JPH0376821A - Production of porous carbonaceous sheet - Google Patents

Production of porous carbonaceous sheet

Info

Publication number
JPH0376821A
JPH0376821A JP21289089A JP21289089A JPH0376821A JP H0376821 A JPH0376821 A JP H0376821A JP 21289089 A JP21289089 A JP 21289089A JP 21289089 A JP21289089 A JP 21289089A JP H0376821 A JPH0376821 A JP H0376821A
Authority
JP
Japan
Prior art keywords
sheet
pulp
weight
organic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21289089A
Other languages
Japanese (ja)
Inventor
Yoshihiro Miyamoto
宮本 良博
Osamu Iwaki
岩城 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP21289089A priority Critical patent/JPH0376821A/en
Publication of JPH0376821A publication Critical patent/JPH0376821A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain at low cost the title sheet excellent in electrical conductivity and chemical resistance by papermaking followed by carbonization, of a mixture comprising an organic fiber for carbon fiber production, pulp, carbonaceous powder, organic polymeric powder or emulsion and a dispersion medium. CONSTITUTION:A mixture comprising (A) an organic fiber for carbon fiber production (e.g. rayon), (B) pulp, (C) 5-40wt.% on a solid basis, of carbonaceous powder (based on the weight of the component A+B) (e.g. graphite), (D) 20-160wt.%, on a solid basis, of powder or an emulsion of an organic polymer (e.g. phenolic resin) (based on the weight of the component A + B), and (E) a dispersion medium (pref. water) is put to papermaking into a sheet, which is then dried and carbonized by heating at >=800 (pref. >=2300) deg.C in an inert gas, thus obtaining the objective porous carbonaceous sheet suitable as an electrode base material for fuel cells, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多孔質炭素板の新規な製造方法に関し、詳し
くは、安価で電気伝導性が高く耐薬品性が優れた高品質
の多孔質炭素板の製造方法に関す〔従来の技術〕 従来、多孔質炭素板(以下、炭素繊維シートと略称する
)を得る方法としては、あらかじめ焼成された炭素繊維
をパルプ、及びバインダーと共に抄紙した炭素繊維混抄
紙が知られている。しかしながらこのような混抄紙は、
電気抵抗値が比較的高く、耐薬品性に欠け、燃料電池用
電極基材等の用途には不適当であった。これらの性能の
改善方法として、上記混抄紙を熱硬化性樹脂の溶液に含
浸させ、再度、不活性雰囲気中で加熱炭化する方法が知
られている。この方法ではパルプ等の有機物が加熱処理
により炭化されるため、電気抵抗値が低く、耐薬品性も
改善された繊維紙が得られる。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a new method for manufacturing porous carbon plates, and more specifically, the present invention relates to a novel method for producing porous carbon plates, and more particularly, the present invention relates to a novel method for manufacturing porous carbon plates. [Prior art] Regarding the manufacturing method of carbon plates [Prior art] Conventionally, as a method for obtaining porous carbon plates (hereinafter abbreviated as carbon fiber sheets), carbon fibers are produced by making paper from pre-fired carbon fibers together with pulp and a binder. Mixed paper is known. However, such mixed paper
It had a relatively high electrical resistance value and lacked chemical resistance, making it unsuitable for applications such as fuel cell electrode base materials. As a method for improving these properties, a method is known in which the above-mentioned mixed paper is impregnated with a thermosetting resin solution and heated and carbonized again in an inert atmosphere. In this method, organic substances such as pulp are carbonized by heat treatment, so fiber paper with low electrical resistance and improved chemical resistance can be obtained.

しかしながら炭素繊維自身が高弾性率を有するため繊維
の接触部が十分に結合されず、そのため、十分な低電気
抵抗の炭素繊維紙は得られにくかった。
However, since the carbon fiber itself has a high modulus of elasticity, the contact portions of the fibers are not sufficiently bonded, making it difficult to obtain carbon fiber paper with sufficiently low electrical resistance.

また炭素繊維は比重が高いため、嵩高な多孔質板が得ら
れにくく、各種用途に適合した嵩密度および孔径にコン
トロールするのがむずかしい。しかも、繊維化、及びシ
ート化の各段階で焼成工程が必要なため、非常に高価格
なものになる欠点を有しており、その為、安価な製造方
法の開発が望まれていた。また、上記の方法では、均一
な厚みの厚手シートを抄紙するのはむづかしく、又炭素
繊維は親水性がなく、高弾性のため、パルプとの接着が
悪く、シート強度が弱い欠点があった。その為パルプ以
外のバインダー繊維の配合が必要であった(特公昭53
−18603)。本発明者らは先に、湿式抄紙法による
方法を出願(特願昭57−226494号〉したが、上
記方法と同様バインダー繊維を使用するため、多孔質の
シートが得られにくい欠点があった。また、この方法で
は、バインダー繊維等が抄紙時にドライヤーやカンバス
に付着し、定常的操業を困難にするという欠点があった
Furthermore, since carbon fiber has a high specific gravity, it is difficult to obtain a bulky porous plate, and it is difficult to control the bulk density and pore diameter to suit various uses. Moreover, since a firing process is required at each stage of fiberization and sheet formation, it has the disadvantage of being extremely expensive.Therefore, there has been a desire to develop an inexpensive manufacturing method. In addition, with the above method, it was difficult to make thick sheets with uniform thickness, and carbon fibers were not hydrophilic and had high elasticity, so they had the disadvantage of poor adhesion to pulp and weak sheet strength. . Therefore, it was necessary to mix binder fibers other than pulp (Special Publications Publication No. 53
-18603). The present inventors previously applied for a wet papermaking method (Japanese Patent Application No. 57-226494), but as with the above method, binder fibers were used, which had the disadvantage that it was difficult to obtain a porous sheet. Additionally, this method has the disadvantage that binder fibers and the like adhere to the dryer and canvas during paper making, making regular operation difficult.

また、バインダー繊維を使用しない湿式抄紙法に於ても
、通常の湿式抄紙の場合、パルプを混合することは必要
であり、パルプを加えるにつれ、抄紙されたシートの緊
張は大きく成り嵩高なシートを作ることが困難となり、
高い気孔度の炭素板を作ることが出来なかった。
In addition, even in wet papermaking methods that do not use binder fibers, it is necessary to mix pulp in normal wet papermaking, and as more pulp is added, the tension in the paper sheet increases, resulting in bulky sheets. It becomes difficult to make
It was not possible to make a carbon plate with high porosity.

更にこれらの方法では燃料電池の電極基板としては電気
伝導性が十分に高くなく、又製造上の工程が多くコスト
がかかるため、改善が要求されていた。
Furthermore, these methods do not have a sufficiently high electrical conductivity as electrode substrates for fuel cells, and require many manufacturing steps and are costly, so improvements have been required.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記の欠点を改良すると共に、任意の平均孔
径で任意の気孔度の多孔質炭素板を、般に使用されてい
るシート化設備を用い、安価に、電気伝導性、特にシー
トの厚さ方向の電気伝導性の高い、耐薬品性に優れた高
品質のものを安価に製造する方法を提供することを目的
とする。
The present invention improves the above-mentioned drawbacks, and also makes it possible to produce porous carbon plates of any average pore diameter and any porosity at low cost using commonly used sheet-forming equipment. The purpose of the present invention is to provide a method for inexpensively manufacturing a high-quality product with high electrical conductivity in the thickness direction and excellent chemical resistance.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は、本発明によれば、炭素繊維製造用有機繊
維と、パルプと、前記有機繊維およびパルプの合計重量
に対して、固形分重量で5〜40重量%の炭素質粉末お
よび固形分重量で20〜160重量%の有機高分子物質
の粉末またはエマルジョンと、分散媒とを混合してスラ
リーを作成する工程、得られたスラリーを抄紙してシー
トに底形する工程、および 上記シートを乾燥後不活性ガス中で800℃以上の温度
に加熱することによって炭化させる工程を含むことを特
徴とする多孔質炭素板の製造方法によって達成される。
The above object, according to the present invention, includes organic fibers for producing carbon fibers, pulp, and carbonaceous powder with a solid content of 5 to 40% by weight based on the total weight of the organic fibers and pulp. A step of mixing 20 to 160% by weight of a powder or emulsion of an organic polymer substance and a dispersion medium to create a slurry, a step of making paper from the obtained slurry to form a sheet, and a step of forming the bottom of the sheet. This is achieved by a method for manufacturing a porous carbon plate characterized by including a step of carbonizing by heating to a temperature of 800° C. or higher in an inert gas after drying.

以下、本発明の構成を更に詳しく説明する。Hereinafter, the configuration of the present invention will be explained in more detail.

(有機繊維〉 本発明に用いる炭素繊維用有機繊維としては、通常のレ
ーヨン、ピッチ繊維、リグニン繊維、フェノール樹脂繊
維、アクリル繊維等、通常炭素繊維を製造する場合に原
料として普通に使用される有機繊維であって0.5〜1
5デニール、長さ3mm〜50mm好ましくは製造、及
び焼成機の気孔径等の点から1.5〜10デニール、長
さ5〜20碓のものを目的に応じて選択し、単独である
いは2種以上を配合して使用する。
(Organic fibers) The organic fibers for carbon fibers used in the present invention include ordinary rayon, pitch fibers, lignin fibers, phenolic resin fibers, acrylic fibers, etc. Fiber, 0.5-1
5 denier, length 3 mm to 50 mm, preferably 1.5 to 10 denier and 5 to 20 mm length, depending on the purpose, from the viewpoint of manufacturing and pore diameter of the firing machine, and select one or two types depending on the purpose. Use the above in combination.

(パルプ〉 パルプは有機繊維を抄紙する際のシート形成補助材とし
て使用するもので、有機繊維とパルプとの配合割合は重
量比で95=5〜60:40の範囲とすることが好まし
い。パルプの割合が多過ぎると気孔度の大きい嵩高なシ
ートが得にくく、少な過ぎると抄紙が困難になる。
(Pulp) Pulp is used as a sheet forming auxiliary material when making paper from organic fibers, and the blending ratio of organic fibers and pulp is preferably in the range of 95=5 to 60:40 by weight.Pulp If the ratio is too high, it will be difficult to obtain a bulky sheet with high porosity, and if it is too low, it will be difficult to make paper.

(炭素質粉末) 抄紙に用いられる炭素質粉末としては、粒径が0.1〜
40J−のグラファイト又はカーボンブラック等が使用
される。必要なら、通常抄紙の際使用される、歩留向上
剤を添加してもよい。
(Carbonaceous powder) Carbonaceous powder used for paper making has a particle size of 0.1 to
40J- graphite or carbon black or the like is used. If necessary, a retention aid commonly used in paper making may be added.

(有機高分子物質) 抄紙に用いる有機高分子物質としては、例えばフェノー
ル樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリ
ジビニルベンゼンの如き熱硬化性樹脂、塩化ビニル樹脂
、塩化ビニリデン樹脂、フッ化ビニル樹脂、フッ化ビニ
リデン樹脂、アクリル樹脂等の熱可塑性樹脂、さらには
リグニン、ピッチ又はタールの如きものも使用される。
(Organic polymer substances) Examples of organic polymer substances used in paper making include phenol resins, epoxy resins, unsaturated polyester resins, thermosetting resins such as polydivinylbenzene, vinyl chloride resins, vinylidene chloride resins, and vinyl fluoride resins. , thermoplastic resins such as vinylidene fluoride resin, acrylic resin, and even lignin, pitch, or tar.

これらの高分子化合物の好ましい性質としては、熱処理
時の高温で融解すること、および炭素含有量が30重量
%以上あり炭化後、炭素質バインダーとして炭素繊維内
の結合に役立つものであり、フェノール樹脂等の熱硬化
性樹脂が好ましい。
The desirable properties of these polymer compounds are that they melt at high temperatures during heat treatment, and that they have a carbon content of 30% by weight or more, which serves as a carbonaceous binder for bonding within carbon fibers after carbonization. Thermosetting resins such as the like are preferred.

前記の有機高分子物質は粒径が0.5〜50μの粉体あ
るいは、エマルジョン分散液の形で混抄される。必要な
ら、通常抄紙の際使用される、歩留向上剤を添加しても
よい。
The above-mentioned organic polymeric substance is mixed in the form of a powder having a particle size of 0.5 to 50 μm or in the form of an emulsion dispersion. If necessary, a retention aid commonly used in paper making may be added.

(分散媒) 次に行なう抄紙工程に適したスラリーとするための分散
媒であり、通常は水を用いる。
(Dispersion medium) This is a dispersion medium for making a slurry suitable for the next paper-making process, and usually water is used.

(抄 紙〉 抄紙方法は手抄き、丸網、長網、傾斜ワイヤ等の湿式抄
紙の出来るものならどのようなものでも良く均一性の良
いシートを得たい時には抄紙濃度を低くすれば良い。金
網で脱水した後の強度が弱いときは叩解を進めた木材パ
ルプを5%から40%加えてやれば強度が上がりシート
がつながる、通常は湿紙についてプレス処理を行なうが
、必要がない時、又は実行が困難なとき、プレス処理を
省くこともできる。
(Paper making) Any paper making method that can be used for wet paper making such as hand paper making, round netting, fourdrinier, inclined wire, etc. may be used, and if a sheet with good uniformity is desired, the paper making density may be lowered. If the strength after dewatering with a wire mesh is weak, adding 5% to 40% of beaten wood pulp will increase the strength and connect the sheets.Usually, press processing is performed on wet paper, but when it is not necessary, Alternatively, if it is difficult to carry out, the pressing process can be omitted.

(乾燥工程) 通常の湿式抄紙機で使われている多筒式、ヤンキー式等
のシリンダー型の乾燥機以外に、バンドドライヤー、ハ
ニカムドライヤー、等熱風式ドライヤー、赤外線式ドラ
イヤー等が使える。熱風式のドライヤー又は赤外線を使
用する乾燥機ではシートが嵩高になり高見孔度のシート
を作るときに都合がよい。
(Drying process) In addition to cylinder type dryers such as the multi-tube type and Yankee type used in normal wet paper machines, band dryers, honeycomb dryers, hot air dryers, infrared dryers, etc. can be used. A hot air dryer or a dryer using infrared rays produces bulky sheets and is convenient for producing sheets with high porosity.

つなぎパルプを使用しないで抄紙した湿紙の引っ張り強
度は弱いため、できるだけオープンドローを少なくしな
ければならない。必要に応じカンバス又はフェルトで抱
き搬送するとよい。
Wet paper made without using binder pulp has low tensile strength, so open draw must be minimized as much as possible. If necessary, it is best to carry it in a canvas or felt bag.

(シート成形後の処理) シートは、乾燥後、そのまま加熱炭化処理を行うか、加
熱炭化の前に必要に応じプレス処理を行ってもよい。プ
レス処理は最終炭素板に必要な厚さ、形状、気孔率、孔
径を付与するために行い、その際、加熱処理によりシー
ト中の樹脂を硬化させるのが好ましい。この硬化処理に
よりシートの厚みを一定に保持すると同時に平坦なシー
トを得ることが可能になった。またプレス圧力、又はス
ペーサーの厚さを調整することにより炭素板の厚さ、孔
率、孔径を任意に変えることができる。
(Processing after forming the sheet) After drying, the sheet may be directly subjected to a heating carbonization treatment, or may be subjected to a press treatment as necessary before heating and carbonization. The press treatment is performed to give the final carbon plate the required thickness, shape, porosity, and pore size, and at that time, it is preferable to harden the resin in the sheet by heat treatment. This curing treatment made it possible to maintain a constant sheet thickness and at the same time obtain a flat sheet. Furthermore, by adjusting the press pressure or the thickness of the spacer, the thickness, porosity, and pore diameter of the carbon plate can be changed arbitrarily.

上記プレス処理の際、薄手の含浸シートを必要枚数、好
ましくは3枚以上重ね合わせ、同様にプレス処理を行う
と、容易に厚手の炭素板が得られる。含浸シートを重ね
合わせる際、シートの縦方向と横方向を交互に積層する
とシートの方向性がなくなり、ヒビ割れのない厚みの均
一な炭素板が得られる。プレス処理で加熱効果を行なう
場合の加熱条件としては、150〜220℃、1〜60
分間が適当である。上記プレス処理を行ったシートは必
要に応じて空気中加熱による酸化処理を行った後、焼成
されて本発明の多孔質炭素板が得られる。酸化処理は、
加熱炭素工程後の有機繊維の炭化収率、黒鉛化率を向上
させるために行う。有機繊維がアクリル繊維、ピッチ繊
維の場合特に有効である。
During the above press treatment, a thick carbon plate can be easily obtained by stacking a required number of thin impregnated sheets, preferably three or more sheets, and performing the press treatment in the same manner. When stacking the impregnated sheets, if the sheets are stacked alternately in the vertical and horizontal directions, the sheet orientation will be eliminated and a carbon plate with a uniform thickness without cracks will be obtained. The heating conditions for applying a heating effect through press treatment are 150-220°C, 1-60°C.
minutes is appropriate. The sheet subjected to the above press treatment is optionally oxidized by heating in air, and then fired to obtain the porous carbon plate of the present invention. The oxidation treatment is
This is done to improve the carbonization yield and graphitization rate of organic fibers after the heating carbon process. This is particularly effective when the organic fiber is acrylic fiber or pitch fiber.

酸化の処理条件は、特に特定しないが、好ましくは15
0〜350℃、数10分〜IO数時間の範囲で、使用す
る有機繊維の種類で異なるが、空気中で処理する。
The treatment conditions for oxidation are not particularly specified, but preferably 15
The treatment is carried out in the air at 0 to 350°C for several tens of minutes to several hours, depending on the type of organic fiber used.

(炭化焼成〉 シートは、次いで不活性ガス雰囲気中で、800℃以上
の温度下で加熱焼成することにより、本発明の多孔質炭
素板を得る。
(Carbonization and Firing) The sheet is then heated and fired at a temperature of 800° C. or higher in an inert gas atmosphere to obtain the porous carbon plate of the present invention.

これらの有機性樹脂、繊維は空気中で加熱すると焼失す
るため、N2ガス、Arガス等の不活性ガス中で加熱炭
化処理を行う。処理温度は少くとも電気伝導性が出る8
00℃以上で炭化処理を行うが、高度の電気伝導性、耐
薬品性を得るには1300℃以上、好ましくは2300
℃以上の熱処理を行う。
Since these organic resins and fibers burn out when heated in the air, they are heated and carbonized in an inert gas such as N2 gas or Ar gas. The processing temperature is such that at least electrical conductivity is achieved8
Carbonization treatment is performed at a temperature of 00°C or higher, but in order to obtain high electrical conductivity and chemical resistance, the temperature is 1300°C or higher, preferably 2300°C or higher.
Perform heat treatment above ℃.

以下に、実施例によって本発明を更に詳細に説明する。Below, the present invention will be explained in more detail with reference to Examples.

ただし、下記の実施例は本発明を制限するものではない
。なお、実施例中、部および%とあるのはそれぞれ重量
部および重量%である。
However, the following examples do not limit the present invention. In addition, parts and % in the examples are parts by weight and % by weight, respectively.

実施例1 10テニ一ル3mmのPAN (ポリアクリルニトリル
)wA維を80部、針葉樹晒しクラフトパルプをJIS
フリーネス250mj!に叩解したものを20部よりな
る繊維質物質に、炭素質粉末およびフェノール樹脂(鐘
紡ベルパール890)粉末を、シート化後の固形分重量
として、それぞれ対繊維質15部および対繊維質50部
となるように添加し、更に水を加えてスラリーとした。
Example 1 80 parts of PAN (polyacrylonitrile) wA fiber of 10 tensile 3 mm and JIS bleached softwood kraft pulp
Freeness 250mj! Carbonaceous powder and phenolic resin (Kanebo Bell Pearl 890) powder were added to a fibrous material consisting of 20 parts of the beaten product, and the solid content after sheeting was 15 parts for fibrous material and 50 parts for fibrous material, respectively. Then, water was added to make a slurry.

得られたスラリーを丸網抄紙機で常法により坪量180
g/m″のシートに成形した。
The obtained slurry was processed using a circular mesh paper machine in a conventional manner to reduce the basis weight to 180.
g/m'' sheet.

次いで上記シートを積層せず、プレスで0.5 mmに
なる様にスペーサーを置き、加圧しながら180℃15
分間加熱処理を行った。次いで220℃で4時間、空気
中で安定化処理を行った後1000℃のチッ素ガス雰囲
気中で1時間、グラファイト板にはさんで加熱した。
Next, without stacking the above sheets, press a spacer so that the thickness is 0.5 mm, and heat at 180℃15 while applying pressure.
Heat treatment was performed for a minute. After that, it was stabilized in air at 220°C for 4 hours, and then heated between graphite plates for 1 hour in a nitrogen gas atmosphere at 1000°C.

次いでアルゴンガス雰囲気中、温度2800℃で30分
間焼成を行って炭素繊維シートを得た。
Next, firing was performed at a temperature of 2800° C. for 30 minutes in an argon gas atmosphere to obtain a carbon fiber sheet.

実施例2 10デ−−−ル3mmのPAN繊維を80部、針葉樹晒
しクラフトパルプをJISフリーネス250−に叩解し
たものを20部よりなる繊維質物質に、炭素質粉末およ
びフェノール樹脂粉末を、シート化後の固形分重量とし
て、それぞれ対繊維質15部および対繊維質50部とな
るように添加し、更に水を加えてスラリーとした。
Example 2 A fibrous material consisting of 80 parts of 10-day 3 mm PAN fiber, 20 parts of softwood bleached kraft pulp beaten to a JIS freeness of 250-, carbonaceous powder and phenolic resin powder, and a sheet. They were added so that the weight of the solid content after conversion was 15 parts to fiber and 50 parts to fiber, respectively, and water was further added to form a slurry.

得られたスラリーを丸網抄紙機で常法により坪量180
g/m’のシートに成形した。
The obtained slurry was processed using a circular mesh paper machine in a conventional manner to reduce the basis weight to 180.
g/m' sheet.

次いで上記シートを10枚積層し、プレスで4.0mm
になる様にスペーサーを置き、加圧しながら180℃1
5分間加熱処理を行った。
Next, 10 of the above sheets were stacked and pressed to a thickness of 4.0 mm.
Place a spacer so that the
Heat treatment was performed for 5 minutes.

次いで220℃で4時間、空気中で安定化処理を行った
後1000℃のチッ素ガス雰囲気中で1時間、グラファ
イト板にはさんで加熱した。
After that, it was stabilized in air at 220°C for 4 hours, and then heated between graphite plates for 1 hour in a nitrogen gas atmosphere at 1000°C.

次いでアルゴンガス雰囲気中、温度2800℃で30分
間焼成を行って炭素繊維シートを得た。
Next, firing was performed at a temperature of 2800° C. for 30 minutes in an argon gas atmosphere to obtain a carbon fiber sheet.

実施例3 10デニール3mmのPAN繊維を80部、針葉樹晒し
クラフトパルプをJISフリーネス250−に叩解した
ものを20部よりなる繊維質物質に、炭素質粉末および
フェノール樹脂粉末を、シート化後の固形分重量として
、それぞれ対繊維質30部および対繊維質50部となる
ように添加し、更に水を加えてスラリーとした。
Example 3 A fibrous material consisting of 80 parts of 10 denier 3 mm PAN fiber, 20 parts of softwood bleached kraft pulp beaten to JIS freeness 250-, carbonaceous powder and phenolic resin powder, and a solid after sheeting. They were added so as to have a weight of 30 parts of fibrous material and 50 parts of fibrous material, respectively, and water was further added to form a slurry.

得られたスラリーを丸網抄紙機で常法により坪量180
g/m’のシートに成形した。
The obtained slurry was processed using a circular mesh paper machine in a conventional manner to reduce the basis weight to 180.
g/m' sheet.

次いで上記シートを10枚積層し、プレスで4.0mm
になる様にスペーサーを置き、加圧しながら180℃1
5分間加熱処理を行った。
Next, 10 of the above sheets were stacked and pressed to a thickness of 4.0 mm.
Place a spacer so that the
Heat treatment was performed for 5 minutes.

次いで220℃で4時間、空気中で安定化処理を行った
後1000℃のチッ素ガス雰囲気中で1時間、グラファ
イト板にはさんで加熱した。
After that, it was stabilized in air at 220°C for 4 hours, and then heated between graphite plates for 1 hour in a nitrogen gas atmosphere at 1000°C.

次いでアルゴンガス雰囲気中、温度2800℃で30分
間焼成を行って炭素繊維シートを得た。
Next, firing was performed at a temperature of 2800° C. for 30 minutes in an argon gas atmosphere to obtain a carbon fiber sheet.

比較例1 10デニール3 mmのPAN繊維を80部、針葉樹晒
しクラフトパルプをJISフリーネス250rrteに
叩解したものを20部よりなる繊維質物質に、更に水を
加えてスラリーとした。
Comparative Example 1 Water was further added to a fibrous material consisting of 80 parts of 10 denier 3 mm PAN fiber and 20 parts of softwood bleached kraft pulp beaten to a JIS freeness of 250 rrte to form a slurry.

得られたスラリーを丸網抄紙機で常法により坪量180
g/m’のシートに成形した。
The obtained slurry was processed using a circular mesh paper machine in a conventional manner to reduce the basis weight to 180.
g/m' sheet.

このシートに高分子物質(フェノール樹脂(群栄化学P
L2215)を繊維質物質に対して50部)をメタノー
ル溶液にて含浸し、105℃の温度で乾燥した。
This sheet is coated with a polymer substance (phenol resin (Gun-Ei Chemical P.
L2215) (50 parts based on the fibrous material) was impregnated with a methanol solution and dried at a temperature of 105°C.

次いで上記シートを積層せず、プレスで0.5 mmに
なる様にスペーサーを置き、加圧しながら180t15
分間加熱処理を行った。
Next, without stacking the above sheets, press a spacer so that the thickness is 0.5 mm, and press it to 180t15.
Heat treatment was performed for a minute.

次いで220℃で4時間、空気中で安定化処理を行った
後1000℃のチッ素ガス雰囲気中で1時間、グラファ
イト板にはさんで加熱した。
After that, it was stabilized in air at 220°C for 4 hours, and then heated between graphite plates for 1 hour in a nitrogen gas atmosphere at 1000°C.

次いでアルゴンガス雰囲気中、温度2800℃で30分
間焼成 比較例2 1Oデニ一ル3mmのPANi!維を80部、針葉樹晒
しクラフトパルプをJISフリーネス250m12に叩
解したものを20部よりなる繊維質物質に、更に水を加
えてスラリーとした。
Comparative Example 2 PANi of 1O denier 3mm was then baked in an argon gas atmosphere at a temperature of 2800°C for 30 minutes. A slurry was prepared by adding water to a fibrous material consisting of 80 parts of fiber and 20 parts of bleached softwood kraft pulp beaten to a JIS freeness of 250 m12.

得られたスラリーを丸網抄紙機で常法により坪量180
g/m’のシートに成形した。
The obtained slurry was processed using a circular mesh paper machine in a conventional manner to reduce the basis weight to 180.
g/m' sheet.

このシートに高分子物質(フェノール樹脂を繊維質物質
に対して50部)をメタノール溶液にて含浸し、105
℃の温度で乾燥した。
This sheet was impregnated with a polymeric material (50 parts of phenolic resin based on the fibrous material) in a methanol solution, and
Dry at a temperature of °C.

次いで該シートを10枚積層し、プレスで4.0 mm
になる様にスペーサーを置き、加圧しながら180t1
5分間加熱処理を行った。
Next, 10 of the sheets were stacked and pressed to a thickness of 4.0 mm.
Place the spacer so that it becomes 180t1 while applying pressure.
Heat treatment was performed for 5 minutes.

次いで220℃で4時間、空気中で安定化処理を行った
後1000℃のチッ素ガス雰囲気中で1時間、グラファ
イト板にはさんで加熱した。
After that, it was stabilized in air at 220°C for 4 hours, and then heated between graphite plates for 1 hour in a nitrogen gas atmosphere at 1000°C.

次いでアルゴンガス雰囲気中、温度2800℃で30分
間焼焼成行って炭素繊維シートを得た。
Next, firing was performed at a temperature of 2800° C. for 30 minutes in an argon gas atmosphere to obtain a carbon fiber sheet.

実施例1〜3、比較例1および2で製造した炭素繊維シ
ートについて密度と電気伝導性を測定した。測定結果を
、製造工程条件と対応させて第1表にまとめて示す。
The density and electrical conductivity of the carbon fiber sheets manufactured in Examples 1 to 3 and Comparative Examples 1 and 2 were measured. The measurement results are summarized in Table 1 in correspondence with the manufacturing process conditions.

表から、本発明の炭素繊維シートは、比較例に対して、
嵩高性を確保しながら貫層方向の電気伝導性が著しく向
上しており、また炭素化収率も優れていることがわかる
From the table, the carbon fiber sheet of the present invention has the following characteristics compared to the comparative example:
It can be seen that the electrical conductivity in the translayer direction is significantly improved while ensuring bulkiness, and the carbonization yield is also excellent.

第 表 〔発明の効果〕 本発明は、再生セルロース繊維、ピッチ繊維、アクリル
繊維等、通常炭素繊維を製造する際の原料となる繊維と
炭素質粉末及び有機高分子物質を混合してシート化し、
1枚、好ましくは複数枚積層して、プレスで、加熱成型
処理を行い厚手の多孔性炭素板を得る方法である。
Table 1 [Effects of the Invention] The present invention involves mixing fibers such as regenerated cellulose fibers, pitch fibers, acrylic fibers, etc., which are normally used as raw materials for manufacturing carbon fibers, carbonaceous powder, and organic polymeric substances to form a sheet.
This is a method in which a thick porous carbon plate is obtained by laminating one sheet, preferably a plurality of sheets, and performing heat molding treatment using a press.

本発明の第一の特色は、原シートに炭素板として接着す
る樹脂溶液含浸処理を行なわなくて済むため製造コスト
を下げることが出来る。
The first feature of the present invention is that manufacturing costs can be reduced because there is no need to perform a resin solution impregnation treatment for adhering the original sheet as a carbon plate.

第二の特色は、電気伝導性の良い炭素質粉末を有機高分
子物質と混合してシートを作成するため、焼成機のシー
トの貫層方向の電気伝導性及び熱伝導性を良くすること
が出来る。
The second feature is that the sheet is created by mixing carbonaceous powder with good electrical conductivity with an organic polymer material, so it is possible to improve the electrical conductivity and thermal conductivity of the sheet in the firing machine's layer direction. I can do it.

第三に、炭素繊維を使用しないため、800℃以上で加
熱焼成の際、約半分はガスとして消失するため、非常に
気孔率の高い多孔質炭素板が容易に得られるようになっ
た。例えば従来炭素繊維の抄紙から得られた炭素板では
気孔率は70%が限度であったが本発明の方法では75
〜85%の気孔率の炭素板を容易に得ることができるよ
うになり、ガス透過性、液透過性の良い炭素板が得られ
る様になった。また、原料繊維の太さの選択、配合及び
プレス処理の調節により、燃料電池、2次電池用の電極
基材として使用する場合に特に問題になる板の孔径や気
孔率を自由にかつ容易にコントロールすることが可能に
なった。
Thirdly, since carbon fibers are not used, about half of the carbon fibers disappear as gas when fired at 800° C. or higher, making it easier to obtain porous carbon plates with extremely high porosity. For example, in conventional carbon plates obtained from carbon fiber papermaking, the porosity was limited to 70%, but with the method of the present invention, the porosity was 75%.
It has become possible to easily obtain a carbon plate with a porosity of ~85%, and a carbon plate with good gas permeability and liquid permeability. In addition, by selecting the thickness of the raw fibers, adjusting the blending and press processing, it is possible to freely and easily adjust the pore size and porosity of the plate, which is a particular problem when used as an electrode base material for fuel cells and secondary batteries. It became possible to control it.

Claims (1)

【特許請求の範囲】 1、炭素繊維製造用有機繊維と、パルプと、前記有機繊
維およびパルプの合計重量に対して、固形分重量で5〜
40重量%の炭素質粉末および固形分重量で20〜16
0重量%の有機高分子物質の粉末またはエマルジョンと
、分散媒とを混合してスラリーを作成する工程、 得られたスラリーを抄紙してシートに成形する工程、お
よび 上記シートを乾燥後不活性ガス中で800℃以上の温度
に加熱することによって炭化させる工程を含むことを特
徴とする多孔質炭素板の製造方法。
[Scope of Claims] 1. Organic fiber for carbon fiber production, pulp, and a solid content of 5 to 5 by weight based on the total weight of the organic fiber and pulp.
40% by weight carbonaceous powder and solids weight 20-16
A step of creating a slurry by mixing 0% by weight organic polymer substance powder or emulsion with a dispersion medium, a step of forming the obtained slurry into a paper sheet, and a step of drying the sheet and then blowing it with an inert gas. A method for producing a porous carbon plate, comprising a step of carbonizing the porous carbon plate by heating the porous carbon plate to a temperature of 800° C. or higher.
JP21289089A 1989-08-21 1989-08-21 Production of porous carbonaceous sheet Pending JPH0376821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21289089A JPH0376821A (en) 1989-08-21 1989-08-21 Production of porous carbonaceous sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21289089A JPH0376821A (en) 1989-08-21 1989-08-21 Production of porous carbonaceous sheet

Publications (1)

Publication Number Publication Date
JPH0376821A true JPH0376821A (en) 1991-04-02

Family

ID=16629961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21289089A Pending JPH0376821A (en) 1989-08-21 1989-08-21 Production of porous carbonaceous sheet

Country Status (1)

Country Link
JP (1) JPH0376821A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947114B2 (en) 2005-08-05 2011-05-24 Ntnu Technology Transfer As Carbon membranes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947114B2 (en) 2005-08-05 2011-05-24 Ntnu Technology Transfer As Carbon membranes

Similar Documents

Publication Publication Date Title
US4619796A (en) Process for preparation of porous carbon plates
JP5191078B2 (en) Conductive sheet material
JP3356534B2 (en) Electrolyte holding plate and method for manufacturing the same
JPH0140128B2 (en)
JPH0559867B2 (en)
JPS59144625A (en) Production of carbon fiber sheet
JPH0376821A (en) Production of porous carbonaceous sheet
JP3482610B2 (en) Prepreg sheet for porous carbonaceous molded plate
JPS59187623A (en) Preparation of carbon fiber molded sheet
JP2685365B2 (en) Manufacturing method of porous carbon plate
JPH06671B2 (en) Highly graphitized porous carbon fiber sheet and method for producing the same
JPH0223505B2 (en)
JPH0369615A (en) Preparation of porous carbon plate
JPH08283084A (en) Production of porous carbon plate
JPS6119820A (en) Production of porous carbon plate
JPH01266223A (en) Production of anisotropic porous carbon formed product
JPH08283083A (en) Production of porous carbon plate
JPH0859360A (en) Production of porous carbon material
JPH05194056A (en) Production of porous carbon plate having high compression resistance
JPH081040B2 (en) Method for manufacturing porous carbon plate
JPS60167271A (en) Manufacture of porous carbon electrode with rib
JP2607397B2 (en) Method for producing porous glassy carbon material
JPH07220732A (en) Manufacture of porous carbon plate for phosphoric acid fuel cell
JPH0367990B2 (en)
JPH0253992A (en) Production of cellular carbon board