JP3508419B2 - Method for producing alloy powder containing rare earth and transition metal by reduction diffusion method - Google Patents

Method for producing alloy powder containing rare earth and transition metal by reduction diffusion method

Info

Publication number
JP3508419B2
JP3508419B2 JP26252296A JP26252296A JP3508419B2 JP 3508419 B2 JP3508419 B2 JP 3508419B2 JP 26252296 A JP26252296 A JP 26252296A JP 26252296 A JP26252296 A JP 26252296A JP 3508419 B2 JP3508419 B2 JP 3508419B2
Authority
JP
Japan
Prior art keywords
alloy powder
rare earth
product
reaction
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26252296A
Other languages
Japanese (ja)
Other versions
JPH09241708A (en
Inventor
吉幸 浅川
由美 吉田
賢次 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP26252296A priority Critical patent/JP3508419B2/en
Publication of JPH09241708A publication Critical patent/JPH09241708A/en
Application granted granted Critical
Publication of JP3508419B2 publication Critical patent/JP3508419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水素貯蔵合金、電
池材料、永久磁石材料として有用な希土類、遷移金属を
含む合金粉末の還元拡散法による製造方法に関し、より
詳細には、上記の製造を行うに際して、還元拡散反応を
行わせる焼成工程後の焼成物の崩壊性を改善して、焼成
物の粉砕工程を不要とし、洗浄効率や回収率を向上さ
せ、かつ不純物含有量を低減させるための新規な還元拡
散法による前記合金粉末の製造方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a method for producing an alloy powder containing a hydrogen storage alloy, a battery material, a rare earth element useful as a permanent magnet material, and a transition metal by a reduction diffusion method. In order to improve the disintegration property of the calcined product after the calcining process in which the reduction diffusion reaction is performed, the crushing process of the calcined product is unnecessary, the cleaning efficiency and the recovery rate are improved, and the impurity content is reduced. The present invention relates to a method for producing the alloy powder by a novel reduction diffusion method.

【0002】[0002]

【従来の技術】還元拡散法は、溶解法に比べて原料が低
廉であり、熱処理温度が低く、得られた合金の組織が緻
密で、かつ組成の調整がしやすく、その上合金塊の表面
処理、粉砕工程などが不要であるなど、多くの利点を有
するので、希土類系永久磁石の製造などに多用されてい
る。
2. Description of the Related Art The reduction-diffusion method is cheaper in raw material than the melting method, the heat treatment temperature is low, the structure of the obtained alloy is dense, and the composition can be easily adjusted. Since it has many advantages such as no treatment and no crushing step, it is widely used for manufacturing rare earth permanent magnets.

【0003】この還元拡散法による合金の製造方法は、
希土類酸化物粉末、遷移金属粉末、その他の原料粉末を
秤量して混合し、さらに前記希土類酸化物粉末を還元す
るたに必要な還元剤、例えば金属カルシウムなどを添加
混合し、該混合物を酸素が実質的に存在しない雰囲気、
例えばアルゴン気流中や真空中で還元剤が溶融する温
度、例えば還元剤に金属カルシウムを使用した場合には
820℃以上の温度で、かつ所望の合金が溶解しない程
度の温度(通常は、900〜1200℃)まで昇温焼成
し、前記希土類酸化物を希土類金属に還元した後、これ
を前記遷移金属粉末に拡散させて所望の合金とし、室温
まで冷却した後得られた焼成物を水中に投入して残留還
元剤および生成した酸化還元剤を溶解させ、撹拌とデカ
ンテーションを繰り返し行って水洗し、沈殿した合金粉
末を分離回収し、乾燥して所望の希土類、遷移金属を含
む合金粉末を得るものである。
The method for producing an alloy by this reduction diffusion method is as follows:
Rare earth oxide powder, transition metal powder, and other raw material powders are weighed and mixed, and further a reducing agent necessary for reducing the rare earth oxide powder, for example, metal calcium is added and mixed, and the mixture contains oxygen. An atmosphere that is virtually nonexistent,
For example, a temperature at which the reducing agent melts in an argon stream or in a vacuum, for example, a temperature of 820 ° C. or higher when metallic calcium is used as the reducing agent, and a temperature at which a desired alloy does not melt (usually 900 to The temperature is increased to 1200 ° C.), the rare earth oxide is reduced to a rare earth metal, the transition metal powder is diffused into a desired alloy, and the alloy is cooled to room temperature. Then, the residual reducing agent and the generated redox agent are dissolved, and stirring and decantation are repeated to wash with water, and the precipitated alloy powder is separated and recovered and dried to obtain an alloy powder containing a desired rare earth element and a transition metal. It is a thing.

【0004】上記の還元拡散法においては、焼成に際し
て焼成炉として一般にステンレススチール製反応容器が
用いられ、これに上記の各酸化物を含む原料混合物を充
填して焼成が行われ、これによって原料粉末混合物にお
ける還元拡散反応が進行するが、焼成後は混合物は収縮
し、また強固に塊状に固まってしまうためにその回収が
困難であるといった問題がある。
In the above reduction diffusion method, a stainless steel reaction vessel is generally used as a firing furnace for firing, and a raw material mixture containing each of the above oxides is charged into the firing vessel to perform firing. Although the reduction-diffusion reaction proceeds in the mixture, there is a problem that the mixture shrinks after firing and solidifies into a solid state, which makes recovery thereof difficult.

【0005】[0005]

【発明が解決しようとする課題】特に、例えばNd−F
e−B系の永久磁石用合金を還元拡散法による製造のよ
うに合金の一部組成が溶融するほどに焼成温度を高くし
て還元拡散法による合金の製造が行われる場合には、焼
成物は極めて強固に固まってしまうので、これを水洗工
程に移行させるためには、ハンマーなどにより大割り
し、さらにジョークラッシャーなどの粉砕機で約1cm
角大の大きさまで粗粉砕しなければならなかった。そし
て、これら破砕、粉砕の作業はそれ自体危険な作業であ
るばかりでなく、発火防止や酸化防止のための処置を講
ずる必要がある上に、製品収率の低下や破砕、粉砕の作
業中において不純物混入による品質低下などを招く恐れ
があるので好ましくなかった。
In particular, for example, Nd-F
When an e-B type permanent magnet alloy is produced by a reduction diffusion method by raising the firing temperature so that a partial composition of the alloy is melted like a production by a reduction diffusion method, a fired product is used. Will solidify very strongly, so in order to transfer it to the washing process, it should be roughly smashed with a hammer, etc., and about 1 cm with a crusher such as a jaw crusher.
It had to be coarsely crushed to the size of a corner. And, these crushing and crushing operations are not only dangerous operations themselves, but also it is necessary to take measures to prevent ignition and oxidation, and to reduce product yield, crush and crushing operations. It is not preferable because there is a risk of quality deterioration due to inclusion of impurities.

【0006】また、一部組成の溶融を伴わないような焼
成温度で製造が行われるSm−Co系合金などの場合に
おいては、焼成物は一昼夜放置すれば自然崩壊するが、
これも完全に崩壊するわけでなく、季節、天候、気温な
どの放置環境の違いによって崩壊度が異なり、品質管理
上問題があるし、崩壊時間が一昼夜と長いために、大気
中の塩素分、窒素酸化物などを吸収して最終製品の品質
を劣化させるといった問題もあった。
Further, in the case of an Sm-Co alloy or the like which is manufactured at a firing temperature that does not involve melting of a part of the composition, the fired product spontaneously disintegrates if left to stand overnight.
This also does not completely collapse, the degree of collapse differs depending on the abandoned environment such as season, weather, temperature, etc. There is a problem in quality control, and since the collapse time is long all day and night, chlorine content in the atmosphere, There is also a problem that the quality of the final product is deteriorated by absorbing nitrogen oxides.

【0007】本発明は、この種還元拡散法による粉末合
金の製造における上記の問題を解決し、焼成物の水中崩
壊性を向上させることによって粉砕工程を省略し、これ
によって製品の収率を向上させると共に品質の高い合金
製品を得る方法を提供することを目的とするものであ
る。
The present invention solves the above-mentioned problems in the production of powder alloys by this kind of reduction diffusion method and improves the disintegration property of the fired product in water, thereby omitting the crushing step and thereby improving the product yield. It is an object of the present invention to provide a method for obtaining a high quality alloy product.

【0008】[0008]

【発明の属する技術分野】本発明者らは、上記課題を解
決すべく鋭意研究を重ねた結果、還元拡散法により希土
類/遷移金属を含む合金粉末を製造する際に、焼成工程
を経て得られた焼成物を冷却する間にまたはその後に、
水素ガスにより水素処理を行うと、驚くべきことには、
焼成物の崩壊性が著しく改善し、その結果、焼成物の粉
砕工程が不要となるばかりでなく、洗浄効率や回収率が
向上し、しかも不純物含有量も低減できるということを
見出し、本発明を完成するに至った。すなわち、本発明
の第1の発明によれば、希土類酸化物粉末、遷移金属粉
末およびその他の原料粉末に、希土類酸化物粉末を還元
するのに十分な還元剤を混合する工程(A)、得られた
混合物を酸素が実質的に存在しない雰囲気下、還元剤が
溶融する温度以上でかつ所望の合金が溶解しない温度に
加熱し、希土類酸化物を希土類金属に還元すると共に生
成した希土類金属を遷移金属粉末に拡散させる焼成工程
(B)、不活性ガスを流通して、得られた焼成物を冷却
する冷却工程(C)、さらには、冷却された焼成物中に
含まれる残留還元剤および生成した酸化還元剤を水と接
触させることにより溶解除去した後、所望の合金粉末を
分離回収する工程(D)を包含する、還元拡散法により
希土類/遷移金属を含む合金粉末を製造する方法におい
て、冷却工程(C)の間にまたは冷却工程(C)の後
に、不活性ガスの一部または全部を水素に置換し、得ら
れた焼成物を水素雰囲気下に100〜600℃で水素処
理し、その後再び不活性ガスに置換することにより、水
素処理された焼成物の水中崩壊性を向上させることを特
徴とする希土類/遷移金属を含む合金粉末の製造方法が
提供される。また、本発明の第2の発明によれば、第1
の発明において、前記水素処理は、焼成炉内で行われる
ことを特徴とする希土類/遷移金属を含む合金粉末の製
造方法が提供される。さらに、本発明の第3の発明によ
れば、第1又は2の発明において、前記希土類/遷移金
属を含む合金粉末は、Sm−Co系合金粉末、Sm−F
e系合金粉末またはNd−Fe−B系合金粉末であるこ
とを特徴とする希土類/遷移金属を含む合金粉末の製造
方法が提供される。
TECHNICAL FIELD The present inventors have conducted extensive studies to solve the above-mentioned problems, and as a result, have been obtained through a firing step when producing an alloy powder containing a rare earth / transition metal by a reduction diffusion method. During or after cooling the fired product
Surprisingly, when hydrogen treatment is performed with hydrogen gas,
It was found that the disintegration property of the fired product is remarkably improved, and as a result, not only the pulverization step of the fired product is unnecessary, but also the cleaning efficiency and the recovery rate are improved and the impurity content can be reduced, and the present invention It came to completion. That is, according to the first aspect of the present invention, the rare earth oxide powder is reduced to the rare earth oxide powder, the transition metal powder and the other raw material powder.
Step (A) of mixing sufficient reducing agent to do so, heating the resulting mixture to a temperature above the temperature at which the reducing agent melts and above the temperature at which the desired alloy does not melt, in an atmosphere substantially free of oxygen, A firing step (B) of reducing the rare earth oxide to a rare earth metal and diffusing the produced rare earth metal into a transition metal powder, a cooling step (C) of circulating an inert gas to cool the obtained fired product, and Includes a step (D) of dissolving and removing the residual reducing agent and the produced redox agent contained in the cooled calcined product by contacting with water, and then separating and recovering the desired alloy powder (D). A method for producing an alloy powder containing a rare earth / transition metal by a method, in which a part or all of the inert gas is replaced with hydrogen during or after the cooling step (C). The fired product is hydrogen atmosphere Hydrotreated under air at 100 to 600 ° C., and then used to replace the inert gas again, water
Provided is a method for producing an alloy powder containing a rare earth / transition metal, which is characterized by improving the disintegration property of a fired product subjected to elementary treatment in water . According to the second aspect of the present invention, the first aspect
In the invention of claim 1, there is provided a method for producing an alloy powder containing a rare earth / transition metal, wherein the hydrogen treatment is performed in a firing furnace. Further, according to a third invention of the present invention, in the first or second invention, the alloy powder containing the rare earth / transition metal is Sm-Co based alloy powder or Sm-F.
There is provided a method for producing an alloy powder containing a rare earth / transition metal, which is an e-based alloy powder or an Nd-Fe-B-based alloy powder.

【0009】本発明によるときは、焼成後の還元拡散反
応生成物は、水中崩壊性が格段に向上するので、粉砕工
程を省略することができる上に、デカンテーションの繰
り返し操作回数を大幅に低減させることができ、これに
よって、廃液処理量の削減や合金粉末製品の回収率の一
層の向上を図ることができる。
According to the present invention, the reduction-diffusion reaction product after calcination has a significantly improved disintegration property in water, so that the crushing step can be omitted and the number of repeated decantation operations can be significantly reduced. This makes it possible to reduce the amount of waste liquid processed and further improve the recovery rate of alloy powder products.

【0010】本発明において、前記した水素処理は、焼
成による還元拡散後の反応生成物の冷却工程中に焼成炉
内で行うことが好ましい。これは工程が簡略化でき、か
つエネルギー消費量も削減できるからである。また、前
記水素処理は、100〜600℃の温度範囲で行うこと
が好ましい。100℃未満では効果が小さく、一方60
0℃を超えるとエネルギー消費量が大きくなり、かつ目
的の合金化合物が分解したり副生成物が生じることがあ
るからである。さらに、焼成後は室温まで冷却してから
水素処理する必要はなく、水素処理の加熱に焼成処理の
余熱を利用してもよい。
In the present invention, the above-mentioned hydrogen treatment is preferably carried out in the firing furnace during the cooling step of the reaction product after reduction and diffusion by firing. This is because the process can be simplified and the energy consumption can be reduced. Further, the hydrogen treatment is preferably performed in a temperature range of 100 to 600 ° C. Below 100 ° C, the effect is small, while on the other hand
This is because if the temperature exceeds 0 ° C., the energy consumption becomes large, and the target alloy compound may be decomposed or by-products may be generated. Furthermore, after firing, it is not necessary to cool to room temperature and then perform hydrogen treatment, and residual heat of the firing treatment may be used for heating for hydrogen treatment.

【0011】本発明の還元拡散法により希土類/遷移金
属を含む合金粉末を製造する方法においては、工程
(A)では、希土類酸化物粉末、遷移金属粉末、その他
の原料粉末を秤量して混合し、さらに前記希土類酸化物
粉末を還元するのに十分な還元剤を添加混合し、次い
で、焼成工程(B)では、該混合物を酸素が実質的に存
在しない雰囲気中で還元剤が溶融する温度以上でかつ所
望の合金が溶解しない温度まで昇温保持することにより
焼成を行い、前記希土類酸化物を希土類金属に還元した
後、これを前記遷移金属粉末に拡散させて所望の合金と
し、次いで、冷却工程(C)では、不活性ガスを流通し
て、高温にあった焼成物を室温まで冷却し、最後に、工
程(D)では、冷却された焼成物を水中に投入して残留
還元剤および生成した酸化還元剤を溶解させ、攪拌とデ
カンテーションを繰り返し行って水洗し、沈殿した合金
粉末を分離回収し、乾燥して所望の希土類、遷移金属を
含む合金粉末を製造する。本発明は、上記したような還
元拡散法により希土類/遷移金属を含む合金粉末を製造
する方法において、焼成による還元拡散により得られた
反応生成物を、冷却工程(C)の間にまたは冷却工程
(C)の後に引き続いて、不活性ガスの一部または全部
を水素に置換し、水素雰囲気下に100〜600℃で
素処理し、その後再び不活性ガスに置換することによ
り、反応生成物の崩壊性を向上させて、デカンテーショ
ン繰り返し操作回数を削減させ、これにより合金粉末製
品の収率を向上させるとともに製品の品質向上を図るこ
とに成功したものである。
In the method for producing an alloy powder containing a rare earth / transition metal by the reduction diffusion method of the present invention, in the step (A), a rare earth oxide powder, a transition metal powder and other raw material powders are weighed and mixed. Further, a reducing agent sufficient to reduce the rare earth oxide powder is added and mixed, and then, in the firing step (B), the mixture is heated to a temperature not lower than a temperature at which the reducing agent melts in an atmosphere in which oxygen is substantially absent. And by firing by holding the temperature rise to a temperature at which the desired alloy does not dissolve, after reducing the rare earth oxides to rare earth metals, it is diffused into the transition metal powder to the desired alloy, then cooled. In the step (C), an inert gas is circulated.
Then, the calcined product at a high temperature is cooled to room temperature, and finally, in step (D), the cooled calcined product is put into water to dissolve the residual reducing agent and the produced redox agent, and stirring and decanting are performed. It is repeatedly washed with water and the precipitated alloy powder is separated and recovered and dried to produce an alloy powder containing a desired rare earth element and a transition metal. The present invention is a method of producing an alloy powder containing a rare earth / transition metal by the reduction diffusion method as described above, wherein the reaction product obtained by the reduction diffusion by firing is added during the cooling step (C) or during the cooling step. Following (C), part or all of the inert gas
Is replaced with hydrogen, hydrogen treatment is carried out at 100 to 600 ° C. in a hydrogen atmosphere , and then the inert gas is replaced again to improve the disintegration property of the reaction product and to repeat the decantation operation. This has succeeded in reducing the number of times, thereby improving the yield of alloy powder products and improving product quality.

【0012】本発明において、対象とする合金粉末製品
は希土類(イットリウムを含むランタノイド元素)、遷
移金属(鉄、コバルト、ニッケル)を含む合金粉末であ
れば、いずれの合金粉末の還元拡散法においても応用す
ることができる。例えば、水素貯蔵合金、電池材料、永
久磁石用合金(例えば、Sm−Co系、Sm−Fe−N
系合金の製造に供するSm−Fe系合金、Nd−Fe−
B系、La−Ni系、Tb−Fe−Co系、Nd−Co
系など)などがあるが、特に、Sm−Co系およびNd
−Fe−B系の永久磁石用合金の製造に適用した場合に
おいて本発明の製造方法は著しい効果を発揮させること
ができる。
In the present invention, the alloy powder product of interest is any alloy powder containing a rare earth (lanthanoid element including yttrium) and a transition metal (iron, cobalt, nickel) in any method of reducing and diffusing the alloy powder. It can be applied. For example, hydrogen storage alloys, battery materials, alloys for permanent magnets (for example, Sm-Co based, Sm-Fe-N
Sm-Fe-based alloy, Nd-Fe-, which is used for the production of a system-based alloy
B type, La-Ni type, Tb-Fe-Co type, Nd-Co
System, etc.), but especially Sm-Co system and Nd
When applied to the production of a —Fe—B based alloy for permanent magnets, the production method of the present invention can exert remarkable effects.

【0013】本発明において行われる水素処理は、従来
の還元拡散法における焼成工程後の冷却期間をアルゴン
ガスなどの不活性ガスを流通して行っていたのを、所定
の冷却温度に達したときに、適当な時間アルゴンガス流
通の一部または全部を水素ガスに置換して流通させるよ
うにするのみでよい。
The hydrogen treatment carried out in the present invention was carried out by flowing an inert gas such as argon gas during the cooling period after the firing step in the conventional reduction diffusion method when the predetermined cooling temperature was reached. In addition, it is only necessary to replace a part or the whole of the argon gas flow with hydrogen gas for a suitable time.

【0014】このようにして、水素処理された焼成物
は、室温に冷却された後大気中に曝されるだけで自然崩
壊が進行し、従来必要であった焼成物の1cm角大程度
への粗粉砕工程を省略することができるばかりでなく、
従来の粗粉砕工程後の粒度よりも細粒に崩壊するので、
その後の水洗分離工程における時間短縮を図ることがで
き、篩分け、デカンテーション繰り返し操作回数などを
大幅に削減することができる。そして、これによって廃
液処理量の削減、合金粉末製品の回収率の向上並びに製
品純度の向上を果たすことができるのである。また、水
素処理にロータリーキルンなどを用いれば、粉状化した
焼成体が得られる。
As described above, the hydrogenated calcined product undergoes spontaneous disintegration simply by being exposed to the atmosphere after being cooled to room temperature, and the calcined product which has been conventionally required has a size of about 1 cm square. Not only can the coarse crushing step be omitted,
Since it disintegrates into finer particles than the particle size after the conventional coarse crushing process,
It is possible to shorten the time in the subsequent water-washing separation step, and to significantly reduce the number of times of sieving and decantation repetitive operations. As a result, the amount of waste liquid treated can be reduced, the recovery rate of alloy powder products can be improved, and the product purity can be improved. If a rotary kiln or the like is used for the hydrogen treatment, a powdered fired body can be obtained.

【0015】[0015]

【実施例】以下、本発明を実施例に基づいて詳細に説明
する。実施例1〜実施例9および比較例1〜比較例2
おいてはSm−Co系合金粉末の製造例について、また
実施例10〜実施例19および比較例3〜比較例4にお
いてはNd−Fe−B系の製造例について示した。
EXAMPLES The present invention will be described in detail below based on examples. In Examples 1 to 9 and Comparative Examples 1 and 2 , the production examples of the Sm-Co alloy powder were
In Examples 10 to 19 and Comparative Examples 3 to 4 , Nd-Fe-B-based production examples were shown.

【0016】実施例1 合金生産規模1.0kgを目標として、酸化サマリウム
粉末460g、コバルト粉末660g、金属カルシウム
198g(酸化サマリウムの還元に必要な化学量論量の
1.25倍)および無水塩化カルシウム46g(いずれ
の原料も純度99%以上)をアルゴン雰囲気中で混合
し、混合物をステンレススチール製反応容器(焼成炉)
内に封入し、アルゴンガス気流中で1150℃まで約1
時間かけて昇温し、同温度で約4時間保持しさらに10
00℃で2時間保持して還元拡散反応を行わせた後50
0℃まで冷却し、この時点でアルゴンガスを水素ガスに
置換した。この状態で2時間放置後、さらに反応容器内
を再びアルゴンガスで置換し、次いで室温まで冷却して
塊状の反応生成物を容器から取り出して50リットルの
水中に投入し、1時間撹拌して該塊状反応生成物を十分
に水中崩壊させてスラリー状にし、得られたスラリーか
らCa(OH)を含む懸濁物を分離し、残部を48メ
ッシュの篩で篩分けして篩下を回収した。回収量を表1
に示す。
Example 1 Aiming at an alloy production scale of 1.0 kg, 460 g of samarium oxide powder, 660 g of cobalt powder, 198 g of metallic calcium (1.25 times the stoichiometric amount required for reduction of samarium oxide) and anhydrous calcium chloride. 46 g (both raw materials have a purity of 99% or more) were mixed in an argon atmosphere, and the mixture was made into a stainless steel reaction vessel (firing furnace).
It is sealed inside and up to 1150 ° C in argon gas flow for about 1
The temperature rises over a period of time, and the temperature is maintained for about 4 hours and then 10
After holding at 00 ° C for 2 hours to carry out the reduction diffusion reaction, 50
After cooling to 0 ° C., the argon gas was replaced with hydrogen gas at this point. After standing in this state for 2 hours, the inside of the reaction vessel was replaced with argon gas again, then cooled to room temperature, the reaction product in the form of a lump was taken out of the vessel, and put into 50 liters of water, and stirred for 1 hour. The lumpy reaction product was sufficiently disintegrated in water to form a slurry, and a suspension containing Ca (OH) 2 was separated from the obtained slurry, and the remainder was sieved with a 48-mesh sieve to recover the lower portion of the sieve. . Table 1 shows the collection amount
Shown in.

【0017】次に、篩上および篩下の両者を混合して、
50リットルの純水を注水後、合金粉末が沈降するのを
確認してデカンテーションにより排水する操作をスラリ
ーのpHが10以下になるまで繰り返し行った。このデ
カンテーション繰り返し回数を表1に示す。次いで、さ
らに48メッシュの篩で篩分けして篩下の合金粉末を回
収し、吸引濾過後エタノールで洗浄し、50℃、10
−2Torrの真空中において8時間乾燥を行いSm−
Co系合金粉末製品を得た。最終製品回収量を表1に示
す。
Next, both the upper and lower sieves are mixed,
After pouring 50 liters of pure water and confirming that the alloy powder was settled, the operation of draining by decantation was repeated until the pH of the slurry became 10 or less. Table 1 shows the number of repetitions of this decantation. Then, the alloy powder under the sieve is recovered by further sieving with a 48-mesh sieve, suction-filtered and washed with ethanol.
For 8 hours drying in a vacuum of -2 Torr Sm-
A Co-based alloy powder product was obtained. The final product recovery amount is shown in Table 1.

【0018】実施例2 実施例1と同様の組成の原料を、実施例1と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、さらにアルゴンガス中で100℃に加熱し、同温
度で反応容器内の雰囲気を水素ガスに置換し、2時間水
素雰囲気中での熱処理を行った。これにより得られた反
応生成物を実施例1と同様の手順で湿式処理してSm−
Co系合金粉末製品を得た。本実施例における反応生成
物の水中投入後篩分けした篩下回収量、pH10以下に
至るまでのデカンテーション回数および最終製品回収量
を表1に示す。
Example 2 A reaction product obtained by subjecting a raw material having the same composition as in Example 1 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 1 was used as it was in argon gas. After cooling to room temperature, it was further heated to 100 ° C. in argon gas, the atmosphere in the reaction vessel was replaced with hydrogen gas at the same temperature, and heat treatment was performed in a hydrogen atmosphere for 2 hours. The reaction product thus obtained was wet treated in the same procedure as in Example 1 to obtain Sm-
A Co-based alloy powder product was obtained. Table 1 shows the amount of the under-sieve recovered after the reaction product was charged in water and sieved, the number of decantations until reaching pH 10 or less, and the amount of the final product recovered in this example.

【0019】実施例3 実施例1と同様の組成の原料を、実施例1と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、さらにアルゴンガス中で200℃に加熱し、同温
度で反応容器内の雰囲気を水素ガスに置換し、2時間水
素雰囲気中での熱処理を行った。これにより得られた反
応生成物を実施例1と同様の手順で湿式処理してSm−
Co系合金粉末製品を得た。本実施例における反応生成
物の水中投入後篩分けした篩下回収量、pH10以下に
至るまでのデカンテーション回数および最終製品回収量
を表1に示す。
Example 3 A reaction product obtained by subjecting a raw material having the same composition as in Example 1 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 1 was directly used in argon gas. After cooling to room temperature, it was further heated to 200 ° C. in argon gas, the atmosphere in the reaction vessel was replaced with hydrogen gas at the same temperature, and heat treatment was performed in a hydrogen atmosphere for 2 hours. The reaction product thus obtained was wet treated in the same procedure as in Example 1 to obtain Sm-
A Co-based alloy powder product was obtained. Table 1 shows the amount of the under-sieve recovered after the reaction product was charged in water and sieved, the number of decantations until reaching pH 10 or less, and the amount of the final product recovered in this example.

【0020】実施例4 実施例1と同様の組成の原料を、実施例1と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、さらにアルゴンガス中で300℃に加熱し、同温
度で反応容器内の雰囲気を水素ガスに置換し、2時間水
素雰囲気中での熱処理を行った。これにより得られた反
応生成物を実施例1と同様の手順で湿式処理してSm−
Co系合金粉末製品を得た。本実施例における反応生成
物の水中投入後篩分けした篩下回収量、pH10以下に
至るまでのデカンテーション回数および最終製品回収量
を表1に示す。
Example 4 A reaction product obtained by subjecting a raw material having the same composition as in Example 1 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 1 was directly used in argon gas. After cooling to room temperature, it was further heated to 300 ° C. in argon gas, the atmosphere in the reaction vessel was replaced with hydrogen gas at the same temperature, and heat treatment was performed in a hydrogen atmosphere for 2 hours. The reaction product thus obtained was wet treated in the same procedure as in Example 1 to obtain Sm-
A Co-based alloy powder product was obtained. Table 1 shows the amount of the under-sieve recovered after the reaction product was charged in water and sieved, the number of decantations until reaching pH 10 or less, and the amount of the final product recovered in this example.

【0021】実施例5 実施例1と同様の組成の原料を、実施例1と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、さらにアルゴンガス中で400℃に加熱し、同温
度で反応容器内の雰囲気を水素ガスに置換し、2時間水
素雰囲気中での熱処理を行った。これにより得られた反
応生成物を実施例1と同様の手順で湿式処理してSm−
Co系合金粉末製品を得た。本実施例における反応生成
物の水中投入後篩分けした篩下回収量、pH10以下に
至るまでのデカンテーション回数および最終製品回収量
を表1に示す。
Example 5 A reaction product obtained by subjecting a raw material having the same composition as in Example 1 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 1 was directly used in argon gas. After cooling to room temperature, it was further heated to 400 ° C. in argon gas, the atmosphere in the reaction vessel was replaced with hydrogen gas at the same temperature, and heat treatment was performed in a hydrogen atmosphere for 2 hours. The reaction product thus obtained was wet treated in the same procedure as in Example 1 to obtain Sm-
A Co-based alloy powder product was obtained. Table 1 shows the amount of the under-sieve recovered after the reaction product was charged in water and sieved, the number of decantations until reaching pH 10 or less, and the amount of the final product recovered in this example.

【0022】実施例6 実施例1と同様の組成の原料を、実施例1と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、さらにアルゴンガス中で500℃に加熱し、同温
度で反応容器内の雰囲気を水素ガスに置換し、2時間水
素雰囲気中での熱処理を行った。これにより得られた反
応生成物を実施例1と同様の手順で湿式処理してSm−
Co系合金粉末製品を得た。本実施例における反応生成
物の水中投入後篩分けした篩下回収量、pH10以下に
至るまでのデカンテーション回数および最終製品回収量
を表1に示す。
Example 6 A reaction product obtained by subjecting a raw material having the same composition as in Example 1 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 1 was used as it was in argon gas. After cooling to room temperature, it was further heated to 500 ° C. in argon gas, the atmosphere in the reaction vessel was replaced with hydrogen gas at the same temperature, and heat treatment was performed in a hydrogen atmosphere for 2 hours. The reaction product thus obtained was wet treated in the same procedure as in Example 1 to obtain Sm-
A Co-based alloy powder product was obtained. Table 1 shows the amount of the under-sieve recovered after the reaction product was charged in water and sieved, the number of decantations until reaching pH 10 or less, and the amount of the final product recovered in this example.

【0023】実施例7 実施例1と同様の組成の原料を、実施例1と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、反応容器内を10−2Torrになるまで排気
し、次いで反応容器内に水素ガスを0.1Torrにな
るまで導入し、2時間水素雰囲気中放置した。これによ
り得られた反応生成物を実施例1と同様の手順で湿式処
理してSm−Co系合金粉末製品を得た。本実施例にお
ける反応生成物の水中投入後篩分けした篩下回収量、p
H10以下に至るまでのデカンテーション回数および最
終製品回収量を表1に示す。
Example 7 A reaction product obtained by subjecting a raw material having the same composition as in Example 1 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 1 was used as it was in argon gas. After cooling to room temperature, the inside of the reaction vessel was evacuated to 10 −2 Torr, then hydrogen gas was introduced into the reaction vessel until it became 0.1 Torr, and left in a hydrogen atmosphere for 2 hours. The reaction product thus obtained was wet-treated in the same procedure as in Example 1 to obtain an Sm-Co based alloy powder product. The amount of the under-sieve recovered after pouring the reaction product into water in this Example, p
Table 1 shows the number of decantations and the final product recovery amount up to H10 or less.

【0024】実施例8 合金生産規模1.0kgを目標として、酸化サマリウム
粉末460g、コバルト粉末660g、金属カルシウム
198g(酸化サマリウムの還元に必要な化学量論量の
1.25倍、いずれの原料も純度99%以上)をアルゴ
ン雰囲気中で混合し、混合物をステンレススチール製反
応容器内に封入し、アルゴンガス気流中で1150℃ま
で約1時間かけて昇温し、同温度で約4時間保持しさら
に1000℃で2時間保持して還元拡散反応を行わせた
後室温まで冷却し、アルゴンガスを水素ガスに置換し
た。この状態で2時間放置後、さらに容器内をアルゴン
ガスで置換し、次いで塊状の反応生成物を容器から取り
出して50リットルの水中に投入し、1時間撹拌を行っ
て該塊状の反応生成物を十分に水中崩壊させてスラリー
状にし、得られたスラリーからCa(OH)の懸濁物
を分離し、残部を48メッシュの篩で篩分けして篩下を
回収した。篩下回収量を表1に示す。
Example 8 Aiming at an alloy production scale of 1.0 kg, 460 g of samarium oxide powder, 660 g of cobalt powder, and 198 g of metallic calcium (1.25 times the stoichiometric amount required for reduction of samarium oxide, all raw materials were used). (Purity 99% or more) is mixed in an argon atmosphere, the mixture is sealed in a stainless steel reaction container, heated to 1150 ° C. in an argon gas stream over about 1 hour, and kept at the same temperature for about 4 hours. Further, the mixture was held at 1000 ° C. for 2 hours to carry out a reduction diffusion reaction and then cooled to room temperature, and the argon gas was replaced with hydrogen gas. After standing for 2 hours in this state, the inside of the container was further replaced with argon gas, and then the lumpy reaction product was taken out of the container and put into 50 liters of water, followed by stirring for 1 hour to remove the lumpy reaction product. It was sufficiently disintegrated in water to form a slurry, and a suspension of Ca (OH) 2 was separated from the obtained slurry, and the remainder was sieved with a 48-mesh sieve to recover the lower portion of the sieve. Table 1 shows the recovery amount under the sieve.

【0025】次ぎに、篩上および篩下の両者を混合し
て、50リットルの純水を注水後、合金粉末が沈降する
のを確認してデカンテーションにより排水する操作をス
ラリーのpHが10以下になるまで繰り返し行った。こ
のデカンテーション繰り返し回数を表1に示す。次い
で、さらに48メッシュの篩で篩分けして篩下の合金粉
末を回収し、吸引濾過後エタノールで洗浄し、50℃、
10−2Torrの真空中において8時間乾燥を行いS
m−Co系合金粉末製品を得た。最終製品回収量を表1
に示す。
Next, after mixing both the upper and lower sieves and pouring 50 liters of pure water, it was confirmed that the alloy powder had settled and drained by decantation. The pH of the slurry was 10 or less. Repeatedly until. Table 1 shows the number of repetitions of this decantation. Next, the alloy powder under the sieve is recovered by further sieving with a 48-mesh sieve, suction-filtered, and washed with ethanol.
After drying in a vacuum of 10 −2 Torr for 8 hours, S
An m-Co alloy powder product was obtained. Table 1 shows the amount of final product collected
Shown in.

【0026】比較例1 実施例1と同様の組成の原料を、実施例1と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、反応容器内の雰囲気を水素ガスに置換し、水素ガ
ス雰囲気内での保持を行わずにただちに反応容器内から
取り出した反応生成物を実施例1と同様の手順で湿式処
理して合金粉末製品を得た。本比較例における反応生成
物の水中投入後篩分けした篩下回収量、pH10以下に
至るまでのデカンテーション回数および最終製品回収量
を表1に示す。
Comparative Example 1 A reaction product obtained by subjecting a raw material having the same composition as in Example 1 to a reduction diffusion reaction in a reaction vessel under the same reaction conditions as in Example 1 was directly used in argon gas. After cooling to room temperature, the atmosphere in the reaction vessel was replaced with hydrogen gas, and the reaction product immediately taken out of the reaction vessel without holding in the hydrogen gas atmosphere was wet-treated in the same manner as in Example 1. Then, an alloy powder product was obtained. Table 1 shows the amount of the under-sieve recovered after the reaction product was charged into water and sieved, the number of decantations until reaching pH 10 or less, and the amount of the final product recovered in this comparative example.

【0027】実施例9 実施例1と同様の組成の原料を、実施例1と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた反
応生成物を、そのままアルゴンガス中で室温まで冷却し
た後、さらにアルゴンガス中で650℃に加熱し、同温
度で反応容器内の雰囲気を水素ガスに置換し、2時間水
素雰囲気中での熱処理を行った。これにより得られた塊
状反応生成物を実施例1と同様の手順で湿式処理してS
m−Co系合金粉末製品を得た。本実施例における反応
生成物の水中投入後篩分けした篩下回収量、pH10以
下に至るまでのデカンテーション回数および最終製品回
収量を表1に示す。
[0027]Example 9 A raw material having the same composition as in Example 1 was reacted in the same manner as in Example 1.
The reaction obtained by carrying out the reduction diffusion reaction in the reaction vessel under the conditions
The reaction product was cooled to room temperature in argon gas as it was.
After that, heat to 650 ° C in argon gas at the same temperature.
The atmosphere in the reaction vessel is replaced with hydrogen gas at a temperature of
The heat treatment was performed in an elementary atmosphere. Lump obtained by this
The reaction product was wet treated in the same manner as in Example 1 to give S.
An m-Co alloy powder product was obtained. BookExampleReaction in
The amount of the product collected under the sieve after the product was put into water and screened, pH 10 or more
Number of decantations and final product times to the bottom
The yield is shown in Table 1.

【0028】比較例2 実施例1と同様の組成の原料を、実施例1と同様の反応
条件で反応容器内で還元拡散反応を行わせて得られた塊
状反応生成物を、そのままアルゴンガス中で室温まで冷
却した後、該反応生成物を実施例1と同様の手順で湿式
処理してSm−Co系合金粉末製品を得た。本比較例に
おける反応生成物の水中投入後篩分けした篩下回収量、
pH10以下に至るまでのデカンテーション回数および
最終製品回収量を表1に示す。
[0028]Comparative example 2 A raw material having the same composition as in Example 1 was reacted in the same manner as in Example 1.
Mass obtained by carrying out reduction diffusion reaction in the reaction vessel under the conditions
The reaction product was cooled in argon gas to room temperature.
Then, the reaction product was wet-processed by the same procedure as in Example 1.
It processed and the Sm-Co type alloy powder product was obtained. In this comparative example
Amount of the reaction product under the sieve which was sieved after being put in water,
The number of decantations to reach pH 10 or below and
The final product recovery amount is shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】表1の結果より分かるように、本発明の実
施例1〜実施例8によるものは、比較例1およびによ
るものに比べて水中崩壊後の篩下回収量が多く、またデ
カンテーションの繰り返し操作回数が少なくて済み、さ
らに最終製品回収量も高い。また、実施例9の結果で
は、水中崩壊後の回収量、デカンテーション操作回数、
製品回収量は、本発明の他の実施例のものと殆ど変わり
はないが、反応生成物中において主相を構成するSm
Co相が分解を起こし、コバルトおよびサマリウム水
酸化物などが生成し、そのままでは良好な磁石粉末製品
を得ることができない場合があった
As can be seen from the results in Table 1, the samples according to Examples 1 to 8 of the present invention have a larger amount of under-sieving recovery after water disintegration than the samples according to Comparative Examples 1 and 2, and decantation. The number of repeated operations is small, and the final product recovery amount is high. In addition, in the results of Example 9 , the recovery amount after the underwater collapse, the number of decantation operations,
The amount of product recovered is almost the same as that of the other examples of the present invention, but Sm 1 constituting the main phase in the reaction product is
Co 5 phase cause degradation, such as cobalt and samarium hydroxide is produced, there may not be possible that the intact obtain good magnetic powder product.

【0031】実施例10 合金生産規模1.0kgを目標として、酸化ネオジウム
粉末405g、鉄粉末608g、硼素含有量19.0%
のフェロボロン粉末65g、金属カルシウム217g
(酸化ネオジウムの還元に必要な化学量論量の1.5
倍)および無水酸化カルシウム46g(いずれの原料も
純度99%以上)をアルゴン雰囲気中で混合し、混合物
をステンレススチール製反応容器(焼成炉)内に封入
し、アルゴンガス気流中で1000℃まで約1時間かけ
て昇温し、同温度で約2時間保持して還元拡散反応を行
わせた後500℃まで冷却し、この時点で反応容器内の
アルゴンガスを水素ガスに置換した。この状態で2時間
放置後、さらに反応容器内を再びアルゴンガスで置換
し、次いで室温まで冷却して塊状の反応生成物を容器か
ら取り出して50リットルの水中に投入し、1時間撹拌
して該塊状生成物を十分に水中崩壊させてスラリー状と
し、得られたスラリーからCa(OH)を含む懸濁物
を分離し、残部を48メッシュの篩で篩分けして篩下を
回収した。該篩下回収量を表2に示す。
[0031]Example 10 Neodymium oxide targeting alloy production scale of 1.0 kg
Powder 405g, iron powder 608g, boron content 19.0%
65g of ferroboron powder, 217g of metallic calcium
(Stoichiometric amount of 1.5 required for reduction of neodymium oxide
Times) and 46 g of anhydrous calcium oxide (both raw materials
(Purity 99% or more) is mixed in an argon atmosphere to obtain a mixture.
Enclosed in a stainless steel reaction vessel (firing furnace)
Then, it takes about 1 hour to 1000 ℃ in an argon gas stream.
The temperature is raised and held at the same temperature for about 2 hours to carry out the reduction diffusion reaction.
Then, cool to 500 ° C, and at this point,
The argon gas was replaced with hydrogen gas. 2 hours in this state
After standing, the inside of the reaction vessel was replaced with argon gas again.
And then cool to room temperature to remove the bulk reaction product from the container.
Take it out and put it in 50 liters of water and stir for 1 hour
Then, the massive product is sufficiently disintegrated in water to form a slurry form.
From the resulting slurry Ca (OH)TwoSuspension containing
And the rest is sieved with a 48-mesh sieve and
Recovered. The amount recovered under the sieve is shown in Table 2.

【0032】次に、篩上および篩下の両者を混合して、
50リットルの純水を注水後、合金粉末が沈降するのを
確認してデカンテーションにより排水する操作をスラリ
ーのpHが10以下になるまで繰り返し行った。このデ
カンテーション繰り返し回数を表2に示す。次いで、さ
らに48メッシュの篩で篩分けして篩下の合金粉末を回
収し、吸引濾過後エタノールで洗浄し、50℃、10
−2Torrの真空中で8時間乾燥を行いNd−Fe−
B系合金粉末製品を得た。最終製品回収量を表2に示
す。
Next, both the upper and lower sieves are mixed,
After pouring 50 liters of pure water and confirming that the alloy powder was settled, the operation of draining by decantation was repeated until the pH of the slurry became 10 or less. The number of repetitions of this decantation is shown in Table 2. Then, the alloy powder under the sieve is recovered by further sieving with a 48-mesh sieve, suction-filtered and washed with ethanol.
Nd-Fe- for 8 hours drying in vacuo at -2 Torr
A B-based alloy powder product was obtained. The final product recovery amount is shown in Table 2.

【0033】実施例11 実施例10 と同様の組成の原料を、実施例10と同様の
反応条件で反応容器内で還元拡散反応を行わせて得られ
た反応生成物を、そのままアルゴンガス中で室温まで冷
却した後、さらにアルゴンガス中で100℃に加熱し、
同温度で反応容器内の雰囲気を水素ガスに置換し、2時
間水素雰囲気中での熱処理を行った。これにより得られ
た反応生成物を実施例10と同様の手順で湿式処理して
Nd−Fe−B系合金粉末製品を得た。本実施例におけ
る反応生成物の水中投入後篩分けした篩下回収量、pH
10以下に至るまでのデカンテーション回数および最終
製品回収量を表2に示す。
[0033]Example 11 Example 10 Raw materials with the same composition asExample 10Similar to
It is obtained by performing a reduction diffusion reaction in the reaction vessel under the reaction conditions.
The reaction product was cooled to room temperature in argon gas.
Then, heat to 100 ℃ in argon gas,
At the same temperature, replace the atmosphere in the reaction vessel with hydrogen gas and
Heat treatment was performed in a hydrogen atmosphere. Obtained by this
Reaction productsExample 10Wet treatment in the same procedure as
An Nd-Fe-B based alloy powder product was obtained. In this example
Amount of the reaction product obtained by pouring the reaction product into water after screening, pH
Decant counts up to 10 and below and final
The product recovery amount is shown in Table 2.

【0034】実施例12 実施例10 と同様の組成の原料を、実施例10と同様の
反応条件で反応容器内で還元拡散反応を行わせて得られ
た反応生成物を、そのままアルゴンガス中で室温まで冷
却した後、さらにアルゴンガス中で200℃に加熱し、
同温度で反応容器内の雰囲気を水素ガスに置換し、2時
間水素雰囲気中での熱処理を行った。これにより得られ
た反応生成物を実施例10と同様の手順で湿式処理して
Nd−Fe−B系合金粉末製品を得た。本実施例におけ
る反応生成物の水中投入後篩分けした篩下回収量、pH
10以下に至るまでのデカンテーション回数および最終
製品回収量を表2に示す。
[0034]Example 12 Example 10 Raw materials with the same composition asExample 10Similar to
It is obtained by performing a reduction diffusion reaction in the reaction vessel under the reaction conditions.
The reaction product was cooled to room temperature in argon gas.
Then, heat to 200 ℃ in argon gas,
At the same temperature, replace the atmosphere in the reaction vessel with hydrogen gas and
Heat treatment was performed in a hydrogen atmosphere. Obtained by this
Reaction productsExample 10Wet treatment in the same procedure as
An Nd-Fe-B based alloy powder product was obtained. In this example
Amount of the reaction product obtained by pouring the reaction product into water after screening, pH
Decant counts up to 10 and below and final
The product recovery amount is shown in Table 2.

【0035】実施例13 実施例10 と同様の組成の原料を、実施例10と同様の
反応条件で反応容器内で還元拡散反応を行わせて得られ
た反応生成物を、そのままアルゴンガス中で室温まで冷
却した後、さらにアルゴンガス中で300℃に加熱し、
同温度で反応容器内の雰囲気を水素ガスに置換し、2時
間水素雰囲気中での熱処理を行った。これにより得られ
た反応生成物を実施例10と同様の手順で湿式処理して
Nd−Fe−B系合金粉末製品を得た。本実施例におけ
る反応生成物の水中投入後篩分けした篩下回収量、pH
10以下に至るまでのデカンテーション回数および最終
製品回収量を表2に示す。
[0035]Example 13 Example 10 Raw materials with the same composition asExample 10Similar to
It is obtained by performing a reduction diffusion reaction in the reaction vessel under the reaction conditions.
The reaction product was cooled to room temperature in argon gas.
Then, heat to 300 ℃ in argon gas,
At the same temperature, replace the atmosphere in the reaction vessel with hydrogen gas and
Heat treatment was performed in a hydrogen atmosphere. Obtained by this
Reaction productsExample 10Wet treatment in the same procedure as
An Nd-Fe-B based alloy powder product was obtained. In this example
Amount of the reaction product obtained by pouring the reaction product into water after screening, pH
Decant counts up to 10 and below and final
The product recovery amount is shown in Table 2.

【0036】実施例14 実施例10 と同様の組成の原料を、実施例10と同様の
反応条件で反応容器内で還元拡散反応を行わせて得られ
た反応生成物を、そのままアルゴンガス中で室温まで冷
却した後、さらにアルゴンガス中で400℃に加熱し、
同温度で反応容器内の雰囲気を水素ガスに置換し、2時
間水素雰囲気中での熱処理を行った。これにより得られ
た反応生成物を実施例10と同様の手順で湿式処理して
Nd−Fe−B系合金粉末製品を得た。本実施例におけ
る反応生成物の水中投入後篩分けした篩下回収量、pH
10以下に至るまでのデカンテーション回数および最終
製品回収量を表2に示す。
[0036]Example 14 Example 10 Raw materials with the same composition asExample 10Similar to
It is obtained by performing a reduction diffusion reaction in the reaction vessel under the reaction conditions.
The reaction product was cooled to room temperature in argon gas.
Then, heat to 400 ℃ in argon gas,
At the same temperature, replace the atmosphere in the reaction vessel with hydrogen gas and
Heat treatment was performed in a hydrogen atmosphere. Obtained by this
Reaction productsExample 10Wet treatment in the same procedure as
An Nd-Fe-B based alloy powder product was obtained. In this example
Amount of the reaction product obtained by pouring the reaction product into water after screening, pH
Decant counts up to 10 and below and final
The product recovery amount is shown in Table 2.

【0037】実施例15 実施例10 と同様の組成の原料を、実施例10と同様の
反応条件で反応容器内で還元拡散反応を行わせて得られ
た反応生成物を、そのままアルゴンガス中で室温まで冷
却した後、さらにアルゴンガス中で500℃に加熱し、
同温度で反応容器内の雰囲気を水素ガスに置換し、2時
間水素雰囲気中での熱処理を行った。これにより得られ
た反応生成物を実施例10と同様の手順で湿式処理して
Nd−Fe−B系合金粉末製品を得た。本実施例におけ
る反応生成物の水中投入後篩分けした篩下回収量、pH
10以下に至るまでのデカンテーション回数および最終
製品回収量を表2に示す。
[0037]Example 15 Example 10 Raw materials with the same composition asExample 10Similar to
It is obtained by performing a reduction diffusion reaction in the reaction vessel under the reaction conditions.
The reaction product was cooled to room temperature in argon gas.
Then, heat to 500 ℃ in argon gas,
At the same temperature, replace the atmosphere in the reaction vessel with hydrogen gas and
Heat treatment was performed in a hydrogen atmosphere. Obtained by this
Reaction productsExample 10Wet treatment in the same procedure as
An Nd-Fe-B based alloy powder product was obtained. In this example
Amount of the reaction product obtained by pouring the reaction product into water after screening, pH
Decant counts up to 10 and below and final
The product recovery amount is shown in Table 2.

【0038】実施例16 実施例10 と同様の組成の原料を、実施例10と同様の
反応条件で反応容器内で還元拡散反応を行わせて得られ
た反応生成物を、そのままアルゴンガス中で室温まで冷
却した後、さらにアルゴンガス中で600℃に加熱し、
同温度で反応容器内の雰囲気を水素ガスに置換し、2時
間水素雰囲気中での熱処理を行った。これにより得られ
た反応生成物を実施例10と同様の手順で湿式処理して
Nd−Fe−B系合金粉末製品を得た。本実施例におけ
る反応生成物の水中投入後篩分けした篩下回収量、pH
10以下に至るまでのデカンテーション回数および最終
製品回収量を表2に示す。
[0038]Example 16 Example 10 Raw materials with the same composition asExample 10Similar to
It is obtained by performing a reduction diffusion reaction in the reaction vessel under the reaction conditions.
The reaction product was cooled to room temperature in argon gas.
And then heated to 600 ℃ in argon gas,
At the same temperature, replace the atmosphere in the reaction vessel with hydrogen gas and
Heat treatment was performed in a hydrogen atmosphere. Obtained by this
Reaction productsExample 10Wet treatment in the same procedure as
An Nd-Fe-B based alloy powder product was obtained. In this example
Amount of the reaction product obtained by pouring the reaction product into water after screening, pH
Decant counts up to 10 and below and final
The product recovery amount is shown in Table 2.

【0039】実施例17 実施例10 と同様の組成の原料を、実施例10と同様の
反応条件で反応容器内で還元拡散反応を行わせて得られ
た反応生成物を、そのままアルゴンガス中で室温まで冷
却した後、反応容器内を10−2Torrになるまで排
気し、次いで反応容器内に水素ガスを0.1Torrに
なるまで導入し、2時間水素雰囲気中で放置した。これ
により得られた反応生成物を実施例10と同様の手順で
処理してNd−Fe−B系合金粉末製品を得た。本実施
例における反応生成物の水中投入後篩分けした篩下回収
量、pH10以下に至るまでのデカンテーション回数お
よび最終製品回収量を表2に示す。
[0039]Example 17 Example 10 Raw materials with the same composition asExample 10Similar to
It is obtained by performing a reduction diffusion reaction in the reaction vessel under the reaction conditions.
The reaction product was cooled to room temperature in argon gas.
After disposing, 10-2Exhausted until it becomes Torr
And then hydrogen gas to 0.1 Torr in the reaction vessel.
It was introduced until the temperature reached to 0 ° C. and left for 2 hours in a hydrogen atmosphere. this
The reaction product obtained byExample 10With the same procedure as
It processed and the Nd-Fe-B type | system | group alloy powder product was obtained. Implementation
Under-sieving recovery of the reaction product in Example after addition to water
Amount, the number of decantations to reach pH 10 or less
Table 2 shows the final product recovery amount.

【0040】実施例18 合金生産規模1.0kgを目標として、酸化ネオジウム
粉末405g、鉄粉末608g、硼素含有量19.0%
のフェロボロン粉末65g、金属カルシウム217g
(酸化ネオジウムの還元に必要な化学量論量の1.5
倍、いずれの原料も純度99%以上)をアルゴン雰囲気
中で混合し、混合物をステンレススチール製反応容器内
に封入し、アルゴンガス気流中で1000℃まで約1時
間かけて昇温し、同温度で約2時間保持して還元拡散反
応を行わせた後室温まで冷却し、この時点で反応容器内
のアルゴンガスを水素ガスに置換した。この状態で2時
間放置後、さらに反応容器内を再びアルゴンガスで置換
し、塊状の反応生成物を容器から取り出して50リット
ルの水中に投入し、1時間撹拌して該塊状反応生成物を
十分に水中崩壊させてスラリー状にし、得られたスラリ
ーからCa(OH)を含む懸濁物を分離し、残部を4
8メッシュの篩で篩分けして篩下を回収した。該篩下回
収量を表2に示す。
[0040]Example 18 Neodymium oxide targeting alloy production scale of 1.0 kg
Powder 405g, iron powder 608g, boron content 19.0%
65g of ferroboron powder, 217g of metallic calcium
(Stoichiometric amount of 1.5 required for reduction of neodymium oxide
2 times, all raw materials have a purity of 99% or more) in an argon atmosphere
And mix the mixture in a stainless steel reaction vessel
Enclosed in, and up to 1000 ℃ in argon gas flow for about 1 hour
The temperature rises over a period of time, and the temperature is maintained at the same temperature for about 2 hours to reduce the reduction diffusion reaction.
After the reaction, cool to room temperature, and at this point,
The argon gas of was replaced with hydrogen gas. 2:00 in this state
After leaving for a while, the inside of the reaction vessel is replaced with argon gas again.
And remove the lumpy reaction product from the container to 50 liters.
Water and stirred for 1 hour to remove the lumpy reaction product.
Slurry was obtained by sufficiently disintegrating in water to form a slurry.
-Ca (OH)TwoThe suspension containing is separated and the remaining 4
The bottom of the sieve was recovered by sieving with an 8 mesh sieve. Sieving
The yield is shown in Table 2.

【0041】次に、篩上および篩下の両者を混合して、
50リットルの純水を注水後、合金粉末が沈降するのを
確認してデカンテーションにより排水する操作をスラリ
ーのpHが10以下になるまで繰り返し行った。このデ
カンテーション繰り返し回数を表2に示す。次いで、さ
らに48メッシュの篩で篩分けして篩下の合金粉末を回
収し、吸引濾過後エタノールで洗浄し、50℃、10
−2Torrの真空中で8時間乾燥を行い、Nd−Fe
−B系合金粉末製品を得た。最終製品回収量を表2に示
す。
Next, both the upper and lower sieves are mixed,
After pouring 50 liters of pure water and confirming that the alloy powder was settled, the operation of draining by decantation was repeated until the pH of the slurry became 10 or less. The number of repetitions of this decantation is shown in Table 2. Then, the alloy powder under the sieve is recovered by further sieving with a 48-mesh sieve, suction-filtered and washed with ethanol.
-Nd-Fe was dried for 8 hours in a vacuum of -2 Torr.
A B-based alloy powder product was obtained. The final product recovery amount is shown in Table 2.

【0042】比較例3 実施例10 と同様の組成の原料を、実施例10と同様の
反応条件で反応容器内で還元拡散反応を行わせて得られ
た反応生成物を、そのままアルゴンガス中で室温まで冷
却した後、反応容器内の雰囲気を水素ガスに置換し、水
素ガス雰囲気内での保持を行わずに、ただちに反応容器
内から取り出した反応生成物を実施例10と同様の手順
で湿式処理して、Nd−Fe−B系合金粉末製品を得
た。本比較例における反応生成物の水中投入後篩分けし
た篩下回収量、pH10以下に至るまでのデカンテーシ
ョン回数および最終製品回収量を表2に示す。
[0042]Comparative Example 3 Example 10 Raw materials with the same composition asExample 10Similar to
It is obtained by performing a reduction diffusion reaction in the reaction vessel under the reaction conditions.
The reaction product was cooled to room temperature in argon gas.
Then, replace the atmosphere in the reaction vessel with hydrogen gas and
Immediately without holding in the raw gas atmosphere, the reaction vessel
The reaction product taken out from insideExample 10Similar procedure to
Wet treatment with Nd-Fe-B alloy powder product
It was The reaction product in this comparative example was put into water and then screened.
Decantation up to pH 10 or less
Table 2 shows the number of cycles and the amount of final product collected.

【0043】実施例19 実施例10 と同様の組成の原料を、実施例10と同様の
反応条件で反応容器内で還元拡散反応を行わせて得られ
た反応生成物を、そのままアルゴンガス中で室温まで冷
却した後、さらにアルゴンガス中で650℃に加熱し、
同温度で反応容器内の雰囲気を水素ガスに置換し、2時
間水素雰囲気中での熱処理を行った。これにより得られ
た反応生成物を実施例10と同様の手順で湿式処理して
Nd−Fe−B系合金粉末製品を得た。本実施例におけ
る反応生成物の水中投入後篩分けした篩下回収量、pH
10以下に至るまでのデカンテーション回数および最終
製品回収量を表2に示す。
[0043]Example 19 Example 10 Raw materials with the same composition asExample 10Similar to
It is obtained by performing a reduction diffusion reaction in the reaction vessel under the reaction conditions.
The reaction product was cooled to room temperature in argon gas.
Then, heat to 650 ℃ in argon gas,
At the same temperature, replace the atmosphere in the reaction vessel with hydrogen gas and
Heat treatment was performed in a hydrogen atmosphere. Obtained by this
Reaction productsExample 10Wet treatment in the same procedure as
An Nd-Fe-B based alloy powder product was obtained. BookExampleOke
Amount of the reaction product obtained by pouring the reaction product into water after screening, pH
Decant counts up to 10 and below and final
The product recovery amount is shown in Table 2.

【0044】比較例4 実施例10 と同様の組成の原料を、実施例10と同様の
反応条件で反応容器内で還元拡散反応を行わせて得られ
た反応生成物を、そのままアルゴンガス中で室温まで冷
却して、得られた反応生成物を実施例10と同様の手順
で湿式処理してNd−Fe−B系合金粉末製品を得た。
本比較例における反応生成物の水中投入後篩分けした篩
下回収量、pH10以下に至るまでのデカンテーション
回数および最終製品回収量を表2に示す。
[0044]Comparative Example 4 Example 10 Raw materials with the same composition asExample 10Similar to
It is obtained by performing a reduction diffusion reaction in the reaction vessel under the reaction conditions.
The reaction product was cooled to room temperature in argon gas.
The reaction product obtainedExample 10Similar procedure to
Wet treatment was performed to obtain an Nd-Fe-B based alloy powder product.
Sieve screened after charging the reaction product in water in this comparative example
Decantation until lower recovery amount, pH 10 or less
The number of times and the final product recovery amount are shown in Table 2.

【0045】[0045]

【表2】 [Table 2]

【0046】表2の結果より分かるように、本発明の
施例10〜18によるものは、比較例3および4による
ものに比べて水中崩壊後の篩下回収量が多く、またデカ
ンテーションの繰り返し操作回数が少なくて済み、さら
に最終製品回収量も高い。また、実施例19の結果で
は、水中崩壊後の回収量、デカンテーション操作回数、
製品回収量は、本発明の他の実施例のものとその値が殆
ど変わりがないが、反応生成物中の主相を構成するNd
Fe14B相が分解を起こし、αFe、FeB、ネ
オジウム水素化物などが生成し、そのままでは良好な磁
石粉末製品を得ることができなかった。
[0046] As can be seen from the results in Table 2, the fruit of the present invention
Compared to those according to Comparative Examples 3 and 4 , the samples according to Examples 10 to 18 have a larger amount of under-sieving recovery after water disintegration, the number of repeated decantation operations is small, and the final product recovery amount is high. In addition, in the results of Example 19 , the recovery amount after underwater disintegration, the number of decantation operations,
The product recovery amount is almost the same as that of the other examples of the present invention, but the Nd constituting the main phase in the reaction product is
The 2 Fe 14 B phase decomposed to produce αFe, Fe 2 B, neodymium hydride and the like, and a good magnet powder product could not be obtained as it was.

【0047】[0047]

【発明の効果】上述したように、本発明によるときは、
還元拡散反応後の反応生成物に水素処理を施すことによ
って、該反応生成物の崩壊性が向上し、デカンテーショ
ン工程でのpH低下速度が早く排水−注水の繰り返し回
数が少なくて済むために、アルカリ廃液処理量が少なく
なる。また、それに伴い合金粉末製品の回収率も向上
し、かつ湿式処理の工程を大幅に短縮することができる
などその利点は大きい。
As described above, according to the present invention,
By subjecting the reaction product after the reduction diffusion reaction to hydrogen treatment, the disintegration property of the reaction product is improved, and the pH lowering rate in the decantation process is faster, so that the number of drainage-injection repetitions can be reduced, The amount of alkaline waste liquid processed is reduced. In addition, along with this, the recovery rate of the alloy powder product is improved, and the wet treatment process can be significantly shortened, which is a great advantage.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−124815(JP,A) 特開 平9−241708(JP,A) 特開 昭61−295308(JP,A) 特開 昭63−118029(JP,A) 特開 昭63−121606(JP,A) 特開 昭64−48403(JP,A) 特開 昭63−90104(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22F 9/20 ─────────────────────────────────────────────────── --- Continued from the front page (56) References JP-A-6-124815 (JP, A) JP-A-9-241708 (JP, A) JP-A 61-295308 (JP, A) JP-A 63- 118029 (JP, A) JP 63-121606 (JP, A) JP 64-48403 (JP, A) JP 63-90104 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22F 9/20

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 希土類酸化物粉末、遷移金属粉末および
その他の原料粉末に、希土類酸化物粉末を還元するのに
十分な還元剤を混合する工程(A)、得られた混合物を
酸素が実質的に存在しない雰囲気下、還元剤が溶融する
温度以上でかつ所望の合金が溶解しない温度に加熱し、
希土類酸化物を希土類金属に還元すると共に生成した希
土類金属を遷移金属粉末に拡散させる焼成工程(B)、
不活性ガスを流通して、得られた焼成物を冷却する冷却
工程(C)、さらには、冷却された焼成物中に含まれる
残留還元剤および生成した酸化還元剤を水と接触させる
ことにより溶解除去した後、所望の合金粉末を分離回収
する工程(D)を包含する、還元拡散法により希土類/
遷移金属を含む合金粉末を製造する方法において、冷却
工程(C)の間にまたは冷却工程(C)の後に、不活性
ガスの一部または全部を水素に置換し、得られた焼成物
を水素雰囲気下に100〜600℃で水素処理し、その
後再び不活性ガスに置換することにより、水素処理され
た焼成物の水中崩壊性を向上させることを特徴とする希
土類/遷移金属を含む合金粉末の製造方法。
1. A method for reducing a rare earth oxide powder to a rare earth oxide powder, a transition metal powder and other raw material powders.
Step (A) of mixing sufficient reducing agent, heating the resulting mixture to a temperature above the temperature at which the reducing agent melts and above the temperature at which the desired alloy does not melt, in an atmosphere substantially free of oxygen,
A firing step (B) of reducing the rare earth oxide to the rare earth metal and diffusing the produced rare earth metal into the transition metal powder;
A cooling step (C) of circulating an inert gas to cool the obtained calcined product, and further, contacting the residual reducing agent and the produced redox agent contained in the cooled calcined product with water. After dissolution and removal, a rare earth /
In the method for producing an alloy powder containing a transition metal, during the cooling step (C) or after the cooling step (C), a part or all of the inert gas is replaced with hydrogen, and the obtained calcined product is hydrogenated. Hydrogen treatment is performed in an atmosphere at 100 to 600 ° C., and then replaced with an inert gas again to perform hydrogen treatment.
A method for producing an alloy powder containing a rare earth / transition metal, which comprises improving the disintegration property of the fired product in water .
【請求項2】 前記水素処理は、焼成炉内で行われるこ
とを特徴とする請求項1に記載の希土類/遷移金属を含
む合金粉末の製造方法。
2. The method for producing an alloy powder containing a rare earth / transition metal according to claim 1, wherein the hydrogen treatment is performed in a firing furnace.
【請求項3】 前記希土類/遷移金属を含む合金粉末
は、Sm−Co系合金粉末、Sm−Fe系合金粉末また
はNd−Fe−B系合金粉末であることを特徴とする請
求項1又は2に記載の希土類/遷移金属を含む合金粉末
の製造方法。
3. The alloy powder containing a rare earth / transition metal is Sm—Co based alloy powder, Sm—Fe based alloy powder or Nd—Fe—B based alloy powder. The method for producing an alloy powder containing a rare earth / transition metal according to 1.
JP26252296A 1996-01-05 1996-09-11 Method for producing alloy powder containing rare earth and transition metal by reduction diffusion method Expired - Lifetime JP3508419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26252296A JP3508419B2 (en) 1996-01-05 1996-09-11 Method for producing alloy powder containing rare earth and transition metal by reduction diffusion method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-17166 1996-01-05
JP1716696 1996-01-05
JP26252296A JP3508419B2 (en) 1996-01-05 1996-09-11 Method for producing alloy powder containing rare earth and transition metal by reduction diffusion method

Publications (2)

Publication Number Publication Date
JPH09241708A JPH09241708A (en) 1997-09-16
JP3508419B2 true JP3508419B2 (en) 2004-03-22

Family

ID=26353651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26252296A Expired - Lifetime JP3508419B2 (en) 1996-01-05 1996-09-11 Method for producing alloy powder containing rare earth and transition metal by reduction diffusion method

Country Status (1)

Country Link
JP (1) JP3508419B2 (en)

Also Published As

Publication number Publication date
JPH09241708A (en) 1997-09-16

Similar Documents

Publication Publication Date Title
US5728355A (en) Method for recovering reusable rare earth compounds
US4681623A (en) Process for producing alloy powder containing rare earth metals
US8696788B1 (en) Process for the Recovery of AB5 Alloy from Used Nickel/Metal Hydride Batteries
EP0237587A1 (en) Method for producing a rare earth alloy and rare earth alloy
US3883346A (en) Nickel-lanthanum alloy produced by a reduction-diffusion process
JP3777226B2 (en) Method for recovering reusable rare earth-containing compounds
CN102576919B (en) Process for production of hydrogen-storing alloy composition
US4806155A (en) Method for producing dysprosium-iron-boron alloy powder
JPH02166239A (en) Method for decalcification of rare earth
US3918933A (en) Nickel-lanthanum alloy produced by a reduction-diffusion process
JP3508419B2 (en) Method for producing alloy powder containing rare earth and transition metal by reduction diffusion method
JPS5967326A (en) Recovery method of valuable metal from alloy containing rare earth elements
EP0467180A2 (en) Rare earth/transition metal alloy scrap treatment method
JP3151959B2 (en) Method for producing raw material powder for R-TM-B permanent magnet
WO2014066776A1 (en) Process for the recovery of ab5 alloy from used nickel/metal hydride batteries and/or cells
Chen et al. Effect of CaCl2 and NdCl3 on the manufacturing of Nd‐Fe‐B by the reduction‐diffusion process
JP2001181713A (en) Pare earth metal-transition metal alloy powder and producing method therefor
JPS6153413B2 (en)
JPH0578715A (en) Production of alloy powder containing pare-earth metal
JPH08291346A (en) Method for recovering rare earth element from scrap and production of rare earth-transition metal alloy powder
JPH11124605A (en) Manufacture of alloy powder containing rare earth and transition metal
JPS6160809A (en) Production of rare earth alloy powder
JPH0210232B2 (en)
JPH052722B2 (en)
CN116479266A (en) Method for separating main product and by-product of calcium thermal reduction diffusion reaction

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 10

EXPY Cancellation because of completion of term