subsieve sizer method (Fsss
), hereinafter the same) is preferably in the range of 1 to 50 μ-. For example, if the particle size is larger than 50 μm, the miscibility with other metal powders described below deteriorates, making it difficult to obtain alloy particles with a uniform composition.

血夏金員則末 本発明方法において使用される他の金属粉末は、前記希
土類金属とともに目的とする合金を形成する他方の合金
成分であり、目的とする合金組成に応じて1種または2
種以上の金属粉末が用いられる。この金属粉末の種類は
、後述する加熱温度範囲(900〜1300℃)におい
て難揮発性であれば特に制限されず、具体例としては、
コバル) (Co)、鉄(Fe)、ニッケル(Ni)、
マンガン(Mn)、銅(Cu)、ケイ素(Si)、アル
ミニウム(AI)、モリブデン(MO)、クロム(Cr
)、ボロン(B)、ジルコニウム(Zr)、ハフニウム
(Hf)、ニオビウム(Nb)、タンタル(Ta)、チ
タン(Ti)、マグネシウム(Mg)、バナジウム(V
)、タングステン作)等が挙げられる。
The other metal powder used in the method of the present invention is the other alloy component that forms the target alloy together with the rare earth metal, and may be one or two types depending on the target alloy composition.
More than one type of metal powder is used. The type of this metal powder is not particularly limited as long as it is hardly volatile in the heating temperature range (900 to 1300°C) described below, and specific examples include:
Cobal) (Co), iron (Fe), nickel (Ni),
Manganese (Mn), copper (Cu), silicon (Si), aluminum (AI), molybdenum (MO), chromium (Cr
), boron (B), zirconium (Zr), hafnium (Hf), niobium (Nb), tantalum (Ta), titanium (Ti), magnesium (Mg), vanadium (V
), tungsten-made), etc.

また他の金属粉末の粒度は特に限定されないが、−船釣
には100メツシユ以下(タイラー基準)であることが
好適であり、さらに微細な合金粉末を製造しようとする
場合には、目標平均粒度の172以下の平均粒度を有す
る粉末を使用することが望ましい。
The particle size of the other metal powders is not particularly limited, but - for boat fishing, it is preferable to have a particle size of 100 mesh or less (Tyler standard), and when producing even finer alloy powder, the target average particle size is It is desirable to use a powder having an average particle size of 172 or less.

また上記の他の金属は、通常、金属単体の形で使用され
るが、その一部が酸化物または塩化物であってもよく、
さらに合金成分としての該他の金属成分が少量である場
合には、その全量を酸化物または塩化物として使用する
ことも可能である。
In addition, the other metals mentioned above are usually used in the form of simple metals, but some of them may be oxides or chlorides.
Furthermore, when the other metal component as an alloy component is in a small amount, it is also possible to use the entire amount as an oxide or chloride.

なお、本発明において、前述した希土類金属酸化物粉末
および他の金属粉末の使用量は、目的とする合金組成に
応じて適宜定められる。
In the present invention, the amounts of the rare earth metal oxide powder and other metal powders mentioned above are appropriately determined depending on the intended alloy composition.

1元剋 本発明方法においては、還元剤として、Mg含有量が1
0〜40重量%の範囲にあるCa −Mg合金が使用さ
れる。これにより還元反応温度を著しく低下させること
が可能となり、また反応温度が低下したことによる反応
時の焼結抑制効果の結果として、湿式処理の際の塊状反
応生成物の崩壊性を大きく向上させることができ、粒度
の細かい希土類金属を含む合金粉末を製造できる。この
ような効果は、従来のように金属Ca (例えば純度9
5重量%以上)または金属Mg、あるいはこれらの単な
る混合物を還元剤として用いた場合には達成されない。
In the method of the present invention, Mg content is 1 as a reducing agent.
A Ca-Mg alloy in the range 0-40% by weight is used. This makes it possible to significantly lower the reduction reaction temperature, and as a result of the effect of suppressing sintering during the reaction due to the lowered reaction temperature, the disintegration of the bulk reaction product during wet processing is greatly improved. It is possible to produce alloy powder containing rare earth metals with fine grain size. Such an effect is caused by metal Ca (for example, purity 9
5% by weight or more) or metallic Mg, or a mere mixture thereof, is not achieved when using as a reducing agent.

これは、純金属Caおよび純金属Mgは、融点がそれぞ
れ842°C,650°Cであるのに対して、Mg含有
量が10〜40重量%の範囲にあるCa −Mg合金は
、加熱に際しての液相出現温度が445℃と比較的低温
であり、また固相消失温度が650℃以下である。
This is because pure metal Ca and pure metal Mg have melting points of 842°C and 650°C, respectively, whereas Ca-Mg alloys with an Mg content in the range of 10 to 40% by weight have a melting point of 842°C and 650°C, respectively. The liquid phase appearance temperature is relatively low at 445°C, and the solid phase disappearance temperature is 650°C or lower.

従って、この合金を還元剤として用いると、従来より低
い温度頭載においても還元反応が進行し、しかも高温程
著しくなる反応生成物の焼結を著しく低減させることが
可能となるのである。例えば金属Caと金属Mgとの単
なる混合物を還元剤として用いた場合には、該還元剤は
、反応に際して金属粉や酸化希土類金属粉等の混合粉中
に分散して存在するために、少なくとも融点の低い金属
Mgの融点(650°C)までは融解せず、還元反応を
促進させることができない。
Therefore, when this alloy is used as a reducing agent, the reduction reaction proceeds even at a lower initial temperature than before, and it is possible to significantly reduce sintering of the reaction product, which becomes more pronounced at higher temperatures. For example, when a simple mixture of metal Ca and metal Mg is used as a reducing agent, the reducing agent exists dispersed in a mixed powder of metal powder, oxidized rare earth metal powder, etc. during the reaction, so that at least the melting point It does not melt down to the low melting point of metal Mg (650°C), and the reduction reaction cannot be promoted.

また上記Ca −Mg合金において、Mg含有量が10
重量%未満であると、445℃で融解が始まるものの、
比較的高温まで固液共存の状態が続くのみならず、生成
する液相量が比較的少量であるため、反応生成物の崩壊
性及び得られる合金粉末の粒度は、金属Ca等を還元剤
として用いていた従来法と同程度となるに過ぎない。M
g含有量が40重量%を越えたCa−Mg合金を還元剤
として用いた場合には、還元力が不十分となり、希土類
金属酸化物の還元を有効に行うことが困難となる。
Further, in the above Ca-Mg alloy, the Mg content is 10
If it is less than % by weight, melting starts at 445°C,
Not only does the state of solid-liquid coexistence continue up to relatively high temperatures, but also the amount of liquid phase produced is relatively small. It is only about the same level as the conventional method used. M
If a Ca-Mg alloy with a g content exceeding 40% by weight is used as a reducing agent, the reducing power will be insufficient and it will be difficult to effectively reduce rare earth metal oxides.

本発明方法において使用される上記Ca −Mg合金は
、如何なる形状を有していてもよいが、金属粉と希土類
金属酸化物粉との混合粉との接触部分が大となるほうが
還元反応に有利であり、−i的には、5閣角以下の粒子
であることが望ましい。またその配合量は、希土類酸化
物粉を還元するのに必要な理論量の1〜3倍とされる。
The Ca-Mg alloy used in the method of the present invention may have any shape, but it is more advantageous for the reduction reaction to have a larger contact area with the mixed powder of metal powder and rare earth metal oxide powder. In terms of -i, it is desirable that the particle size is 5 square meters or less. Further, the blending amount is 1 to 3 times the theoretical amount required to reduce the rare earth oxide powder.

1元反息 本発明方法においては、上述した希土類金属酸化物粉、
他の金属粉及び還元剤との混合物を、不活性ガス雰囲気
中あるいは真空中で加熱し、還元を行う。
In the method of the present invention, the above-mentioned rare earth metal oxide powder,
A mixture of other metal powder and a reducing agent is heated in an inert gas atmosphere or in a vacuum to perform reduction.

用いられる不活性ガスとしては、アルゴン、窒素等を挙
げることができる。
Examples of the inert gas used include argon, nitrogen, and the like.

加熱温度は、600〜1100°C1特ニア00〜90
0°Cの範囲が好ましい。特に本発明においては、この
加熱温度を低(することが可能であり、例えば、700
〜800℃のような低温でも希土類金属酸化物の還元反
応が有効に進行し、反応生成物の焼結を著しく低減させ
ることが可能となる。これは本発明の顕著な利点である
。加熱時間は特に制限されず、均一な合金粉末を得るた
めに必要な時間、加熱を行えばよい。
Heating temperature is 600-1100°C1 special 00-90
A range of 0°C is preferred. In particular, in the present invention, this heating temperature can be lowered (for example, 700
The reduction reaction of the rare earth metal oxide proceeds effectively even at a low temperature of ~800°C, making it possible to significantly reduce sintering of the reaction product. This is a significant advantage of the present invention. The heating time is not particularly limited, and heating may be performed for a time necessary to obtain a uniform alloy powder.

上記の還元反応により得られた反応混合物は優れた崩壊
性を示すが、この崩壊性は、例えば以下の湿式処理後に
得られた合金粉末中に、含まれている35メツシユ(タ
イラー基準)以上の粒子の量によって評価される。即ち
、35メツシユ以上の粒子割合が多いほど崩壊性は悪く
、また35メツシユ以下の粉体の平均粒径が小さいほど
崩壊性が良好である。
The reaction mixture obtained by the above reduction reaction exhibits excellent disintegration properties, but this disintegration property is, for example, greater than 35 meshes (Tyler standard) contained in the alloy powder obtained after the following wet treatment. Evaluated by the amount of particles. That is, the higher the proportion of particles having a mesh size of 35 or more, the worse the disintegration properties are, and the smaller the average particle diameter of the powder having a mesh size of 35 meshes or less, the better the disintegration properties.

1式処理 還元反応終了後は、不活性ガス雰囲気中あるいは真空中
で冷却が行われ、次いで反応混合物は水中に投入される
After completion of the one-stage reduction reaction, cooling is performed in an inert gas atmosphere or in vacuum, and then the reaction mixture is poured into water.

この反応混合物は多孔質であり、金属カルシウムを含む
合金粒子である。従って、水中への投入により、該反応
混合物は、金属カルシウムと水との反応によるH2発生
を伴って容易に崩壊し、スラリー状態となる。
The reaction mixture is porous and alloy particles containing metallic calcium. Therefore, when put into water, the reaction mixture easily collapses into a slurry state with the generation of H2 due to the reaction between metallic calcium and water.

スラリーの上部は、生成Ca (01() zが合金粒
子と分離してCa (OH) z懸濁液となっており、
デカンテーション−注水−デカンチージョンの繰り返し
によって、Ca (OH) zの大部分を製品合金粉末
から除去する。
In the upper part of the slurry, the produced Ca(01()z is separated from the alloy particles and becomes a Ca(OH)z suspension.
By repeating decantation-water injection-decantation, most of the Ca (OH) z is removed from the product alloy powder.

濾過によって回収された合金粉末は、必要に応じて希酸
による洗浄に付され、合金粉末中に微量に存在するCa
 (OH) zおよび合金酸化物の除去が行われる。例
えば、酢酸、塩酸等を用いて一般にpH4〜7で洗浄を
行う。ただし、このpHの設定は、対象とする合金粉末
の種類によって異なり、例えばFeを含有する合金粉末
においては、Feが酸に溶出し易いので、処理pHを5
〜7、特に5.5〜6.5の範囲とすることが好ましい
The alloy powder recovered by filtration is washed with dilute acid as necessary to remove the trace amounts of Ca present in the alloy powder.
(OH) z and alloy oxide removal is performed. For example, washing is generally performed at a pH of 4 to 7 using acetic acid, hydrochloric acid, or the like. However, this pH setting differs depending on the type of alloy powder to be treated. For example, in alloy powder containing Fe, Fe easily dissolves into acid, so the treatment pH is set to 5.
The range is preferably from 5.5 to 6.5, particularly from 5.5 to 6.5.

酸洗浄後の合金粉末は、アルコール、アセトン等の有機
溶剤による洗浄によって脱水され、次いで真空乾燥によ
り、有機溶剤が除去され、最終製品とされる。
The alloy powder after acid washing is dehydrated by washing with an organic solvent such as alcohol or acetone, and then the organic solvent is removed by vacuum drying to obtain a final product.

(実施例) 止較班土 平均粒径5μmのNdzOi粉末(純度99.9重量%
)400 g 、粒度325メツシユ以下のFe粉末(
純度99.9重量%)  591g、及び還元剤として
粒度200メツシユ以下の金属Ca粒(純度99重量%
)  214gを混合し、ステンレス鋼製容器中Arガ
ス気流下で加熱し、1000°Cまで昇温し、この温度
で3時間保持した。
(Example) NdzOi powder with an average particle size of 5 μm (purity 99.9% by weight)
) 400 g, Fe powder with a particle size of 325 mesh or less (
591 g (purity: 99.9% by weight), and metallic Ca particles (purity: 99% by weight) with a particle size of 200 mesh or less as a reducing agent.
) was mixed and heated in a stainless steel container under a stream of Ar gas, the temperature was raised to 1000°C, and this temperature was maintained for 3 hours.

常温まで冷却した後、反応生成混合物を1時間攪拌した
後デカンテーションした。上記懸濁物生成−攪拌−デカ
ンチージョンの操作を更に20回繰り返した。デカンテ
ーシヨン、ろ過して得られた合金粉末をエタノールで洗
浄して水分を除去した後に真空乾燥した。
After cooling to room temperature, the reaction product mixture was stirred for 1 hour and then decanted. The above operations of forming a suspension, stirring, and decanting were repeated 20 times. The alloy powder obtained by decantation and filtration was washed with ethanol to remove moisture, and then vacuum-dried.

得られた合金粉末を35メツシユ篩で篩分けして、反応
混合物の崩壊性の評価を行った。その結果、篩に残った
合金粉末は、全供篩粉末量の4.2重量%であった。
The resulting alloy powder was sieved through a 35 mesh sieve to evaluate the disintegrability of the reaction mixture. As a result, the alloy powder remaining on the sieve was 4.2% by weight of the total amount of sieved powder.

また、その平均粒径は21.7μmであり、成分組成は
、Nd: 33.8重量%、Fe: 64.7重量%、
B :1.2重量%、Ca:0.1重量%、O:0.2
重量%であった。
The average particle size is 21.7 μm, and the component composition is Nd: 33.8% by weight, Fe: 64.7% by weight,
B: 1.2% by weight, Ca: 0.1% by weight, O: 0.2
% by weight.

またNdの還元率は、98重量%であった。Further, the reduction rate of Nd was 98% by weight.

尚、還元率は下記式で算出される(以下同様)以上の結
果を第1表および第2表に示す。
Incidentally, the reduction rate is calculated by the following formula (the same applies hereafter), and the above results are shown in Tables 1 and 2.

1較ML 反応温度を900℃とした以外は、比較例1と同様にし
て合金粉末の製造を行った。崩壊性等の結果を第1表及
び第2表に示す。
Comparative ML An alloy powder was produced in the same manner as in Comparative Example 1 except that the reaction temperature was 900°C. The results of disintegration properties etc. are shown in Tables 1 and 2.

止較貫主 反応温度を800°Cとした以外は、比較例1と同様に
して合金粉末の製造を行った。崩壊性等の結果を第1表
及び第2表に示す。
An alloy powder was produced in the same manner as in Comparative Example 1 except that the main reaction temperature was 800°C. The results of disintegration properties etc. are shown in Tables 1 and 2.

止較■土 反応温度を1000℃とし、還元剤として粒度4メツシ
ユ以下の金属Ca粒175.5 gおよび粒度4メツシ
ユ以下の金属Mg粒(純度99重量%)38.5gの混
合物を用いた以外は、比較例1と同様にして合金粉末の
製造を行った。崩壊性等の結果を第1表及び第2表に示
す。
Comparison ■ The soil reaction temperature was 1000°C, and a mixture of 175.5 g of metallic Ca grains with a particle size of 4 mesh or less and 38.5 g of metallic Mg particles (purity 99% by weight) with a particle size of 4 mesh or less was used as a reducing agent. An alloy powder was produced in the same manner as in Comparative Example 1. The results of disintegration properties etc. are shown in Tables 1 and 2.

此l■1影 反応温度を900°Cとした以外は、比較例4と同様に
して合金粉末の製造を行った。崩壊性等の結果を第1表
及び第2表に示す。
An alloy powder was produced in the same manner as in Comparative Example 4, except that the reaction temperature was 900°C. The results of disintegration properties etc. are shown in Tables 1 and 2.

北較尉旦 反応温度を800°Cとし、還元剤として粒度4メツシ
ユ以下の金属Ca粒175.5gおよび粒度4メツシユ
以下の金属Mg粒(純度99重量%)38.5gの混合
物を用いた以外は、比較例1と同様にして合金粉末の製
造を行った。崩壊性等の結果を第1表及び第2表に示す
The reaction temperature was 800°C, and a mixture of 175.5 g of Ca particles with a particle size of 4 mesh or less and 38.5 g of Mg particles (purity 99% by weight) with a particle size of 4 mesh or less was used as a reducing agent. An alloy powder was produced in the same manner as in Comparative Example 1. The results of disintegration properties etc. are shown in Tables 1 and 2.

裏施■上 反応温度を900°Cとし、還元剤として粒度4メツシ
ユ以下のCa −Mg合金(Mg含量10重量%)21
4gを用いた以外は比較例1と同様にして合金粉末の製
造を行った。崩壊性等の結果を第1表及び第2表に示す
On the back side, the reaction temperature was 900°C, and a Ca-Mg alloy (Mg content 10% by weight) with a particle size of 4 mesh or less was used as a reducing agent.
An alloy powder was produced in the same manner as in Comparative Example 1 except that 4 g was used. The results of disintegration properties etc. are shown in Tables 1 and 2.

なお、上記Ca −Mg合金は、以下のようにして合成
した。
In addition, the said Ca-Mg alloy was synthesize|combined as follows.

粒状金属Ca (純度99.9重量%、4メツシユ以下
)及び板状金属Mg (純度99.9重量%)を原料と
し、所定の割合に混合したもの約200 gをステンレ
ス(SO5−304)製容器に入れ、これを900°C
に昇温した電気炉中に大気雰囲気で保持した。数十分後
に容器内容物が溶解し、これを、予め900℃程度に加
温しておいたステンレス製棒で攪拌した後、常温の鋼板
上に少量ずつ滴下し、冷却した。固化したCa −Mg
合金は、ニッパを使用して粒度が4メツシユ以下になる
ように調整した。
Approximately 200 g of granular metal Ca (purity 99.9% by weight, 4 mesh or less) and plate metal Mg (purity 99.9% by weight) mixed in a predetermined ratio are made of stainless steel (SO5-304). Place it in a container and heat it to 900°C.
The sample was kept in an electric furnace at a temperature raised to 100% in an atmospheric atmosphere. After several tens of minutes, the contents of the container were dissolved, and after stirring with a stainless steel rod previously heated to about 900° C., the solution was dropped little by little onto a steel plate at room temperature and cooled. Solidified Ca-Mg
The alloy was adjusted to have a grain size of 4 mesh or less using nippers.

災隻尉又 反応温度を800°Cとした以外は、実施例1と同様に
して合金粉末の合成を行った。崩壊性等の結果を第1表
及び第2表に示す。
An alloy powder was synthesized in the same manner as in Example 1, except that the reaction temperature was 800°C. The results of disintegration properties etc. are shown in Tables 1 and 2.

実施■主 反応温度を700°Cとした以外は、実施例1と同様に
して合金粉末の合成を行った。崩壊性等の結果を第1表
及び第2表に示す。
Implementation (2) An alloy powder was synthesized in the same manner as in Example 1 except that the main reaction temperature was 700°C. The results of disintegration properties etc. are shown in Tables 1 and 2.

実施■土 還元剤として粒度4メツシユ以下のCa −Mg合金(
Mg含量18重量%)214 gを用いた以外は実施例
1と同様にして合金粉末の製造を行った。崩壊性等の結
果を第1表及び第2表に示す。
Implementation ■ Ca-Mg alloy (with a particle size of 4 mesh or less) as a soil reducing agent.
An alloy powder was produced in the same manner as in Example 1 except that 214 g (Mg content: 18% by weight) was used. The results of disintegration properties etc. are shown in Tables 1 and 2.

1施に 反応温度を800℃とした以外は、実施例4と同様にし
て合金粉末の合成を行った。崩壊性等の結果を第1表及
び第2表に示す。
An alloy powder was synthesized in the same manner as in Example 4, except that the reaction temperature was 800° C. in the first run. The results of disintegration properties etc. are shown in Tables 1 and 2.

1施1 反応温度を700°Cとした以外は、実施例4と同様に
して合金粉末の合成を行った。崩壊性等の結果を第1表
及び第2表に示す。
Example 1 An alloy powder was synthesized in the same manner as in Example 4, except that the reaction temperature was 700°C. The results of disintegration properties etc. are shown in Tables 1 and 2.

実施尉1 反応温度を600″Cとした以外は、実施例4と同様に
して合金粉末の合成を行った。崩壊性等の結果を第1表
及び第2表に示す。
Example 1 An alloy powder was synthesized in the same manner as in Example 4 except that the reaction temperature was 600''C. The results of disintegration properties etc. are shown in Tables 1 and 2.

尖胤皿主 還元剤として粒度4メツシユ以下のCa −Mg合金(
Mg含量40重量%)214 gを用いた以外は実施例
1と同様にして合金粉末の製造を行った。崩壊性等の結
果を第1表及び第2表に示す。
A Ca-Mg alloy with a particle size of 4 mesh or less (
An alloy powder was produced in the same manner as in Example 1 except that 214 g (Mg content: 40% by weight) was used. The results of disintegration properties etc. are shown in Tables 1 and 2.

笑隻尉工 反応温度を800°Cとした以外は、実施例8と同様に
して合金粉末の合成を行った。崩壊性等の結果を第1表
及び第2表に示す。
An alloy powder was synthesized in the same manner as in Example 8, except that the reaction temperature was 800°C. The results of disintegration properties etc. are shown in Tables 1 and 2.

1較■1 還元剤として粒度4メツシユ以下のCa−Mg合金(M
g含量50重量%)214 gを用いた以外は実施例1
と同様にして合金粉末の製造を行った。崩壊性等の結果
を第1表及び第2表に示す。
1 Comparison ■1 Ca-Mg alloy with a particle size of 4 mesh or less (M
Example 1 except that 214 g (g content 50% by weight) was used.
An alloy powder was produced in the same manner as above. The results of disintegration properties etc. are shown in Tables 1 and 2.

止較■主 反応温度を800°Cとした以外は、比較例7と同様に
して合金粉末の合成を行った。崩壊性等の結果を第1表
及び第2表に示す。
Comparison (2) An alloy powder was synthesized in the same manner as in Comparative Example 7, except that the main reaction temperature was 800°C. The results of disintegration properties etc. are shown in Tables 1 and 2.

止較■工 還元剤として粒度4メツシユ以下のCa −Mg合金(
Mg含量5重量%)214 gを用いた以外は実施例1
と同様にして合金粉末の製造を行った。崩壊性等の得ら
れた結果を第1表及び第2表に示す。
Comparison ■ Ca-Mg alloy (with a particle size of 4 mesh or less) as a reducing agent
Example 1 except that 214 g (Mg content 5% by weight) was used.
An alloy powder was produced in the same manner as above. The results obtained for disintegration properties etc. are shown in Tables 1 and 2.

第1表 (1)* : Fccd去による。以下同じ。Table 1 (1) *: Due to Fccd removal. same as below.

第2表 此1削A 平均粒径5μmの5111zO3粉末(純度99.9重
量%)415 g 、粒度250メツシユ以下のCO粉
末(純度99.9重量%)  700g、粒度200メ
ツシユ以下の金属Ca粒(純度99重量%)  214
gを混合し、ステンレス鋼製容器中Arガス気流下で加
熱し、1100°Cまで昇温し、この温度で3時間保持
した。常温まで冷却した後、比較例1と同様にして合金
粉末を合成した。崩壊性等の結果を第3表及び第4表に
示す。
Table 2: 1 cutting A 415 g of 5111zO3 powder with an average particle size of 5 μm (purity 99.9% by weight), 700 g of CO powder (purity 99.9% by weight) with a particle size of 250 mesh or less, metallic Ca particles with a particle size of 200 mesh or less (Purity 99% by weight) 214
g were mixed and heated in a stainless steel container under an Ar gas flow to raise the temperature to 1100°C and maintain this temperature for 3 hours. After cooling to room temperature, alloy powder was synthesized in the same manner as in Comparative Example 1. The results of disintegration properties etc. are shown in Tables 3 and 4.

1較1 反応温度を1000℃とした以外は比較例10と同様に
して合金粉末の製造を行った。崩壊性等の結果を第3表
及び第4表に示す。
Comparison 1 An alloy powder was produced in the same manner as Comparative Example 10 except that the reaction temperature was 1000°C. The results of disintegration properties etc. are shown in Tables 3 and 4.

止較燃肥 反応温度を900°Cとした以外は比較例1Oと同様に
して合金粉末の製造を行った。崩壊性等の結果を第3表
及び第4表に示す。
An alloy powder was produced in the same manner as in Comparative Example 1O, except that the stop combustion fertilizer reaction temperature was 900°C. The results of disintegration properties etc. are shown in Tables 3 and 4.

止較±旦 反応温度を800″Cとした以外は比較例10と同様に
して合金粉末の製造を行った。崩壊性等の結果を第3表
及び第4表に示す。
An alloy powder was produced in the same manner as in Comparative Example 10, except that the reaction temperature was 800''C at the time of stopping the comparison.The results of the disintegrability etc. are shown in Tables 3 and 4.

止較尉■ 還元剤として粒度4メツシユ以下の金属Ca粒175.
5 gおよび粒度4メツシユ以下の金属Mg粒38.5
gの混合物を用いた以外は、比較例10と同様にして合
金粉末の製造を行った。崩壊性等の結果を第3表及び第
4表に示す。
■ Metallic Ca grains with a particle size of 4 mesh or less as a reducing agent 175.
5 g and particle size of 4 mesh or less metal Mg grains 38.5
An alloy powder was produced in the same manner as in Comparative Example 10, except that a mixture of g was used. The results of disintegration properties etc. are shown in Tables 3 and 4.

1較拠■ 反応温度を1000°Cとした以外は比較例14と同様
にして合金粉末の製造を行った。崩壊性等の結果を第3
表及び第4表に示す。
1 Comparison ■ An alloy powder was produced in the same manner as in Comparative Example 14 except that the reaction temperature was 1000°C. The results of disintegration etc.
It is shown in Table and Table 4.

1較■■ 反応温度を900℃とした以外は比較例14と同様にし
て合金粉末の製造を行った。崩壊性等の結果を第3表及
び第4表に示す。
Comparison 1 ■■ An alloy powder was produced in the same manner as in Comparative Example 14 except that the reaction temperature was 900°C. The results of disintegration properties etc. are shown in Tables 3 and 4.

1較filZ 反応温度を800°Cとした以外は比較例14と同様に
して合金粉末の製造を行った。崩壊性等の結果を第3表
及び第4表に示す。
Comparison filZ An alloy powder was produced in the same manner as in Comparative Example 14 except that the reaction temperature was 800°C. The results of disintegration properties etc. are shown in Tables 3 and 4.

実】l引A 反応温度を1000″Cとし、還元剤として粒度4メツ
シユ以下のCa −Mg合金(Mg含量10重量%)2
14gを用いた以外は比較例10と同様にして合金粉末
の製造を行った。崩壊性等の結果を第3表及び第4表に
示す。
[Reaction] A: The reaction temperature was 1000''C, and a Ca-Mg alloy (Mg content 10% by weight) with a particle size of 4 mesh or less was used as a reducing agent.
An alloy powder was produced in the same manner as Comparative Example 10 except that 14 g was used. The results of disintegration properties etc. are shown in Tables 3 and 4.

災隻桝U 反応温度を900″Cとした以外は実施例10と同様に
して合金粉末の製造を行った。崩壊性等の結果を第3表
及び第4表に示す。
An alloy powder was produced in the same manner as in Example 10, except that the reaction temperature was 900''C.The results of disintegration properties etc. are shown in Tables 3 and 4.

尖隻■肥 反応温度を800°Cとした以外は実施例10と同様に
して合金粉末の製造を行った。崩壊性等の結果を第3表
及び第4表に示す。
An alloy powder was produced in the same manner as in Example 10 except that the fertilization reaction temperature was 800°C. The results of disintegration properties etc. are shown in Tables 3 and 4.

夫隻m 還元剤として粒度4メツシユ以下のCa −Mg合金(
Mg含量18重量%)214gを用いた以外は実施例1
0と同様にして合金粉末の製造を行った。崩壊性等の結
果を第3表及び第4表に示す。
Husband: Ca-Mg alloy with a particle size of 4 mesh or less as a reducing agent (
Example 1 except that 214 g of Mg content (18% by weight) was used.
An alloy powder was produced in the same manner as in Example 0. The results of disintegration properties etc. are shown in Tables 3 and 4.

裏隻m 反応温度を900″Cとした以外は実施例13と同様に
して合金粉末の製造を行った。崩壊性等の結果を第3表
及び第4表に示す。
Urasen m An alloy powder was produced in the same manner as in Example 13 except that the reaction temperature was 900''C. The results of disintegration properties etc. are shown in Tables 3 and 4.

実施U 反応温度を800°Cとした以外は実施例13と同様に
して合金粉末の製造を行った。崩壊性等の結果を第3表
及び第4表に示す。
Example U An alloy powder was produced in the same manner as in Example 13 except that the reaction temperature was 800°C. The results of disintegration properties etc. are shown in Tables 3 and 4.

尖旌尉■ 反応温度を700°Cとした以外は実施例13と同様に
して合金粉末の製造を行った。崩壊性等の結果を第3表
及び第4表に示す。
An alloy powder was produced in the same manner as in Example 13 except that the reaction temperature was 700°C. The results of disintegration properties etc. are shown in Tables 3 and 4.

裏胤拠U 還元剤として粒度4メツシユ以下のCa −Mg合金(
Mg含量40重量%)214 gを用いた以外は実施例
10と同様にして合金粉末の製造を行った。崩壊性等の
結果を第3表及び第4表に示す。
Back source U Ca-Mg alloy with particle size of 4 mesh or less as a reducing agent (
An alloy powder was produced in the same manner as in Example 10 except that 214 g (Mg content: 40% by weight) was used. The results of disintegration properties etc. are shown in Tables 3 and 4.

実施■」 反応温度を900°Cとした以外は実施例17と同様に
して合金粉末の製造を行った。崩壊性等の結果を第3表
及び第4表に示す。
Implementation ① An alloy powder was produced in the same manner as in Example 17 except that the reaction temperature was 900°C. The results of disintegration properties etc. are shown in Tables 3 and 4.

、L較拠旦 還元剤として粒度4メツシユ以下のCa −Mg合金(
Mg含量50重量%)214 gを用いた以外は実施例
10と同様にして合金粉末の製造を行った。崩壊性等の
結果を第3表及び第4表に示す。
, a Ca-Mg alloy with a particle size of 4 mesh or less (
An alloy powder was produced in the same manner as in Example 10 except that 214 g (Mg content: 50% by weight) was used. The results of disintegration properties etc. are shown in Tables 3 and 4.

此藍尉廿 反応温度を900°Cとした以外は比較例18と同様に
して合金粉末の製造を行った。崩壊性等の結果を第3表
及び第4表に示す。
An alloy powder was produced in the same manner as in Comparative Example 18 except that the reaction temperature was 900°C. The results of disintegration properties etc. are shown in Tables 3 and 4.

北較拠刈 還元剤として粒度4メツシユ以下のCa −Mg合金(
Mg含量5重量%)214 gを用いた以外は実施例1
0と同様にして合金粉末の製造を行った。崩壊性等の結
果を第3表及び第4表に示す。
Ca-Mg alloy with a particle size of 4 mesh or less (
Example 1 except that 214 g (Mg content 5% by weight) was used.
An alloy powder was produced in the same manner as in Example 0. The results of disintegration properties etc. are shown in Tables 3 and 4.

第3表 第4表 (発明の効果) 本発明方法によれば、一定のMg含有量を有するCa 
−Mg合金を還元剤として使用することにより、還元反
応温度を低くすることが可能となり、反応生成物の焼結
を有効に回避することができ、この結果として、反応生
成物の崩壊性を著しく高め、粒度の小さい合金粉末を製
造することが可能となった。
Table 3 Table 4 (Effects of the invention) According to the method of the present invention, Ca with a constant Mg content
- By using Mg alloy as a reducing agent, it is possible to lower the reduction reaction temperature, effectively avoiding sintering of the reaction product, and as a result, the disintegration of the reaction product is significantly reduced. It has become possible to produce alloy powder with a high particle size and a small particle size.

Claims (1)

【特許請求の範囲】[Claims] (1)希土類金属酸化物粉末と、他の金属粉末と、還元
剤との混合物とを、不活性ガス雰囲気中または真空中で
加熱し、反応生成混合物を湿式処理することから成る希
土類金属を含む合金粉末の製造方法において、 前記還元剤として、Mg含有量が10〜40重量%の範
囲にあるCa−Mg合金を用いることを特徴とする製造
方法。
(1) Containing rare earth metals, which consists of heating a mixture of rare earth metal oxide powder, other metal powders, and a reducing agent in an inert gas atmosphere or in vacuum, and wet-processing the reaction product mixture. A method for producing an alloy powder, characterized in that a Ca-Mg alloy having an Mg content in a range of 10 to 40% by weight is used as the reducing agent.
JP24794390A 1990-09-18 1990-09-18 Manufacture of alloy powder incorporating rare earth metal Pending JPH04128306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24794390A JPH04128306A (en) 1990-09-18 1990-09-18 Manufacture of alloy powder incorporating rare earth metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24794390A JPH04128306A (en) 1990-09-18 1990-09-18 Manufacture of alloy powder incorporating rare earth metal

Publications (1)

Publication Number Publication Date
JPH04128306A true JPH04128306A (en) 1992-04-28

Family

ID=17170860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24794390A Pending JPH04128306A (en) 1990-09-18 1990-09-18 Manufacture of alloy powder incorporating rare earth metal

Country Status (1)

Country Link
JP (1) JPH04128306A (en)

Similar Documents

Publication Publication Date Title
US4681623A (en) Process for producing alloy powder containing rare earth metals
KR101629816B1 (en) Process for Preparing Tantalum Powder for Capacitors
KR900006193B1 (en) Making method for nd-fe-b permanent magnet
US4806155A (en) Method for producing dysprosium-iron-boron alloy powder
JPH04128306A (en) Manufacture of alloy powder incorporating rare earth metal
JP3049874B2 (en) Method for producing alloy powder containing rare earth metal
JP2718314B2 (en) Method for producing alloy powder containing rare earth metal
JP7044304B2 (en) Rare earth transition metal alloy powder manufacturing method
JP2985546B2 (en) Manufacturing method of alloy powder
JP2869966B2 (en) Manufacturing method of alloy powder
JPS61157646A (en) Manufacture of rare earth metal alloy
JP2001181713A (en) Pare earth metal-transition metal alloy powder and producing method therefor
JPH06124815A (en) Manufacture of material powder of r-tm-b group permanent magnet
JP3141461B2 (en) Method for producing Tb-containing rare earth-transition metal alloy powder
JPH0548281B2 (en)
JPS6213506A (en) Production of rare earth metal powder
JPS6256939B2 (en)
JPS62207805A (en) Production of titanium-containing alloy powder
JPH04202612A (en) Manufacture of alloy powder containing rare earth metal and boron
JPS60125338A (en) Production of permanent magnet alloy
JPH08291346A (en) Method for recovering rare earth element from scrap and production of rare earth-transition metal alloy powder
JP2000109908A (en) Production of alloy for rare heath-iron-boron magnet
JP3508419B2 (en) Method for producing alloy powder containing rare earth and transition metal by reduction diffusion method
JPH06248307A (en) Production of alloy powder containing rare-earth metal
JPH10280002A (en) Production of alloy powder for magnet