JPH06124815A - Manufacture of material powder of r-tm-b group permanent magnet - Google Patents

Manufacture of material powder of r-tm-b group permanent magnet

Info

Publication number
JPH06124815A
JPH06124815A JP4272675A JP27267592A JPH06124815A JP H06124815 A JPH06124815 A JP H06124815A JP 4272675 A JP4272675 A JP 4272675A JP 27267592 A JP27267592 A JP 27267592A JP H06124815 A JPH06124815 A JP H06124815A
Authority
JP
Japan
Prior art keywords
alkali
powder
rare earth
metal
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4272675A
Other languages
Japanese (ja)
Other versions
JP3151959B2 (en
Inventor
Kagehiro Kageyama
景弘 影山
Takayoshi Sato
隆善 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP27267592A priority Critical patent/JP3151959B2/en
Publication of JPH06124815A publication Critical patent/JPH06124815A/en
Application granted granted Critical
Publication of JP3151959B2 publication Critical patent/JP3151959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Abstract

PURPOSE:To reduce oxygen at alloy pulverization for omitting a pulverization process by performing hydrogen occlusion process with a specific produced mixture and performing dehydration process, for removing one or more kinds of alkali metal oxide and alkali earth metal oxide, and also one or more kinds of remaining alkali metal and alkali earth metal. CONSTITUTION:A rate earth oxide powder, transition metal oxide powder and boron oxide powder are mixed with at least one kind of alkali metal, alkali rare earth metal or hydride or oxide of them. The mixture is heated at 500-850 deg.C in H2O, then, at 900-1100 deg.C in inert gas atmosphere or under vacuum. The produced mixture, thus obtained, is treated with hydrogen and then with hydrogen pulverization for dehydrogenation. Further, Alkali rare earth metal, alkali metal and alkali rare earth metal oxide are removed from the reaction- produced mixture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類金属を含む合金
粉末の製造方法に係り、酸素含有量が低く、かつ微粉砕
工程を不要とする希土類金属を含む合金粉末の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an alloy powder containing a rare earth metal, and more particularly to a method for producing an alloy powder containing a rare earth metal which has a low oxygen content and does not require a fine pulverization step.

【0002】[0002]

【従来の技術】R−TM−B系永久磁石原料粉末を製造
するには、電解により還元された希土類原料及び他金属
を溶解後、鋳型に鋳造して合金を作成し、これを粉砕し
て合金粉末とする溶解・粉砕法(例えば特開昭60−6
3304号)と、希土類酸化物、Fe粉等を用いて磁石
合金粉末を作成する直接還元拡散法(特開昭59−21
9404号)がある。なお、本願明細書においてRとは
Yを含む希土類金属元素の1種以上を、またTMとは遷
移金属元素のうち1種以上をいう。
2. Description of the Related Art In order to produce R-TM-B based permanent magnet raw material powder, a rare earth raw material and other metals that have been electrolyzed are melted, cast into a mold to make an alloy, and this is crushed. Dissolution / pulverization method to obtain alloy powder (for example, JP-A-60-6)
3304) and a rare earth oxide, Fe powder or the like to form a magnet alloy powder (Japanese Patent Laid-Open No. 59-21).
9404). In the specification of the application, R means one or more kinds of rare earth metal elements including Y, and TM means one or more kinds of transition metal elements.

【0003】[0003]

【発明が解決しようとする課題】上記の溶解・粉砕法
は、溶解した直後は酸素が低く抑えられているが、水素
粉砕、ランデルミル等による粗粉砕、ジェットミル、ボ
ールミル等による微粉砕過程にて原料粉の酸化を招き、
製造工程中での品質のバラツキを生みやすい。また直接
還元拡散法においては、Rリッチ相が小さく良く分散さ
れるため、製造工程中の酸化を招きやすく、磁石特性上
品質のバラツキを発生しやすい。この直接還元拡散法に
よる原料粉の磁石特性上の高性能化として、使用するF
e粉、他金属粉の粉砕を行った後にこれらの金属粉と希
土類酸化物を混合して還元拡散法を使用し、希土類金属
原料粉末を製造することが考えられるが、Fe粉等他金
属粉を数μmまで粉砕することは実質上難しく、能率、
コスト的にも問題があると考えられる。そこで本発明
は、合金粉砕中の酸素を低減でき、かつ粉砕工程の省略
できる合金粉末の製造方法の提供を課題とする。
In the above-mentioned melting and crushing method, oxygen is suppressed to a low level immediately after the melting, but hydrogen crushing, coarse crushing with a Randel mill, etc., fine crushing with a jet mill, ball mill, etc. Induces oxidation of raw material powder,
It is easy to cause variations in quality during the manufacturing process. Further, in the direct reduction diffusion method, since the R-rich phase is small and well dispersed, oxidation is likely to occur during the manufacturing process, and variations in quality tend to occur due to magnet characteristics. F used to improve the performance of the raw material powder in terms of magnet characteristics by this direct reduction diffusion method
It is conceivable to produce the rare earth metal raw material powder by mixing the metal powder and the rare earth oxide after crushing the e powder and the other metal powder and then using the reduction diffusion method. Is practically difficult to pulverize to a few μm.
It seems that there are problems in terms of cost. Then, this invention makes it a subject to provide the manufacturing method of the alloy powder which can reduce oxygen during alloy grinding | pulverization and can omit a grinding process.

【0004】[0004]

【課題を解決するための手段】本発明は、希土類酸化物
粉末と、遷移金属酸化物粉末と、ほう素酸化物粉末にア
ルカリ金属、アルカリ土類金属もしくはこれらの水素化
物または塩化物から選ばれる少なくとも1種を混合する
工程と、この混合物を500〜850℃の温度でH2
にて加熱する工程と、その後900〜1100℃の温度
で不活性ガス雰囲気中又は真空中で加熱する工程と、水
素吸蔵処理を行い、脱水素処理する水素粉砕処理工程
と、反応生成混合物からアルカリ金属酸化物およびアル
カリ土類金属酸化物の1種以上、ならびに残留アルカリ
金属および残留アルカリ土類金属の1種以上を除去する
工程とからなるR−Fe−B系永久磁石原料粉末の製造
方法により前記課題を解決した。
According to the present invention, rare earth oxide powder, transition metal oxide powder, boron oxide powder are selected from alkali metal, alkaline earth metal or hydride or chloride thereof. A step of mixing at least one kind, a step of heating the mixture in H 2 at a temperature of 500 to 850 ° C., and a step of subsequently heating at a temperature of 900 to 1100 ° C. in an inert gas atmosphere or in a vacuum. A hydrogen pulverization treatment step of performing hydrogen absorption treatment and dehydrogenation treatment, and one or more kinds of alkali metal oxides and alkaline earth metal oxides from the reaction product mixture, and one kind of residual alkali metal and residual alkaline earth metal The above problems have been solved by a method for producing an R—Fe—B based permanent magnet raw material powder, which comprises a step of removing the above.

【0005】[0005]

【作用】本発明において、希土類酸化物粉末と、遷移金
属酸化物粉末と、ほう素酸化物粉末にアルカリ金属、ア
ルカリ土類金属もしくはこれらの水素化物または塩化物
から選ばれる少なくとも1種を混合した後500〜85
0℃でH2中で加熱して遷移金属酸化物粉末とほう素酸
化物粉末をH2で還元する(以後第1の加熱処理という
ことがある)。加熱温度が500℃未満だと還元が不完
全となり、850℃を越えるとアルカリ金属、アルカリ
土類金属もしくはこれらの水素化物または塩化物から選
ばれる少なくとも1種の融点を超え、希土類酸化物も同
時に還元してしまうため、拡散におけるバラツキが生じ
てしまうためである。加熱する雰囲気をH2とするの
は、遷移金属酸化物をH2中で加熱し、遷移金属酸化物
中のO2とH2を反応させることにより遷移金属酸化物よ
り遷移金属を得るためである。
In the present invention, the rare earth oxide powder, the transition metal oxide powder and the boron oxide powder are mixed with at least one selected from alkali metals, alkaline earth metals or their hydrides or chlorides. After 500-85
The transition metal oxide powder and the boron oxide powder are reduced with H 2 by heating in H 2 at 0 ° C. (hereinafter sometimes referred to as the first heat treatment). If the heating temperature is less than 500 ° C, the reduction is incomplete, and if it exceeds 850 ° C, the melting point of at least one selected from alkali metals, alkaline earth metals or their hydrides or chlorides is exceeded, and rare earth oxides are also present. This is because the reduction results in variations in diffusion. In order to the atmosphere for heating with H 2, the transition metal oxide is heated in H 2, to obtain the transition metal transition metal oxides by reacting O 2 and H 2 in the transition metal oxide is there.

【0006】次に不活性ガス雰囲気中または真空中で9
00〜1100℃にて加熱するのは、Ca等のアルカリ
金属、アルカリ土類金属及び水素化物、塩化物にて希土
類酸化物およびほう素酸化物を還元し、これを先の工程
で還元された遷移金属と拡散させるためである(以後第
2の加熱処理という)。この加熱温度が900℃未満だ
と還元が十分に作用せず、1100℃を超えると金属の
凝集等により粒径が大きくなってしまうため、加熱温度
は900〜1100℃の範囲とする。金属の凝集を抑え
るため、950℃以下で行うのが望ましい。加熱雰囲気
を不活性ガス中または真空中とするのは、反応過程での
酸化を抑えるためである。
Next, 9 in an inert gas atmosphere or in vacuum
Heating at 00 to 1100 ° C. reduces the rare earth oxides and boron oxides with alkali metals such as Ca, alkaline earth metals and hydrides, and chlorides, which were reduced in the previous step. This is for diffusing with the transition metal (hereinafter referred to as second heat treatment). If the heating temperature is lower than 900 ° C, the reduction does not sufficiently act, and if it exceeds 1100 ° C, the particle size becomes large due to metal agglomeration and the like, so the heating temperature is set in the range of 900 to 1100 ° C. It is desirable to carry out at 950 ° C. or lower in order to suppress metal aggregation. The heating atmosphere is set to an inert gas or a vacuum in order to suppress oxidation in the reaction process.

【0007】以上の処理により得られた生成物は次に水
素粉砕処理工程に供される。水素粉砕処理工程において
は、まず前記生成物に水素吸蔵処理を施す。この処理は
常温で行うことができる。水素吸蔵された生成物は次に
脱水素処理される。水素粉砕処理工程は、例えば特公平
3−40082号に記載される従来公知の条件を適用す
ればよい。水素粉砕された粉末は最後に水中に投入する
等して、反応副生成物であるCa等のアルカリ金属また
はアルカリ土類金属の酸化物、あるいはアルカリ金属ま
たはアルカリ土類金属が除去される。
The product obtained by the above treatment is then subjected to a hydrogen pulverization treatment step. In the hydrogen pulverization treatment step, first, the product is subjected to hydrogen storage treatment. This treatment can be performed at room temperature. The hydrogen-occluded product is then dehydrogenated. For the hydrogen pulverization processing step, conventionally known conditions described in, for example, Japanese Patent Publication No. 3-40082 may be applied. The powder pulverized with hydrogen is finally poured into water to remove oxides of alkali metals or alkaline earth metals such as Ca, which are reaction by-products, or alkali metals or alkaline earth metals.

【0008】[0008]

【実施例】【Example】

(実施例1)平均粒度9μmのNd23粉末(純度98
%)395g、平均粒度1μmのFe23(純度99
%)901g、平均粒度13μmのB23(純度98
%)30g,Ca粒(純度99%)198g(希土類酸
化物の還元に必要な化学量論量の1.4倍)を混合し、
SUS製容器内に挿入し、Arガス雰囲気で800℃ま
で約1時間で昇温し、800℃でH2中に雰囲気を置換
し、その後2時間保持した。この後、Ar雰囲気に雰囲
気を置換し、1000℃まで昇温し、4時間保持した。
得られた生成物を常温中で水素吸蔵を行い、その後55
0℃にて脱水素処理をした。得られた反応物をショ糖、
防錆剤の入った洗浄水にて、5回デカンテーションを行
い、濾過後、イソプロピルアルコールで洗浄し、60
℃、10-2Torvで5時間真空乾燥した。得られた粉
体は、0〜18μmの粒度範囲を持ち、Nd32.5w
t%,Pr0.3wt%,B1.0wt%,Ca0.0
8wt%,O24800ppm,Fe:balの組成を
持つ微粉末が得られた。(実施例2)実施例1と同様に
平均粒度9μmのNd23粉末(純度98%)395
g、平均粒度1μmのFe23(純度99%)901
g、平均粒度13μmのB23(純度98%)30g,
Ca粒(純度99%)198g(希土類酸化物の還元に
必要な化学量論量の1.4倍)を混合し、SUS製容器
内に挿入しその後表1に示す条件で第1および第2の加
熱処理を行い、その後は実施例1と同様に処理を行い粉
末を製造した。
Example 1 Nd 2 O 3 powder having an average particle size of 9 μm (purity: 98
%) 395 g, average particle size 1 μm of Fe 2 O 3 (purity 99
%) 901 g, average particle size 13 μm B 2 O 3 (purity 98
%) 30 g, Ca particles (purity 99%) 198 g (1.4 times the stoichiometric amount necessary for the reduction of rare earth oxides) are mixed,
The sample was inserted into a SUS container, heated to 800 ° C. in an Ar gas atmosphere in about 1 hour, the atmosphere was replaced with H 2 at 800 ° C., and then kept for 2 hours. After that, the atmosphere was replaced with an Ar atmosphere, the temperature was raised to 1000 ° C., and the temperature was maintained for 4 hours.
The product obtained is occluded with hydrogen at room temperature and then 55
Dehydrogenation treatment was performed at 0 ° C. The obtained reaction product was sucrose,
Decant 5 times with wash water containing rust preventive agent, filter, and wash with isopropyl alcohol.
It was vacuum dried at 10 -2 Torv for 5 hours. The resulting powder has a particle size range of 0-18 μm and Nd32.5w
t%, Pr0.3wt%, B1.0wt%, Ca0.0
A fine powder having a composition of 8 wt%, O 2 4800 ppm, and Fe: bal was obtained. Example 2 Nd 2 O 3 powder having an average particle size of 9 μm (purity 98%) 395 as in Example 1.
g, Fe 2 O 3 with an average particle size of 1 μm (purity 99%) 901
g, B 2 O 3 having an average particle size of 13 μm (purity 98%) 30 g,
198 g of Ca particles (purity 99%) (1.4 times the stoichiometric amount required for reduction of rare earth oxide) was mixed, inserted into a SUS container, and then the first and second under the conditions shown in Table 1. Then, the same treatment as in Example 1 was carried out to produce a powder.

【0009】[0009]

【表1】 [Table 1]

【0010】なお、製造された粉末のCa量、O2量を
表2に示すが、本発明(No2,5)によると酸素含有
量の低い微粉末を得ることがてきる。これに対しNo.
1は第1段の熱処理温度が低いため遷移金属酸化物の還
元が十分でなく小量のNd−Fe−B合金粉末しか得る
ことができず、No.4は第1の熱処理温度が高いため
同時に希土類酸化物、希土類酸化物の還元が行われとと
もにFeが凝集し、このため未反応のFeが粒子中に残
存していた。また、No.3は第2の熱処理温度が低い
ためCaと希土類酸化物、ほう素酸化物の還元が十分に
行われず、未反応部分が多量に残り、No.6は第2の
熱処理温度が高いため反応後の粒子が成長してしまい、
粒径が大きくなり粉砕工程を要するようになる。
Table 2 shows the amounts of Ca and O 2 in the produced powder. According to the present invention (Nos. 2 and 5), fine powders having a low oxygen content can be obtained. On the other hand, No.
No. 1 has a low first-stage heat treatment temperature, so the reduction of the transition metal oxide is not sufficient and only a small amount of Nd-Fe-B alloy powder can be obtained. No. 4 has a high first heat treatment temperature. At the same time, the rare earth oxide and the rare earth oxide were reduced, and Fe was aggregated, so that unreacted Fe remained in the particles. Further, in No. 3, since the second heat treatment temperature is low, Ca and the rare earth oxides and boron oxides are not sufficiently reduced, and a large amount of unreacted portion remains, and No. 6 has the second heat treatment temperature. Since it is high, the particles after the reaction grow,
The particle size becomes large and a crushing process becomes necessary.

【0011】[0011]

【表2】 [Table 2]

【0012】[0012]

【発明の効果】本発明によれば、酸素含有量の低く、か
つ粒度が均一な微粉末を容易に得ることができ、粗粉
砕、微粉砕工程の省略を可能とした。また金属粉でなく
金属酸化物を直接還元拡散の原料としているため、経済
的にも有利となる。磁気特性上においても、酸素含有量
を低くでき、かつ組織が均一となるため、高性能材の品
質をより安定させることができる。
According to the present invention, a fine powder having a low oxygen content and a uniform particle size can be easily obtained, and the steps of coarse pulverization and fine pulverization can be omitted. Moreover, since metal oxide is used as a raw material for direct reduction and diffusion instead of metal powder, it is economically advantageous. Also in terms of magnetic properties, the oxygen content can be lowered and the structure becomes uniform, so that the quality of the high-performance material can be more stabilized.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 希土類酸化物粉末と、遷移金属酸化物粉
末と、ほう素酸化物粉末にアルカリ金属、アルカリ土類
金属もしくはこれらの水素化物または塩化物から選ばれ
る少なくとも1種を混合する工程と、 この混合物を500〜850℃の温度でH2中にて加熱
する工程と、 その後900〜1100℃の温度で不活性ガス雰囲気中
又は真空中で加熱する工程と、 水素吸蔵処理を行い、脱水素処理する水素粉砕処理工程
と、 反応生成混合物からアルカリ金属酸化物およびアルカリ
土類金属酸化物の1種以上、ならびに残留アルカリ金属
および残留アルカリ土類金属の1種以上を除去する工程
とからなることを特徴とするR−TM−B系永久磁石用
原料粉末の製造方法。
1. A step of mixing a rare earth oxide powder, a transition metal oxide powder, and a boron oxide powder with at least one selected from an alkali metal, an alkaline earth metal or a hydride or chloride thereof. , A step of heating this mixture in H 2 at a temperature of 500 to 850 ° C., a step of subsequently heating in an inert gas atmosphere or a vacuum at a temperature of 900 to 1100 ° C., a hydrogen storage treatment, and dehydration And a step of removing one or more kinds of alkali metal oxides and alkaline earth metal oxides, and one or more kinds of residual alkali metals and residual alkaline earth metals from the reaction product mixture. A method for producing a raw material powder for an R-TM-B-based permanent magnet, comprising:
JP27267592A 1992-10-12 1992-10-12 Method for producing raw material powder for R-TM-B permanent magnet Expired - Fee Related JP3151959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27267592A JP3151959B2 (en) 1992-10-12 1992-10-12 Method for producing raw material powder for R-TM-B permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27267592A JP3151959B2 (en) 1992-10-12 1992-10-12 Method for producing raw material powder for R-TM-B permanent magnet

Publications (2)

Publication Number Publication Date
JPH06124815A true JPH06124815A (en) 1994-05-06
JP3151959B2 JP3151959B2 (en) 2001-04-03

Family

ID=17517228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27267592A Expired - Fee Related JP3151959B2 (en) 1992-10-12 1992-10-12 Method for producing raw material powder for R-TM-B permanent magnet

Country Status (1)

Country Link
JP (1) JP3151959B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101218267B1 (en) * 2011-08-18 2013-01-03 한국수력원자력 주식회사 The equipment of removal water in the rare earth chloride hydrate and the method thereof
JP2013001985A (en) * 2011-06-21 2013-01-07 Sumitomo Metal Mining Co Ltd Rare-earth transition metal-based alloy powder and method for producing the same
KR20190053611A (en) * 2017-11-10 2019-05-20 주식회사 엘지화학 Magnetic material and cleaning method thereof
JP2020045544A (en) * 2018-09-21 2020-03-26 住友金属鉱山株式会社 Polycrystal rare earth transition metal alloy powder and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108620578B (en) * 2018-05-11 2019-06-11 西安交通大学 A method of improving RE oxide powder and CuW Alloy Wetting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001985A (en) * 2011-06-21 2013-01-07 Sumitomo Metal Mining Co Ltd Rare-earth transition metal-based alloy powder and method for producing the same
KR101218267B1 (en) * 2011-08-18 2013-01-03 한국수력원자력 주식회사 The equipment of removal water in the rare earth chloride hydrate and the method thereof
KR20190053611A (en) * 2017-11-10 2019-05-20 주식회사 엘지화학 Magnetic material and cleaning method thereof
JP2020045544A (en) * 2018-09-21 2020-03-26 住友金属鉱山株式会社 Polycrystal rare earth transition metal alloy powder and method for producing the same

Also Published As

Publication number Publication date
JP3151959B2 (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JPH0362764B2 (en)
JPH11329811A (en) Raw material powder for r-fe-b magnet and manufacture of r-fe-b based magnet
US3883346A (en) Nickel-lanthanum alloy produced by a reduction-diffusion process
JPH07176414A (en) Manufacture of permanent magnet
JP6733533B2 (en) Method for manufacturing RTB-based sintered magnet
US3918933A (en) Nickel-lanthanum alloy produced by a reduction-diffusion process
JPH06124815A (en) Manufacture of material powder of r-tm-b group permanent magnet
JPH05271852A (en) Production of rare earth magnet alloy
JP3049874B2 (en) Method for producing alloy powder containing rare earth metal
JP2718314B2 (en) Method for producing alloy powder containing rare earth metal
JP2590091B2 (en) Refractory metal silicide target and its manufacturing method
JPH08111307A (en) Production of material powder for r-fe-b based permanent magnet
JP2001181713A (en) Pare earth metal-transition metal alloy powder and producing method therefor
JPH0372011A (en) Manufacture of rare earth metal-ion-boron series alloy powder for sintered magnet
JPH09289127A (en) Manufacture of rare earth permanent magnet, and the rare earth permanent magnet
JPS60125338A (en) Production of permanent magnet alloy
JPS6160809A (en) Production of rare earth alloy powder
JP2000054011A (en) Production of rare earth metal-iron-boron based sintered magnet raw material alloy powder
JPS60116734A (en) Manufacture of permanent magnet alloy
JPH01127606A (en) Production of raw material powder for permanent magnet material
JPH04202612A (en) Manufacture of alloy powder containing rare earth metal and boron
JP2000109908A (en) Production of alloy for rare heath-iron-boron magnet
JPH0623401B2 (en) Heavy rare earth alloy powder
JPH0765083B2 (en) Method for producing alloy powder for permanent magnet alloy
JPH052722B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees